[go: up one dir, main page]

JP3672581B2 - Polyester film - Google Patents

Polyester film Download PDF

Info

Publication number
JP3672581B2
JP3672581B2 JP12842593A JP12842593A JP3672581B2 JP 3672581 B2 JP3672581 B2 JP 3672581B2 JP 12842593 A JP12842593 A JP 12842593A JP 12842593 A JP12842593 A JP 12842593A JP 3672581 B2 JP3672581 B2 JP 3672581B2
Authority
JP
Japan
Prior art keywords
polyester
film
particle size
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12842593A
Other languages
Japanese (ja)
Other versions
JPH06313052A (en
Inventor
豊 馬場
泰弘 西野
重次 小長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP12842593A priority Critical patent/JP3672581B2/en
Publication of JPH06313052A publication Critical patent/JPH06313052A/en
Application granted granted Critical
Publication of JP3672581B2 publication Critical patent/JP3672581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ポリエステルフィルムに関し、より詳しくは平坦易滑性、走行耐久性、耐スクラッチ性に優れた磁気記録媒体用ポリエステルフィルムに関する。
【0002】
【従来の技術】
一般にポリエステルはその優れた物理的及び化学的諸特性のために、繊維用、成形品用のほか磁気テープ用、フロッピーディスク用、写真用、コンデンサー用、包装用ならびにレントゲンフィルム及びマイクロフィルムなどのフィルム用としても多種の用途で広く用いられている。特に磁気記録媒体用ベースフィルムとして必要不可欠のものとなっている。
【0003】
近年磁気記録媒体の改良が急速な勢いで行われており、これに伴いベースフィルムに対する要求も一段と厳しいものとなってきている。例えば、滑り性及び耐摩耗特性はフィルムの製造工程及び各用途における加工工程の作業性の良否を左右する大きな要因となっている。特にポリエステルフィルム表面に磁性材料を塗布した磁気テープとして用いる場合には、磁性材料塗布時におけるコーティングロールとフィルム表面との摩擦及びこれによるフィルムの摩耗が極めて激しく、フィルム表面へのしわ及び擦り傷が発生し易い。
【0004】
さらに生産性を高めるために、塗布工程及びカレンダー工程でのフィルムの送り速度を早くすると、磁気記録信号の欠落、すなわちドロップアウトが増加する。また磁性層塗布後のフィルムをスリットして、オーディオ、ビデオまたはコンピュータ用テープなどに加工した後でも、リールやカセットなどからの引き出しや巻き上げその他の操作の際に、多くのガイド部、再生ヘッドとの間に摩擦及び摩耗が著しく生じる。その結果、擦り傷、歪みの発生さらにはポリエステルフィルム表面の削れ等による白粉状物質が析出し、ドロップアウトなどの原因となることが多い。
【0005】
また、近年需要が増加してきたソフト用ビデオテープの場合、マスターテープからの高速ダビングする工程で、ガイドピンによりテープにスクラッチが入り白粉が発生する。その結果、S/N比が低下し画質が悪化するという問題もでてきている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、これら従来の問題点を解消し、平坦易滑性を損なうことなく耐スクラッチ性に優れた高品質のポリエステルフィルムを提供することにある。
【0007】
【課題を解決するための手段】
すなわち本発明は、少なくとも一つの最表層が、ポリエステル、周期律表第II族の原子を含む化合物とリン化合物、少なくとも3種類の不活性粒子a、b、cからなる組成物を主成分とするポリエステルフィルムであって、
粒子aは平均粒径が0.05〜1.0μmの炭酸カルシウム、球状シリカ、または球状架橋ポリスチレンであり、粒子bは平均粒径が0.05〜1.0μmのカオリン、硫酸バリウム、またはクレーであり、粒子cは平均粒径が0.05〜0.3μmであって、他の粒子よりも粒径が小さい、アルミナ、球状シリカ、または酸化チタンであり、
前記の周期律表第II族の原子を含む化合物がMg原子を含む化合物であり、該化合物の含有量がMg原子に換算して10ppm〜200ppmであり、リン化合物中のPに対するMgのモル比(P/Mg)が0.5〜1.0であり、
さらに、前記フィルムは表面突起密度が0.1〜0.5個/μmであり、かつ該突起の円相当平均径が0.05〜0.4μmであって、これらの突起の内、全体の突起数の30〜80%が0.25μm以下の円相当径をもつ微小突起であることを特徴とするポリエステルフィルムである。
【0008】
本発明のフィルムの製造に用いられるポリエステルは、ポリエチレンテレフタレート、ポリアルキレンナフタレートなどの結晶性ポリエステルであり、特に限定はされない。なかでも、その繰り返し単位の80モル%以上がエチレンテレフタレートからなるポリエチレンテレフタレートが好ましい。
【0009】
ポリエステルの製造方法は、芳香族ジカルボン酸とグリコールとを直接反応させる、いわゆる直接重合法、芳香族カルボン酸のジメチルエステルとグリコールとをエステル交換反応させるいわゆるエステル交換法など任意の製造法を適用することができる。
【0010】
本発明のフィルムにおいて少なくとも一つの最表層に使用される不活性粒子としては、酸化チタン、シリカ、炭酸カルシウム、カオリン、カーボンブラック、アルミナ、クレー、リン酸カルシウム、リン酸バリウム、硫酸バリウム等の無機粒子、架橋ポリスチレン、架橋ポリメチルメタクリレート、ポリイミド等の有機粒子等があげられる。これらは合成品でも、天然品でも良い。また粒子の形状も限定されないが、球状、ライス型、板型、無定型等が好ましい。さらに平均粒径もいちがいに限定されないが、好ましくは0.01〜1.5μm、さらに好ましくは0.05〜1.0μmの微粒子が用いられる。
【0011】
本発明者らは1種あるいは2種の粒子では、易滑性、走行耐久性、耐削れ性及び耐スクラッチ性を良好に維持できないことを見いだしている。本発明では粒子は少なくとも3種類以上用いられ、それぞれの粒子の硬度、形状、量、粒径、粒度分布をコントロールすることにより各粒子の能力を発揮させることができる。例えば易滑性は、粒子の形状が球に近く粒度分布がシャープであるものが優れる。効果が期待される粒子として合成炭酸カルシウム、球状シリカ、球状架橋ポリスチレンなどが挙げられる。また削れ性を維持するには板状粒子で硬度の低いものが良く耐スクラッチ性にも効果がある、例えば、カオリン、硫酸バリウム、クレーなどである。さらに耐スクラッチ性には他の特性を維持するための粒子より粒径を小さくし、微小突起を形成させることが必要である。特に限定されないがアルミナ、球状シリカ、酸化チタン等の無機粒子がある。このようにそれぞれの要求品質に対して効果の期待できる粒子を添加することができる。
【0012】
ここでいう突起とは、反射型電子顕微鏡(SEM)日立製作所(株)製 S−2500を用い観察し、得られた像を画像処理装置にて定量した結果を用いる。観察条件
加速電圧 20kv
試料傾斜 30°
観察倍率 6000
観察視野数 30
【0013】
得られたデータより表面突起密度が0.1〜0.5個/μm2 であり、かつ該突起の円相当平均径が0.05〜0.4μmであることが、良好な易滑性を維持しつつ、耐削れ性、耐スクラッチ性に優れる。ここでいう突起の円相当径が0.4μm以上であると、通常表面中心線平均粗さ(Ra)で0.020μmを越え磁気記録媒体に加工した際、電磁変換特性が悪化する。また、表面突起密度が0.1個/μm2 未満であると、易滑性、耐スクラッチ性が劣ることを見いだしている。
【0014】
さらに、表面突起を上記範囲にするには、フィルム表面に微小突起を形成させることにより達成できる。この微小突起は、円相当径で0.25μm以下をさし全表面突起数の30〜80%の範囲、より好ましくは、40〜80%の占有率で存在させることにより上記範囲の表面を形成させることができる。
ここで突起の円相当径とは、突起の投影断面積を求め、それと同じ面積を持つ球の直径を意味する。
これらの微小突起が30%未満の場合耐スクラッチ性が劣り、80%を越えると易滑性が劣る。
【0015】
フィルム表面に上記した微小突起を発生させかつ該突起の数を上記範囲にコントロールする一つの手段として、微細でかつ粒度分布のシャープな不活性微粒子を少なくとも1種添加することが挙げられる。
詳しくは、平均粒径が0.05〜0.3μmで、かつ遠心沈降式粒度分布計によって得られた粒度分布を用いて粒径の小さい方から積算して、重量分布が10%と75%の粒径の差が0.10μm以下、好ましくは0.06μm以下の不活性粒子が好適である。このような微粒子を得る手段の一つとして、特開平2−178321に記載された特殊分散法、すなわちポリエステル製造工程で不活性微粒子含有混合物を連続密閉式攪拌装置を用いて分散させる方法、等の適用が一層効果的である。また該不活性微粒子として粒子の10%変形強度が、10kgf/mm2 のものを選択することが、本発明で意図する微小突起を発生せしめるのに有効である。
【0016】
さらにポリエステル中に周期律表第II族の原子を含む化合物とリン化合物とを含有させておくことで、ポリエステル中での粒子の分散性を向上させ、フィルム表面に本発明で規制した微小突起を好適に得ることができる。周期律表第II族の原子を含む化合物の例として酢酸マグネシウムや酢酸カルシウム等が挙げられる。また、リン化合物の例として、リン酸、リン酸トリエステル、酸性リン酸エステル、亜リン酸、亜リン酸エステル等が挙げられる。周期律表第II族の原子を含む化合物の含有量は、Mg原子に換算して10ppm〜200ppmで、そのモル比、すなわちリン化合物中のPに対するMgのモル比(P/Mg)は0.5〜1.0、好ましくは0.65〜0.85にする。またリン化合物の含有量は10ppm〜200ppmが好ましい。
【0017】
それぞれの不活性微粒子の添加量としては、ポリエステルに対し0.05〜1.5重量%であり、好ましくは0.1〜1.5重量%、さらに好ましくは0.2〜1.0重量%である。それぞれの添加量が0.05重量%未満では、本発明の微小突起数を得られず、逆に、添加量が1.5重量%を越えると、ポリエステル中での微粒子の凝集により粗大突起が発生し、電磁変換特性やドロップアウトの悪化原因になるので好ましくない。また不活性微粒子の全添加量はポリエステルに対し0.1〜1.6重量%であり、好ましくは0.2〜1.0重量%、さらに好ましくは0.3〜1.0重量%である。添加量が0.1重量%未満では滑り性や耐摩耗性を良好に保てず、1.6重量%を越えると電磁変換特性が悪化する。
【0018】
本発明のフィルムは、たとえば下記の方法によって製造される。
最表層を構成する原料として、ポリエステル原料と不活性微粒子の混合物からポリエステル組成物を製造する。このポリエステル組成物を十分乾燥した後、その他の層を構成するポリエステルと共に多層押し出し機に供給し、ろ過後スリット状口金から溶融押し出しし、冷却固化せしめて未延伸原反を得る。このとき押し出し機の中で、ポリマーにせん断応力が強く働く方法、もしくはせん断速度が速い方法が微小突起を本発明の範囲内にするのに有効である。特に限定されないが、フィルターメッシュを5〜20μmの範囲にし、2軸押し出し機の使用が有効である。
【0019】
溶融押し出しされた実質的に未配向のポリエステルフィルムは、ロール間でまたはステンタで長手方向または幅方向に2.5〜5倍、好ましくは3〜4.5倍延伸する。通常の逐次2軸延伸法によるフィルムの延伸において、はじめの1軸目の延伸は80〜90℃の範囲で行われるのが一般であるが、本発明においては、上記の1軸目の長手方向または幅方向の延伸を95℃以上130℃以下の範囲で行う必要があり、特に好ましくは105℃以上125℃以下の範囲である。ひき続きフィルム面内で1軸目と垂直な方向に2.5〜4.0倍、好ましくは3〜4倍、延伸温度90〜130℃で延伸し、さらに180〜230℃の温度で2〜7秒間熱処理すると、本発明の規定要件を満たす2軸配向ポリエステルフィルムを得ることができる。
【0020】
【実施例】
以下、本発明のポリエステルフィルムを実施例によってさらに詳細に説明するが、本発明はこれら実施例によって何ら限定されない。
実施例及び比較例で得られたフィルムの物性、不活性粒子の粒径およびポリエステルの極限粘度の測定方法を示す。
(1) 不活性粒子の平均粒径
エチレングリコールスラリー中で十分に分散して得られた微粒子の粒度分布を光透過型遠心沈降式粒度分布測定機(SA−CP3型:島津製作所製)を用いて測定し、重量分布の積算が50%となる値を用いた。
(2) フィルムの耐スクラッチ性
幅12.7mmに裁断したポリエステルフィルムを硬質クロムメッキ金属ピン(直径6mm、表面粗さ3S)に張力50g、巻き付け角90度、走行速度1.3m/秒で摩擦させつつ走行させる。次いで、走行後のフィルムにアルミニウム蒸着を施し、実体顕微鏡にて観察し傷の量を目視判定し、以下のようにランク分けした。
1‥‥傷がまったく認められない
2‥‥微かに傷が認められるが極めて微量である
3‥‥少量の傷が認められる
4‥‥多量に傷が認められる
得られたポリエステルフィルムがランク1及び2であれば、実用上差し支えない。
(3) 極限粘度
粘度溶媒としてフェノール/テトラクロロエタン=6/4に調合したものを用い、30℃の恒温槽内にてウベローゼ型粘度管で測定した。
(4) 表面粗度(平坦性)
サーフコム300A型表面粗さ計(東京精密製)を用いて、針径1μm、荷重0.07g、測定基準長0.8mm、カットオフ0.08mmの条件で測定した時の中心線平均粗さ(Ra:μm)で表した。
(5) 易滑性
ASTM D−1894−63に準拠し、スレッド式ストリップテスターを用い、23℃、65RH%の環境条件下でフィルム/フィルム間の静摩擦係数を測定した。
【0021】
実施例 1
平均粒径0.5μmの炭酸カルシウム粒子1.48重量部、エチレングリコール14.8重量部及び、0.1Mのトリポリリン酸ナトリウム0.00296重量部を混合し、ホモジナイザーで攪拌処理し16.3重量部のスラリーを得た。他方、テレフタル酸86.4重量部、エチレングリコール64.6重量部、三酸化アンチモン0.03重量部、トリエチレンアミン0.16重量部及び酢酸マグネシウム4水和物0.088重量部を加え、240℃、3.5kg/cm2 の圧力下でエステル化を行った。
エステル化終了後、この溶液にトリメチルホスフェート0.04重量部を加えて常圧下260℃で攪拌を行った。30分後、前記スラリー11.0重量部を加えてさらに30分攪拌を行った。その後、真空下で重縮合反応を行い、ポリエチレンテレフタレートを得た。(ポリエステルA)
【0022】
上記ポリエステルAの製造において、炭酸カルシウムの代わりに平均粒径0.4μmのカオリンを添加すること以外は同様にして、ポリエチレンテレフタレートを得た。(ポリエステルB)
【0023】
上記ポリエステルAの製造において、炭酸カルシウムの代わりに平均粒径0.07μm、10%変形強度10kgf/mm2 以上の酸化アルミニウムを添加すること以外は同様にして、ポリエチレンテレフタレートを得た。(ポリエステルC)
【0024】
平均粒径0.2μmの球状シリカ粒子1.48重量部、エチレングリコール14.8重量部及び、0.1Mの水酸化ナトリウム0.00296重量部を混合し、ホモジナイザーで攪拌処理し16.3重量部のスラリーを得た。
他方、テレフタル酸86.4重量部、エチレングリコール64.6重量部、三酸化アンチモン0.03重量部、酢酸マグネシウム4水和物0.088重量部を加え、反応缶の温度が80℃まで冷却されるのを待った。80℃に到達後、前記スラリーを生成ポリエステルに対して球状シリカが1重量部となる量だけエステル化反応缶に仕込み、5分後加圧昇温を行い、240℃、3.5kg/cm2 の圧力下でエステル化を行った。その後トリメチルホスフェートを0.034重量部仕込み、30分後に反応物を重合缶に移送し、その後攪拌しながら昇温減圧をして285℃、0.1mmHgで3時間重縮合反応を行い、ポリエチレンテレフタレートを得た。(ポリエステルD)
【0025】
上記ポリエステルAの製造において、無機粒子を含まないポリエチレンテレフタレートを得た。(ポリエステルE)
【0026】
上記の不活性無機粒子が表1に示した濃度となるように、得られた上記ポリエステルA,B,C,D,Eを所定の重量比で混合、乾燥し、押し出し機に供給し、280℃で溶融し、30℃の冷却ドラム上にキャスティングすることにより厚さ220μmの未延伸フィルムを得た。次いでこのフィルムを110℃に加熱したロール、および表面温度600℃の赤外線ヒーター(フィルムから20mm離れた位置に設置)を用いて加熱した後、低速ロールと高速ロールとの間で縦方向に3.3倍延伸した。さらにこのフィルムをテンター内で100℃で横方向に4.0倍延伸した。テンター中では、横方向に引き続いて熱処理、再横延伸および横方向の緩和を行い、厚さ15μmの2軸配向ポリエステルフィルムを得た。得られたフィルムの表面突起密度は0.3個/μm2 で表面突起の円相当平均径は0.22μmであった。このフィルムの微小突起は全体の突起数の60%を占めていた。耐スクラッチ性、表面粗度および表面易滑性を表1に示す。各評価結果は良好であることが確認された。
【0027】
実施例 2〜3、比較例 1〜3
ポリエステルに添加する不活性粒子の種類、平均径、量を変えた以外は、実施例1と同様にして2軸配向ポリエステルフィルムを得た。
得られたフィルムについて、耐スクラッチ性、表面粗度および表面易滑性を実施例1と同様に測定した。結果を表1に示す。
表1に示すように、微小突起の占有率を30〜80%、表面突起の密度および円相当平均径を本発明の請求の範囲内に設定することにより表面易滑性も耐スクラッチ性も良好であった。しかし、微小突起の占有率、突起密度、円相当平均径が範囲外のものは、平坦性および易滑性は維持しているものの耐スクラッチ性は不良であった。また不活性粒子の種類が1種あるいは2種の場合は表面粗度、易滑性を良好に保てないことも確認された。
【0028】
【表1】

Figure 0003672581
【0029】
【表2】
Figure 0003672581
【0030】
【発明の効果】
以上のように、本発明のフィルムは、フィルムの平坦性および易滑性を維持しつつ、表面に一定量の微小突起を形成させ表面突起の密度、円相当平均径をある範囲内にコントロールすることにより、耐スクラッチ性に優れるポリエステルフィルムが得られる。[0001]
[Industrial application fields]
The present invention relates to a polyester film, and more particularly to a polyester film for magnetic recording media excellent in flat slipperiness, running durability, and scratch resistance.
[0002]
[Prior art]
Polyesters are generally used for fibers, molded articles, magnetic tape, floppy disks, photographs, capacitors, packaging, and X-ray films and microfilms because of their excellent physical and chemical properties. It is widely used for various purposes. In particular, it is indispensable as a base film for magnetic recording media.
[0003]
In recent years, magnetic recording media have been improved at a rapid pace, and the demand for a base film has become more severe. For example, slipperiness and wear resistance are major factors that determine the quality of workability of the film manufacturing process and the processing process in each application. In particular, when used as a magnetic tape with a polyester film surface coated with a magnetic material, the friction between the coating roll and the film surface when applying the magnetic material and the resulting film wear are extremely severe, causing wrinkles and scratches on the film surface. Easy to do.
[0004]
Further, in order to increase the productivity, if the film feeding speed is increased in the coating process and the calendar process, the loss of the magnetic recording signal, that is, the dropout increases. Also, after slitting the film after coating the magnetic layer and processing it into audio, video or computer tape, etc., many guide sections, playback heads and There is significant friction and wear during As a result, white powdery substances are often deposited due to the occurrence of scratches, distortions, and scraping of the surface of the polyester film, which often causes dropouts.
[0005]
Further, in the case of software video tapes for which demand has been increasing in recent years, scratches enter the tape by the guide pins and white powder is generated in the high-speed dubbing process from the master tape. As a result, the S / N ratio is lowered and the image quality is deteriorated.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve these conventional problems and to provide a high-quality polyester film excellent in scratch resistance without impairing flat slipperiness.
[0007]
[Means for Solving the Problems]
That is, in the present invention, at least one outermost layer is mainly composed of a composition comprising polyester, a compound containing a group II atom of the periodic table and a phosphorus compound, and at least three kinds of inert particles a, b, and c. A polyester film,
Particle a is calcium carbonate, spherical silica, or spherical crosslinked polystyrene having an average particle size of 0.05 to 1.0 μm, and particle b is kaolin, barium sulfate, or clay having an average particle size of 0.05 to 1.0 μm. And the particles c are alumina, spherical silica, or titanium oxide having an average particle size of 0.05 to 0.3 μm and a smaller particle size than the other particles,
The compound containing an atom of Group II of the periodic table is a compound containing Mg atom, the content of the compound is 10 ppm to 200 ppm in terms of Mg atom, and the molar ratio of Mg to P in the phosphorus compound (P / Mg) is 0.5 to 1.0,
Further, the film has a surface protrusion density of 0.1 to 0.5 pieces / μm 2 and a circular equivalent average diameter of the protrusions of 0.05 to 0.4 μm. The polyester film is characterized in that 30 to 80% of the number of protrusions is a minute protrusion having an equivalent circle diameter of 0.25 μm or less.
[0008]
The polyester used for the production of the film of the present invention is a crystalline polyester such as polyethylene terephthalate and polyalkylene naphthalate, and is not particularly limited. Especially, the polyethylene terephthalate which 80 mol% or more of the repeating unit consists of ethylene terephthalate is preferable.
[0009]
The polyester production method employs any production method such as a so-called direct polymerization method in which an aromatic dicarboxylic acid and glycol are directly reacted, or a so-called transesterification method in which a dimethyl ester of an aromatic carboxylic acid and a glycol are transesterified. be able to.
[0010]
As the inert particles used in at least one outermost layer in the film of the present invention, inorganic particles such as titanium oxide, silica, calcium carbonate, kaolin, carbon black, alumina, clay, calcium phosphate, barium phosphate, barium sulfate, Examples thereof include organic particles such as crosslinked polystyrene, crosslinked polymethylmethacrylate, and polyimide. These may be synthetic or natural products. The shape of the particles is not limited, but a spherical shape, a rice shape, a plate shape, an amorphous shape or the like is preferable. Further, the average particle diameter is not particularly limited, but fine particles of preferably 0.01 to 1.5 μm, more preferably 0.05 to 1.0 μm are used.
[0011]
The present inventors have found that one or two kinds of particles cannot maintain good slipperiness, running durability, abrasion resistance and scratch resistance. In the present invention, at least three kinds of particles are used, and the ability of each particle can be exhibited by controlling the hardness, shape, amount, particle size, and particle size distribution of each particle. For example, the slipperiness is excellent when the particle shape is close to a sphere and the particle size distribution is sharp. Examples of particles that are expected to be effective include synthetic calcium carbonate, spherical silica, and spherical cross-linked polystyrene. Further, in order to maintain the machinability, plate-like particles having low hardness are good and effective in scratch resistance, such as kaolin, barium sulfate, clay and the like. Furthermore, for scratch resistance, it is necessary to make the particle size smaller than the particles for maintaining other characteristics and to form fine protrusions. Although it does not specifically limit, there exist inorganic particles, such as an alumina, spherical silica, a titanium oxide. In this way, particles that can be expected to have an effect on each required quality can be added.
[0012]
The term “projection” as used herein refers to a result obtained by observing using a reflection electron microscope (SEM) S-2500 manufactured by Hitachi, Ltd. and quantifying the obtained image using an image processing apparatus. Observation condition acceleration voltage 20 kv
Sample tilt 30 °
Observation magnification 6000
Number of viewing fields 30
[0013]
From the obtained data, the surface protrusion density is 0.1 to 0.5 pieces / μm 2 and the circular equivalent average diameter of the protrusions is 0.05 to 0.4 μm. While maintaining, it excels in abrasion resistance and scratch resistance. When the equivalent circle diameter of the protrusions here is 0.4 μm or more, the electromagnetic conversion characteristics deteriorate when processed into a magnetic recording medium with a surface centerline average roughness (Ra) exceeding 0.020 μm. Further, it has been found that if the surface protrusion density is less than 0.1 / μm 2 , the slipperiness and scratch resistance are inferior.
[0014]
Furthermore, the surface protrusions can be controlled within the above range by forming micro protrusions on the film surface. These microprotrusions have a circle equivalent diameter of 0.25 μm or less and form a surface in the above range by being present in a range of 30-80% of the total number of surface protrusions, more preferably 40-80%. Can be made.
Here, the equivalent circle diameter of the protrusion means the diameter of a sphere having the same area as the projected sectional area of the protrusion.
When these fine protrusions are less than 30%, the scratch resistance is inferior, and when they exceed 80%, the slipperiness is inferior.
[0015]
One means for generating the fine protrusions on the film surface and controlling the number of the protrusions within the above range is to add at least one kind of fine fine particles having a sharp particle size distribution.
Specifically, the average particle size is 0.05 to 0.3 μm and the particle size distribution obtained by the centrifugal sedimentation type particle size distribution meter is used to integrate from the smaller particle size, and the weight distribution is 10% and 75%. Inert particles having a particle size difference of 0.10 μm or less, preferably 0.06 μm or less are suitable. As one means for obtaining such fine particles, a special dispersion method described in JP-A-2-178321, that is, a method in which a mixture containing inert fine particles is dispersed in a polyester production process using a continuous closed stirrer, etc. Application is more effective. Further, it is effective to select the inert fine particles having a 10% deformation strength of 10 kgf / mm 2 in order to generate the minute projections intended in the present invention.
[0016]
Further, by adding a compound containing a group II atom in the periodic table and a phosphorus compound in the polyester, the dispersibility of the particles in the polyester is improved, and the fine protrusions regulated in the present invention on the film surface. It can be suitably obtained. Examples of compounds containing Group II atoms in the periodic table include magnesium acetate and calcium acetate. Examples of the phosphorus compound include phosphoric acid, phosphoric acid triester, acidic phosphoric acid ester, phosphorous acid, phosphorous acid ester and the like. The content of the compound containing Group II atoms in the periodic table is 10 ppm to 200 ppm in terms of Mg atoms, and the molar ratio thereof, that is, the molar ratio of Mg to P (P / Mg) in the phosphorus compound is 0. 5 to 1.0, preferably 0.65 to 0.85. The phosphorus compound content is preferably 10 ppm to 200 ppm.
[0017]
The addition amount of each inert fine particle is 0.05 to 1.5% by weight, preferably 0.1 to 1.5% by weight, more preferably 0.2 to 1.0% by weight, based on the polyester. It is. If the addition amount is less than 0.05% by weight, the number of microprojections of the present invention cannot be obtained. Conversely, if the addition amount exceeds 1.5% by weight, coarse projections are formed due to aggregation of fine particles in the polyester. This is not preferable because it causes generation of electromagnetic conversion characteristics and deterioration of dropout. The total addition amount of the inert fine particles is 0.1 to 1.6% by weight, preferably 0.2 to 1.0% by weight, more preferably 0.3 to 1.0% by weight, based on the polyester. . If the addition amount is less than 0.1% by weight, the slipperiness and wear resistance cannot be kept good, and if it exceeds 1.6% by weight, the electromagnetic conversion characteristics deteriorate.
[0018]
The film of the present invention is produced, for example, by the following method.
As a raw material constituting the outermost layer, a polyester composition is produced from a mixture of a polyester raw material and inert fine particles. After sufficiently drying this polyester composition, it is supplied to a multilayer extruder together with the polyester constituting the other layers, and after filtration, melt extruded from a slit die, cooled and solidified to obtain an unstretched original fabric. At this time, in the extruder, a method in which a shear stress acts strongly on the polymer or a method in which the shear rate is high is effective for bringing the microprojections within the scope of the present invention. Although not particularly limited, it is effective to use a twin screw extruder with a filter mesh in the range of 5 to 20 μm.
[0019]
The melt-extruded substantially unoriented polyester film is stretched 2.5 to 5 times, preferably 3 to 4.5 times in the longitudinal direction or width direction between rolls or with a stenter. In the stretching of the film by the usual sequential biaxial stretching method, the first first-axis stretching is generally performed in the range of 80 to 90 ° C. In the present invention, the longitudinal direction of the first axis is as described above. Alternatively, stretching in the width direction needs to be performed in the range of 95 ° C. or higher and 130 ° C. or lower, and particularly preferably in the range of 105 ° C. or higher and 125 ° C. or lower. Subsequently, the film is stretched 2.5 to 4.0 times, preferably 3 to 4 times in the direction perpendicular to the first axis in the film plane, at a stretching temperature of 90 to 130 ° C., and further at a temperature of 180 to 230 ° C. When heat-treated for 7 seconds, a biaxially oriented polyester film that satisfies the specified requirements of the present invention can be obtained.
[0020]
【Example】
EXAMPLES Hereinafter, although the polyester film of this invention is demonstrated in detail by an Example, this invention is not limited at all by these Examples.
The measuring method of the physical property of the film obtained by the Example and the comparative example, the particle size of an inert particle, and the intrinsic viscosity of polyester is shown.
(1) Average particle size of inert particles The particle size distribution of fine particles obtained by sufficiently dispersing in an ethylene glycol slurry is measured using a light transmission type centrifugal sedimentation type particle size distribution analyzer (SA-CP3 type: manufactured by Shimadzu Corporation). The value at which the cumulative weight distribution was 50% was used.
(2) Scratch resistance of the film Polyester film cut to a width of 12.7 mm is rubbed against a hard chrome-plated metal pin (diameter 6 mm, surface roughness 3S) with a tension of 50 g, a winding angle of 90 degrees, and a running speed of 1.3 m / sec. While running. Subsequently, aluminum vapor deposition was given to the film after driving | running | working, it observed with the stereomicroscope, the amount of the damage | wound was visually determined, and it ranked as follows.
1 Scratch is not recognized at all 2 Slightly scratched but very small amount 3 Small amount of scratch is observed 4 Polyester film obtained with a large amount of scratch is ranked 1 and 2 is practically acceptable.
(3) Using an intrinsic viscosity / viscosity solvent prepared with phenol / tetrachloroethane = 6/4, the viscosity was measured with a Ubbelose type viscosity tube in a thermostatic bath at 30 ° C.
(4) Surface roughness (flatness)
Using a Surfcom 300A type surface roughness meter (manufactured by Tokyo Seimitsu), centerline average roughness when measured under the conditions of a needle diameter of 1 μm, a load of 0.07 g, a measurement reference length of 0.8 mm, and a cutoff of 0.08 mm ( (Ra: μm).
(5) Sliding property In accordance with ASTM D-1894-63, a static friction coefficient between films was measured using a thread type strip tester under an environmental condition of 23 ° C. and 65 RH%.
[0021]
Example 1
1.48 parts by weight of calcium carbonate particles having an average particle size of 0.5 μm, 14.8 parts by weight of ethylene glycol, and 0.00296 parts by weight of 0.1M sodium tripolyphosphate are mixed, and stirred with a homogenizer to make 16.3 weights. Part slurry was obtained. On the other hand, 86.4 parts by weight of terephthalic acid, 64.6 parts by weight of ethylene glycol, 0.03 parts by weight of antimony trioxide, 0.16 parts by weight of triethyleneamine and 0.088 parts by weight of magnesium acetate tetrahydrate were added, Esterification was performed at 240 ° C. under a pressure of 3.5 kg / cm 2 .
After completion of esterification, 0.04 part by weight of trimethyl phosphate was added to this solution and stirred at 260 ° C. under normal pressure. After 30 minutes, 11.0 parts by weight of the slurry was added and stirred for another 30 minutes. Thereafter, a polycondensation reaction was performed under vacuum to obtain polyethylene terephthalate. (Polyester A)
[0022]
In the production of polyester A, polyethylene terephthalate was obtained in the same manner except that kaolin having an average particle diameter of 0.4 μm was added instead of calcium carbonate. (Polyester B)
[0023]
In the production of polyester A, polyethylene terephthalate was obtained in the same manner except that aluminum oxide having an average particle size of 0.07 μm, 10% deformation strength of 10 kgf / mm 2 or more was added instead of calcium carbonate. (Polyester C)
[0024]
1.48 parts by weight of spherical silica particles having an average particle size of 0.2 μm, 14.8 parts by weight of ethylene glycol, and 0.00296 parts by weight of 0.1M sodium hydroxide were mixed and stirred with a homogenizer to obtain 16.3 parts by weight. Part slurry was obtained.
On the other hand, 86.4 parts by weight of terephthalic acid, 64.6 parts by weight of ethylene glycol, 0.03 part by weight of antimony trioxide and 0.088 part by weight of magnesium acetate tetrahydrate were added, and the temperature of the reaction vessel was cooled to 80 ° C. I waited for you. After reaching 80 ° C., the slurry was charged into an esterification reaction can in an amount such that 1 part by weight of spherical silica with respect to the produced polyester was added, and after 5 minutes, the pressure was increased, and 240 ° C., 3.5 kg / cm 2. The esterification was carried out under the pressure of Thereafter, 0.034 parts by weight of trimethyl phosphate was charged, and after 30 minutes, the reaction product was transferred to a polymerization vessel, and then the temperature was reduced while stirring and a polycondensation reaction was carried out at 285 ° C. and 0.1 mmHg for 3 hours. Got. (Polyester D)
[0025]
In the production of polyester A, polyethylene terephthalate containing no inorganic particles was obtained. (Polyester E)
[0026]
The obtained polyesters A, B, C, D, and E were mixed and dried at a predetermined weight ratio so that the concentration of the above-described inert inorganic particles was as shown in Table 1, and supplied to an extruder. An unstretched film having a thickness of 220 μm was obtained by melting at 30 ° C. and casting on a cooling drum at 30 ° C. Next, the film was heated using a roll heated to 110 ° C. and an infrared heater having a surface temperature of 600 ° C. (installed at a position 20 mm away from the film), and then vertically between the low-speed roll and the high-speed roll. The film was stretched 3 times. Further, this film was stretched 4.0 times in the transverse direction at 100 ° C. in a tenter. In the tenter, heat treatment, re-lateral stretching, and relaxation in the transverse direction were subsequently performed in the transverse direction to obtain a biaxially oriented polyester film having a thickness of 15 μm. The film obtained had a surface protrusion density of 0.3 pieces / μm 2 and a circle-equivalent mean diameter of the surface protrusions of 0.22 μm. The fine protrusions of this film accounted for 60% of the total number of protrusions. Table 1 shows scratch resistance, surface roughness and surface slipperiness. Each evaluation result was confirmed to be good.
[0027]
Examples 2-3 and comparative examples 1-3
A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the kind, average diameter, and amount of inert particles added to the polyester were changed.
About the obtained film, scratch resistance, surface roughness, and surface slipperiness were measured in the same manner as in Example 1. The results are shown in Table 1.
As shown in Table 1, the surface slipperiness and scratch resistance are good by setting the occupation ratio of microprojections to 30 to 80%, the density of surface projections and the circle equivalent average diameter within the scope of the present invention. Met. However, when the occupation ratio, projection density, and circle equivalent average diameter of the fine projections were out of the range, the flatness and the slipperiness were maintained, but the scratch resistance was poor. It was also confirmed that the surface roughness and the slipperiness could not be kept good when the kind of the inert particles was one or two.
[0028]
[Table 1]
Figure 0003672581
[0029]
[Table 2]
Figure 0003672581
[0030]
【The invention's effect】
As described above, the film of the present invention controls the density of the surface protrusions and the circle-equivalent mean diameter within a certain range by forming a certain amount of fine protrusions on the surface while maintaining the flatness and slidability of the film. Thus, a polyester film having excellent scratch resistance can be obtained.

Claims (1)

少なくとも一つの最表層が、ポリエステル、周期律表第II族の原子を含む化合物とリン化合物、少なくとも3種類の不活性粒子a、b、cからなる組成物を主成分とするポリエステルフィルムであって、
粒子aは平均粒径が0.05〜1.0μmの炭酸カルシウム、球状シリカ、または球状架橋ポリスチレンであり、粒子bは平均粒径が0.05〜1.0μmのカオリン、硫酸バリウム、またはクレーであり、粒子cは平均粒径が0.05〜0.3μmであって、他の粒子よりも粒径が小さい、アルミナ、球状シリカ、または酸化チタンであり、
前記の周期律表第II族の原子を含む化合物がMg原子を含む化合物であり、該化合物の含有量がMg原子に換算して10ppm〜200ppmであり、リン化合物中のPに対するMgのモル比(P/Mg)が0.5〜1.0であり、
さらに、前記フィルムは表面突起密度が0.1〜0.5個/μmであり、かつ該突起の円相当平均径が0.05〜0.4μmであって、これらの突起の内、全体の突起数の30〜80%が0.25μm以下の円相当径をもつ微小突起であることを特徴とするポリエステルフィルム。
At least one outermost layer is a polyester film mainly composed of a composition comprising polyester, a compound containing a group II atom in the periodic table and a phosphorus compound, and at least three kinds of inert particles a, b, and c. ,
Particle a is calcium carbonate, spherical silica, or spherical crosslinked polystyrene having an average particle size of 0.05 to 1.0 μm, and particle b is kaolin, barium sulfate, or clay having an average particle size of 0.05 to 1.0 μm. And the particles c are alumina, spherical silica, or titanium oxide having an average particle size of 0.05 to 0.3 μm and a smaller particle size than the other particles,
The compound containing an atom of Group II of the periodic table is a compound containing Mg atom, the content of the compound is 10 ppm to 200 ppm in terms of Mg atom, and the molar ratio of Mg to P in the phosphorus compound (P / Mg) is 0.5 to 1.0,
Further, the film has a surface protrusion density of 0.1 to 0.5 pieces / μm 2 and a circular equivalent average diameter of the protrusions of 0.05 to 0.4 μm. A polyester film characterized in that 30 to 80% of the number of protrusions is a minute protrusion having an equivalent circle diameter of 0.25 μm or less.
JP12842593A 1993-04-30 1993-04-30 Polyester film Expired - Lifetime JP3672581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12842593A JP3672581B2 (en) 1993-04-30 1993-04-30 Polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12842593A JP3672581B2 (en) 1993-04-30 1993-04-30 Polyester film

Publications (2)

Publication Number Publication Date
JPH06313052A JPH06313052A (en) 1994-11-08
JP3672581B2 true JP3672581B2 (en) 2005-07-20

Family

ID=14984443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12842593A Expired - Lifetime JP3672581B2 (en) 1993-04-30 1993-04-30 Polyester film

Country Status (1)

Country Link
JP (1) JP3672581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355284B2 (en) * 1996-12-09 2002-12-09 帝人株式会社 Biaxially oriented laminated polyester film for magnetic recording media

Also Published As

Publication number Publication date
JPH06313052A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
EP0590570B1 (en) Biaxially oriented polyester film for magnetic recording medium
JP2729189B2 (en) Laminated polyester film for magnetic recording media
JP3672581B2 (en) Polyester film
JP3799211B2 (en)   Method for producing polyester composition for film
JPS63108037A (en) Biaxially oriented polyester film
JPH01204959A (en) Polyester composition and biaxially oriented polyester film prepared therefrom
JPH0358580B2 (en)
JP2020164807A (en) Biaxially oriented polyester film
JPH0458811B2 (en)
JPH0513977B2 (en)
JPH0420369B2 (en)
JP3309497B2 (en) Polyester composition and film comprising the same
JPH06171044A (en) Polyester film
JPH0752506B2 (en) Polyester film for magnetic recording media
JPH06172555A (en) Biaxially oriented polyester film for magnetic recording medium
JP3251660B2 (en) Biaxially oriented polyester film for magnetic recording media
JPH01292059A (en) Polyester composition
JPS63191838A (en) Biaxially oriented polyester film
JP4543546B2 (en) Polyester film for magnetic recording media
JPH02155934A (en) Biaxially oriented polyester film
JPH0513979B2 (en)
JPH054415B2 (en)
JPH0684445B2 (en) Biaxially oriented polyester film for magnetic recording media
JPH07225938A (en) Biaxially oriented polyester film for magnetic recording medium
JPH081769A (en) Polyester film and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

EXPY Cancellation because of completion of term