JP3671688B2 - Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting - Google Patents
Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting Download PDFInfo
- Publication number
- JP3671688B2 JP3671688B2 JP24389698A JP24389698A JP3671688B2 JP 3671688 B2 JP3671688 B2 JP 3671688B2 JP 24389698 A JP24389698 A JP 24389698A JP 24389698 A JP24389698 A JP 24389698A JP 3671688 B2 JP3671688 B2 JP 3671688B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- excluding
- fracture
- hot forging
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005242 forging Methods 0.000 title claims description 34
- 229910000831 Steel Inorganic materials 0.000 title claims description 28
- 239000010959 steel Substances 0.000 title claims description 28
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 5
- 150000003568 thioethers Chemical class 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 15
- 230000001965 increasing effect Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003405 preventing effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車用部品等を冷間で破断分割加工するのに好適な熱間鍛造用非調質鋼に関する。より詳細には本発明は、自動車エンジン等の部品として用いられるコネクティングロッド(略称:コンロッド)を構成するコネクティングロッド本体(略称:コンロッド本体)とコネクティングロッドキャップ(略称:コンロッドキャップ)を冷間加工により容易に分割することが可能であり、且つ破断分割面の嵌合性が高められ、塑性変形量も低く抑えることのできる熱間鍛造用非調質鋼に関するものである。
【0002】
【従来の技術】
従来より、コンロッド等の如く成形後に分割を必要とする部品は、コンロッド本体とコンロッドキャップを別個に熱間鍛造した後、切削による合わせ面の加工、更に必要に応じてズレを防止するためのピン加工を施していた。或いは、コンロッドを一体で熱間鍛造する場合においても、機械加工による切断と合わせ面の仕上げ加工等を施していた。しかしながら、上記加工を施すと、材料の歩留まり量が低下する他、多数の工程を経る為にコストが上昇するという問題があった。
【0003】
そこで、コンロッドを一体で熱間鍛造し、分割面の加工を施すことなく機械加工した後、冷間で破断分割加工し、クランクシャフトに結合して組立てる方法が検討されている。ところが、従来のコンロッド用鋼を冷間で破断分割すると、靱延性が良好である為、分割面が塑性変形して嵌合することができなかったり、コンロッド大端部内径の塑性変形量が大きくなり、仕上げ加工量が増大する等の不具合があった。
【0004】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的は、靭性や延性を低くし、破断分割性に優れた破断分割型コンロッド用熱間鍛造用非調質鋼を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を達成し得た本発明に係る破断分割型コンロッド用熱間鍛造用非調質鋼は、
鋼成分が、質量%で(以下、同じ)
C :0.15〜0.6%,
Si:1.5%以下(0%を含まない),
P :0.15%以下(0%を含まない),
Cr:2%以下(0%を含まない),
Al:0.06%以下(0%を含まない),
N :0.03%以下(0%を含まない),
Mn:2.0%以下(0%を含まない),
S :0.038〜0.061%,
V :0.45%以下(0%を含まない)
Ca:0.0018%以下(0%を含まない)
を夫々含有し、更に
Zr :0.2%以下(0%を含まない)
Ti :0.1%以下(0%を含まない)
Mg :0.01%以下(0%を含まない)
REM:0.3%以下(0%を含まない)
よりなる群から選択される少なくとも一種を含有する
(但し、Zrを含有するときは、Zrを0.08%以上とする)
と共に、
鍛造材の表面から1/4厚さ位置における縦断面において、幅1μm以上の硫化物系介在物が100〜4000個/mm2存在すると共に、該硫化物の平均アスペクト比(長さ/幅)が10以下であるところに要旨を有するものである。
【0006】
本発明の破断分割型コンロッド用熱間鍛造用非調質鋼(以下、単に「熱間鍛造用非調質鋼」と呼ぶ)には、必要によって更に、(1)Nb:0.15%以下(0%を含まない)、(2)Pb:0.3%以下(0%を含まない)及び/又はBi:0.3%以下(0%を含まない)、等を含有することが推奨される。
【0007】
【発明の実施の形態】
本発明者らは、破断分割性に優れた熱間鍛造用非調質鋼を提供すべく鋭意検討してきた。その結果、硫化物系介在物の個数およびアスペクト比を適切に制御することにより、所期の目的を解決し得ることを見出し、本発明を完成した。
【0008】
本発明の如く鋼中の硫化物系介在物に着目し、所定の硫化物系介在物を形成させることによって冷間での熱間鍛造品の破断分割性が著しく高められるという知見は本願発明者らによって始めて見出されたものであり、従来法には全く開示されていない。
【0009】
例えば従来法としては、▲1▼脆化元素を積極的に添加することにより破断分割性の向上を目指すものとして特開平8−291373号公報及び特開平9−176786号公報が挙げられる。前者はPの添加により、後者はAs、Sb、Snの添加により破断分割性向上を図るものである。
【0010】
また、▲2▼フリーの固溶Nを増加させることにより脆性破壊を促進し、破断分割性を向上させるものとして特開平9−3589号公報、特開平9−176787号公が挙げられ、該固溶Nを高めるための条件が特定されている。
【0011】
更に、▲3▼フェライトを強化することにより脆性破壊を促進し、破断分割性を向上させるものとして例えば特開平9−31594号公報が挙げられ、固溶強化によってフェライトを強化するSiと、析出強化によってフェライトを強化するVを複合添加することにより破断分割性を高める方法が開示されている。
【0012】
この様に上記従来の方法は、いずれも鋼中の添加元素を調整することにより所定の金属組織を脆化しようというものであり、「所定の硫化物系介在物を形成させることにより、破断分割性に優れた熱間鍛造用非調質鋼を得る」という本発明の技術的思想は示唆されておらず、本発明とは異なるものである。
【0013】
上述した通り、本発明の破断分割性に優れた熱間鍛造用非調質鋼とは、鍛造材の表面から1/4厚さの位置における縦断面において、幅1μm以上の硫化物系介在物が100〜4000個/mm2 存在すると共に、該硫化物系介在物の平均アスペクト比(長さ/幅)が10以下であるという要件を満足するものである。
【0014】
この様に本発明において、硫化物系介在物の個数及びアスペクト比を特定した理由は以下の通りである。
【0015】
MnS等の硫化物系介在物は、圧延や熱間鍛造によって圧延方向や鍛造方向に延伸する。この延伸した硫化物系介在物が鍛造材などの破断分割時に縦目(破断分割面に対して垂直方向に延伸)に存在すると、クラックの進展に伴い、硫化物系介在物と金属マトリックスの間が剥離し、応力の緩和が起こる。その結果、脆性的な破断が阻害されて靱延性値が向上し、破断分割性の低下をもたらす様になる。これに対し、硫化物系介在物の延伸を抑制し、アスペクト比を小さくして球状化させた場合は、縦目で破断分割するに際し、硫化物系介在物の周辺に発生するクラック先端での応力が増大し、脆性的な破断が促進される。その結果、破断分割面の嵌合性が高まり、塑性変形量も低くすることができる。
【0016】
上述した硫化物系介在物の形成による作用を有効に発揮させる為には、アスペクト比の平均が10以下であることが必要である。前述の如く、アスペクト比が10を超え、縦目に延伸した硫化物系介在物が存在すると、破断分割性が低下するからである。更にアスペクト比を小さくして硫化物系介在物をできるだけ球状化させることにより、熱間加工性も向上し、圧延時や熱間鍛造時の割れを防止できるという効果も得られる。この様な作用を一層高める為には、このアスペクト比をできるだけ1に近づけることが推奨され、好ましくは6以下、より好ましいのは4以下である。
【0017】
これらの効果は、幅が1μm以上の硫化物系介在物の場合に有効である。幅が1μm未満の場合は、破断分割時に上述した剥離が生じず、硫化物系介在物自体の破断が生じてしまうからである。
【0018】
更に本発明では、上述した幅1μm以上の硫化物系介在物が、鍛造材の表面から1/4厚さの位置における縦断面において、100〜4000個/mm2 存在することが必要である。上記硫化物系介在物の個数が100個/mm2 未満の場合は、該硫化物系介在物を伝播するクラックが減少し、クラックの進展に伴う所望の効果が得られない。好ましくは300個/mm2 以上であり、より好ましいのは400個/mm2 以上である。一方、上記硫化物系介在物の個数が4000個/mm2 を超えると、圧延時や熱間鍛造時に割れ等の弊害が生じる。好ましくは3000個/mm2 以下であり、より好ましいのは2500個/mm2 以下である。
【0019】
尚、本発明における「硫化物系介在物」とは、主にMnSを意味するものであるが、その他、Mn,Zr,Ti,Mg,Ca,Se,Te,REM等の硫化物およびこれらの複合硫化物等も本発明の範囲内に包含される。
【0020】
次に、上述した本発明に係る熱間鍛造型非調質鋼の化学組成について説明する。前述の如く本発明では、特定の硫化物系介在物を存在させることに最重要ポイントがあり、その為には、基本的に下記元素を添加する。
【0021】
Mn:2.0%以下(0%を含まない)
Mnは溶製時における脱酸及び脱硫元素として有効な元素であり、また鍛造品のパーライト焼入性を高めてパーライト量を増加させ、パーライト中のラメラー間隔を細かくすることにより耐力や疲労強度等の強度増大に寄与する元素である。更に、Sと結合して硫化物系介在物MnSを形成し、破断分割時の切欠効果も得られる。この様な作用を有効に発揮させる為には、0.1%以上の添加が好ましい。ただし、Mn含有量が過剰になると、金属組織中にベイナイトが生成し、被削性に悪影響を及ぼす様になるので、その上限を2.0%以下に抑えることが好ましい。より好ましくは1.7%以下である。
【0022】
S:0.38〜0.061%
Sは硫化物系介在物MnS等を形成し、破断分割時の切欠効果を発揮すると共に、被削性向上にも寄与する元素である。この様な作用を有効に発揮させる為には、0.038%以上添加する。しかしながら、S含有量が過剰になると、圧延時や熱間鍛造時に割れなどの弊害が生じる為、0.061%以下に抑制する。
【0023】
更に、硫化物系介在物を球状化してアスペクト比を小さくする為には、Zr,Ti,Mg,CaおよびREMよりなる群から選択される少なくとも1種を積極的に添加する。これら元素の添加により、破断分割性を一層高めると共に、熱間加工性を向上させ、圧延時や熱間鍛造時の割れ防止作用も得られる。但し、多過ぎてもその効果が飽和し、コスト上昇を招くので、Zr:0.2%以下,Ti:0.1%以下,Mg:0.01%以下,Ca:0.01%以下,REM:0.3%以下(いずれの元素も0%を含まない)に制御する。
【0024】
更に本発明鋼では、下記のC,Si,P,Cr,Al,Nを積極的に添加する。
【0025】
C:0.15〜0.6%
Cは熱間鍛造・冷却後に鍛造品の金属組織中パーライト量を増大させ、所望の強度を確保するのに寄与する元素である。この様な作用を有効に発揮させる為いは、少なくとも0.15%以上添加することが好ましい。より好ましくは0.2%以上である。しかしながら、Cの含有量が過剰になると、被削性が低下してくるので、その上限を0.6%以下に抑えることが好ましい。強度と被削性のバランスを考慮すれば、より好ましいC含有量は0.5%以下である。
【0026】
Si:1.5%以下(0%を含まない)
Siは鋼材溶製時の脱酸に有効に作用する他、鋼材のフェライト地に固溶して熱間鍛造・冷却後の鍛造品を強化するのに有効な元素である。この様な作用を有効に発揮させる為には0.1%以上添加することが好ましい。しかしながら、Siの含有量が過剰になると、被削性および熱間加工性に悪影響が現れてくるので、その上限を1.5%にすることが好ましい。より好ましくは1.0%以下である。
【0027】
P:0.15%以下(0%を含まない)
Pは粒界への偏析により靱延性を低下させるのに有効な元素である。その為には0.01%以上添加することが好ましい。しかしながら、Pの含有量が過剰になると熱間加工性が低下するため、その上限を0.15%とすることが好ましい。より好ましくは0.10%以下である。
【0028】
Cr:2%以下(0%を含まない)
CrはMnと同様、パーライト焼入れ性を向上させ、耐力や疲労強度等の強度上昇に寄与する元素である。この様な作用を有効に発揮させる為には0.2%以上添加することが好ましい。しかしながら、Crの含有量が過剰になると硬さが大幅に上昇したり、金属組織中にベイナイトが生成して被削性に悪影響を及ぼす様になるので、その上限を2%以下にすることが好ましい。より好ましくは1.7%以下である。
【0029】
Al:0.06%以下(0%を含まない)
N :0.03%以下(0%を含まない)
これらの元素は、いずれも結晶粒を微細化して疲労特性の向上に寄与する。この様な作用を有効に発揮させる為には、Al:0.001%以上、N:0.002%以上添加することが好ましい。ただし、過剰に添加してもその効果は飽和してしまう他、逆に熱間加工性に悪影響を及ぼす様になるので、その上限をAl:0.06%、N:0.03%とすることが好ましい。より好ましくはAl:0.05%、N:0.020%以下である。
【0030】
更に本発明鋼では、Vを積極的に添加する。
【0031】
V :0.45%以下(0%を含まない)
Vは、微細な炭化物若しくは窒化物を形成してフェライト地に析出し、耐力や疲労強度等の強度上昇に寄与する元素である。この様な作用を有効に発揮させる為にはV:0.02%以上以上にすることが好ましい。しかしながら、過剰に含有させても効果が飽和し、コスト上昇を招くので、その上限をV:0.45%とすることが好ましい。より好ましくはV:0.35%以下である。
【0032】
所望の硫化物系介在物を得る為の基本成分は上述した通りであるが、更に、硫化物系介在物を球状化してアスペクト比を小さくする為には、SeおよびTeを積極的に添加することが推奨される。これら元素の添加により、破断分割性を一層高めると共に、熱間加工性を向上させ、圧延時や熱間鍛造時の割れ防止作用も得られる。但し、多過ぎてもその効果が飽和し、コスト上昇を招くので、Se:0.1%以下,Te:0.1%以下(いずれの元素も0%を含まない)に制御することが好ましい。
【0033】
更に本発明鋼では、Nbを積極的に添加することもできる。
【0034】
Nb:0.15%以下(0%を含まない)
Nbは、微細な炭化物若しくは窒化物を形成してフェライト地に析出し、耐力や疲労強度等の強度上昇に寄与する元素である。この様な作用を有効に発揮させる為にはNb:0.005%以上にすることが好ましい。しかしながら、過剰に含有させても効果が飽和し、コスト上昇を招くので、その上限をNb:0.15%とすることが好ましい。より好ましくはNb:0.1%以下である。
【0035】
更に本発明鋼では、下記のPb及び/又はBiを積極的に添加することもできる。
【0036】
Pb:0.3%以下(0%を含まない)
Bi:0.3%以下(0%を含まない)
これらの元素は、いずれも被削性の向上に寄与する元素である。この様な作用を有効に発揮させる為には、Pb:0.01%以上、Bi:0.01%以上添加することが好ましい。ただし、過剰に添加してもその効果は飽和してしまうので、その上限をPb:0.3%、Bi:0.3%とすることが好ましい。より好ましくはPb:0.25%、Bi:0.25%以下である。これらの元素は単独で使用しても良いし、2種以上を併用しても構わない。
【0037】
本発明鋼は上述した元素を必須的に、或いは必要に応じて含有するものであり、その他:実質的にFeからなるものであるが、本発明の作用を損なわない範囲で他の許容成分を含有することもできる。
【0038】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定するものではなく前・後記の趣旨に徴して適宜設計変更することはいずれも本発明の技術的範囲に包含される。
【0039】
【実施例】
表1に示す化学成分組成からなる鋼No.2〜12を50kg実験炉で溶製した後、熱間鍛造にて厚さ25mm、幅70mmの板に鍛伸し、所定の長さに切断した。
【0040】
この様にして得られた平板の幅1/4部の縦断面にて1mm2 の視野を光学顕微鏡(1000倍)で観察し、幅が1μm以上の硫化物系介在物の個数、および該介在物のアスペクト比平均を測定した。
【0041】
更に上記平板の鍛造方向に対して平行に引張試験片及び衝撃試験片を採取し、各試験を実施した。その際、15mm厚さに平潰し鍛造加工した平板の表面を目視により観察し、鍛造割れの有無についても同時に調査した。また、脆性破面率はJIS Z 2242に記載の方法に則って目視観察し、標準破面との比較で、破面の全面積に対する脆性破面の面積の割合を算出した。
【0042】
表1に、幅が1μm以上の硫化物系介在物の個数、該介在物の平均アスペクト比、鍛造時における割れ有無、引張強さ、衝撃値および脆性破面率を併記する。尚、表中、「引張強さ」、「衝撃値」および「脆性破面率」の各項目における「−」は、いずれも測定を中止したことを意味する。
【0043】
【表1】
【0044】
これらの結果から、以下の様に考察できる。
まずNo.4,5は本発明で規定する要件のいずれも満足する実施例であり、鍛造割れが発生することなく、衝撃値もその基準となる20J/cm2よりも小さく、脆性破面率も必須条件である100%を満たしており、良好な破断分割性が得られていることが分かる。
【0045】
これに対して、本発明で特定する要件のいずれかを満足しないNo.8〜12は、夫々以下の不具合を抱えている。
【0046】
No.8は、硫化物系介在物の個数が多い例であり、熱間での鍛造割れが認められる。一方、No.9は硫化物系介在物の個数が少ない例であり、衝撃値、脆性破面率ともに目標レベルに達していない。
【0047】
また、No.10は硫化物系介在物の個数は本発明の要件を満足するが、アスペクト比がその上限を超えており、衝撃値、脆性破面率ともに目標レベルに達していない。
【0048】
更にNo.11は、硫化物系介在物の個数およびアスペクト比の両方が本発明の要件を満足しない例であり、衝撃値、脆性破面率ともに目標レベルに達していない。
【0049】
また、No.12はS含有量が高く、硫化物系介在物のアスペクト比が大きい例であるが、熱間での鍛造割れが認められた。
【0050】
【発明の効果】
本発明は以上の様に構成されているので、高強度、低靱延性を満足し、破断分割性にも優れた熱間鍛造用非調質鋼を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-heat treated steel for hot forging suitable for breaking and splitting automotive parts and the like cold. More specifically, the present invention relates to a connecting rod main body (abbreviation: connecting rod main body) and a connecting rod cap (abbreviation: connecting rod cap) constituting a connecting rod (abbreviation: connecting rod) used as a part of an automobile engine or the like by cold working. The present invention relates to a non-heat treated steel for hot forging that can be easily divided, has an improved fitting property on a fractured dividing surface, and can keep the amount of plastic deformation low.
[0002]
[Prior art]
Conventionally, for parts that require division after molding, such as connecting rods, the connecting rod main body and connecting rod cap are separately hot forged, then the mating surface is processed by cutting, and further, if necessary, a pin to prevent misalignment It was processed. Alternatively, even when the connecting rod is integrally hot forged, cutting by machining and finishing of the mating surface are performed. However, when the above processing is performed, there is a problem that the yield of the material is reduced and the cost is increased due to a large number of steps.
[0003]
In view of this, a method has been studied in which a connecting rod is integrally hot forged, machined without machining of the divided surface, then broken and broken in cold, and coupled to a crankshaft for assembly. However, when conventional connecting rod steel is fractured cold, the tough ductility is good, so the split surface cannot be fitted due to plastic deformation, or the amount of plastic deformation at the large inner diameter of the connecting rod is large. As a result, there were problems such as an increase in the amount of finishing.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-heat treated steel for hot forging for fracture split type connecting rods which has low toughness and ductility and is excellent in fracture splitability. .
[0005]
[Means for Solving the Problems]
The non-heat treated steel for hot forging for fracture split type connecting rods according to the present invention that has achieved the above-mentioned problems,
Steel component is mass% (hereinafter the same)
C: 0.15-0.6%,
Si: 1.5% or less (excluding 0%),
P: 0.15% or less (excluding 0%),
Cr: 2% or less (excluding 0%),
Al: 0.06% or less (excluding 0%),
N: 0.03% or less (excluding 0%),
Mn: 2.0% or less (excluding 0%),
S: 0.038-0.061%,
V: 0.45% or less (excluding 0%)
Ca: 0.0018% or less (excluding 0%)
And Zr: 0.2% or less (excluding 0%)
Ti: 0.1% or less (excluding 0%)
Mg: 0.01% or less (excluding 0%)
REM: 0.3% or less (excluding 0%)
Containing at least one selected from the group consisting of (provided that Zr is 0.08% or more when Zr is contained)
With
In longitudinal section of the 1/4 thickness position from the surface of the forging material, the sulfide inclusions in the above range 1μm is 100 to 4000 pieces / mm 2 is present, the average aspect ratio of sulfides (length / width) Has a gist where it is 10 or less.
[0006]
The non-heat treated steel for hot forging (hereinafter simply referred to as “non-heat treated steel for hot forging”) of the fracture split type connecting rod of the present invention may further include (1) Nb: 0.15% or less if necessary. (2) Pb: 0.3% or less (not including 0%) and / or Bi: 0.3% or less (not including 0%), etc. are recommended. Is done.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have intensively studied to provide a non-heat treated steel for hot forging excellent in fracture splitting property. As a result, the inventors have found that the intended purpose can be solved by appropriately controlling the number and aspect ratio of sulfide inclusions, and have completed the present invention.
[0008]
Focusing on sulfide inclusions in steel as in the present invention, the inventor of the present application has found that the fracture splitting property of hot forged products in cold can be remarkably enhanced by forming predetermined sulfide inclusions. Are not found in the conventional method at all.
[0009]
For example, as conventional methods, (1) JP-A-8-291373 and JP-A-9-176786 are cited as those aiming to improve fracture splitting by positively adding an embrittlement element. The former is to improve fracture splitting by adding P, and the latter is by adding As, Sb, and Sn.
[0010]
Furthermore, as disclosed in JP-A-9-3589 and JP-A-9-176787, examples of the method for promoting brittle fracture by increasing the free solid solution N and improving the fracture splitting property are disclosed. Conditions for increasing dissolved N have been specified.
[0011]
Further, (3) for example, JP-A-9-31594 is cited as one that promotes brittle fracture by strengthening ferrite and improves fracture splitting ability, Si for strengthening ferrite by solid solution strengthening, precipitation strengthening Discloses a method for enhancing fracture splitting by adding V, which strengthens ferrite.
[0012]
As described above, all of the above conventional methods are intended to embrittle a predetermined metal structure by adjusting an additive element in the steel, and “break fracture by forming a predetermined sulfide-based inclusion. The technical idea of the present invention “to obtain a non-heat treated steel for hot forging with excellent properties” is not suggested and is different from the present invention.
[0013]
As described above, the non-heat treated steel for hot forging excellent in fracture splitting property according to the present invention is a sulfide inclusion having a width of 1 μm or more in a longitudinal section at a 1/4 thickness from the surface of the forged material. 100 to 4000 pieces / mm 2 , and the average aspect ratio (length / width) of the sulfide inclusions is 10 or less.
[0014]
Thus, in the present invention, the reason for specifying the number of sulfide inclusions and the aspect ratio is as follows.
[0015]
Sulfide inclusions such as MnS are stretched in the rolling direction or the forging direction by rolling or hot forging. If this stretched sulfide inclusion is present in the longitudinal direction (stretched in the direction perpendicular to the fracture splitting surface) at the time of fracture splitting of forgings, etc., as the crack progresses, the sulfide inclusions and the metal matrix Peels and stress relaxation occurs. As a result, brittle fracture is inhibited, the toughness ductility value is improved, and the fracture splitting property is lowered. In contrast, when the sulfide inclusions are restrained from being stretched and the aspect ratio is reduced to a spheroidized shape, the cracks at the tip of the cracks generated around the sulfide inclusions are divided when the fracture is broken by the vertical line. Stress increases and brittle fracture is promoted. As a result, the fitting property of the fracture split surface is enhanced, and the amount of plastic deformation can be reduced.
[0016]
In order to effectively exhibit the effect of the above-described formation of sulfide inclusions, the average aspect ratio needs to be 10 or less. As described above, when the aspect ratio exceeds 10 and there are sulfide inclusions extending in the longitudinal direction, the break splitting property is lowered. Furthermore, by reducing the aspect ratio and making the sulfide inclusions as spherical as possible, the hot workability is improved, and the effect of preventing cracking during rolling or hot forging can be obtained. In order to further enhance such effects, it is recommended that this aspect ratio be as close to 1 as possible, preferably 6 or less, more preferably 4 or less.
[0017]
These effects are effective in the case of sulfide inclusions having a width of 1 μm or more. This is because, when the width is less than 1 μm, the above-described peeling does not occur at the time of break division, and the sulfide inclusions themselves break.
[0018]
Furthermore, in the present invention, it is necessary that the above-described sulfide inclusions having a width of 1 μm or more exist in a longitudinal section at a position of ¼ thickness from the surface of the forged material, in an amount of 100 to 4000 / mm 2 . When the number of sulfide inclusions is less than 100 / mm 2 , cracks propagating through the sulfide inclusions are reduced, and a desired effect associated with the progress of the cracks cannot be obtained. Preferably it is 300 pieces / mm 2 or more, more preferably 400 pieces / mm 2 or more. On the other hand, when the number of the sulfide inclusions exceeds 4000 / mm 2 , problems such as cracks occur during rolling or hot forging. The number is preferably 3000 pieces / mm 2 or less, and more preferably 2500 pieces / mm 2 or less.
[0019]
The “sulfide inclusion” in the present invention mainly means MnS, but also other sulfides such as Mn, Zr, Ti, Mg, Ca, Se, Te, REM, and the like. Complex sulfides and the like are also included within the scope of the present invention.
[0020]
Next, the chemical composition of the hot forging die non-tempered steel according to the present invention will be described. As described above, in the present invention, the most important point is the presence of specific sulfide inclusions. For this purpose, the following elements are basically added.
[0021]
Mn: 2.0% or less (excluding 0%)
Mn is an element that is effective as a deoxidizing and desulfurizing element at the time of melting, and also increases the pearlite hardenability of the forged product to increase the amount of pearlite, and by reducing the lamellar spacing in the pearlite, proof stress, fatigue strength, etc. It is an element that contributes to the increase in strength. Furthermore, it combines with S to form sulfide inclusion MnS, and a notch effect at the time of fracture splitting can also be obtained. In order to exhibit such an action effectively, addition of 0.1% or more is preferable. However, if the Mn content is excessive, bainite is generated in the metal structure and adversely affects the machinability. Therefore, the upper limit is preferably suppressed to 2.0% or less. More preferably, it is 1.7% or less.
[0022]
S: 0.38-0.061%
S is an element that forms sulfide-based inclusions MnS and the like, exhibits a notch effect at the time of fracture division, and contributes to improvement of machinability. In order to exhibit such an action effectively, 0.038% or more is added. However, when the S content is excessive, harmful effects such as cracking occur during rolling or hot forging, so the content is suppressed to 0.061% or less.
[0023]
Furthermore, in order to reduce the aspect ratio by spheroidizing sulfide inclusions, at least one selected from the group consisting of Zr, Ti, Mg, Ca and REM is positively added. By adding these elements, the fracture splitting property can be further improved, the hot workability can be improved, and the crack preventing effect at the time of rolling or hot forging can be obtained. However, if the amount is too much, the effect is saturated and the cost is increased, so Zr: 0.2% or less, Ti: 0.1% or less, Mg: 0.01% or less, Ca: 0.01% or less, REM: Controlled to 0.3% or less (all elements do not contain 0%).
[0024]
Furthermore, in the steel of the present invention, the following C, Si, P, Cr, Al, and N are positively added.
[0025]
C: 0.15-0.6%
C is an element that contributes to increasing the amount of pearlite in the metal structure of the forged product after hot forging and cooling to ensure a desired strength. In order to effectively exhibit such an action, it is preferable to add at least 0.15% or more. More preferably, it is 0.2% or more. However, if the C content is excessive, the machinability is lowered, so the upper limit is preferably suppressed to 0.6% or less. Considering the balance between strength and machinability, the more preferable C content is 0.5% or less.
[0026]
Si: 1.5% or less (excluding 0%)
Si is an effective element for deoxidation when steel is melted, and is an element effective for strengthening a forged product after hot forging and cooling by solid solution in the ferrite ground of the steel. In order to effectively exhibit such an action, it is preferable to add 0.1% or more. However, when the Si content is excessive, there is an adverse effect on machinability and hot workability, so the upper limit is preferably made 1.5%. More preferably, it is 1.0% or less.
[0027]
P: 0.15% or less (excluding 0%)
P is an element effective for lowering toughness due to segregation at grain boundaries. For that purpose, it is preferable to add 0.01% or more. However, when the P content is excessive, the hot workability deteriorates, so the upper limit is preferably made 0.15%. More preferably, it is 0.10% or less.
[0028]
Cr: 2% or less (excluding 0%)
Cr, like Mn, is an element that improves pearlite hardenability and contributes to an increase in strength such as yield strength and fatigue strength. In order to effectively exhibit such an action, it is preferable to add 0.2% or more. However, if the Cr content is excessive, the hardness will increase significantly, or bainite will form in the metal structure and adversely affect the machinability, so the upper limit should be made 2% or less. preferable. More preferably, it is 1.7% or less.
[0029]
Al: 0.06% or less (excluding 0%)
N: 0.03% or less (excluding 0%)
All of these elements contribute to improvement of fatigue characteristics by refining crystal grains. In order to effectively exhibit such an action, it is preferable to add Al: 0.001% or more and N: 0.002% or more. However, even if added excessively, the effect is saturated and adversely affects hot workability. Therefore, the upper limit is Al: 0.06%, N: 0.03%. It is preferable. More preferably, Al: 0.05% and N: 0.020% or less.
[0030]
Further, in the steel of the present invention, V is positively added.
[0031]
V: 0.45% or less (excluding 0%)
V is an element that forms fine carbides or nitrides and precipitates on ferrite ground, thereby contributing to an increase in strength such as yield strength and fatigue strength. In order to effectively exhibit such an action, it is preferable to set V: 0.02% or more. However, since the effect is saturated and the cost is increased even if contained in excess, the upper limit is preferably set to V: 0.45%. More preferably, V: 0.35% or less.
[0032]
The basic components for obtaining the desired sulfide inclusions are as described above, but in order to further reduce the aspect ratio by making the sulfide inclusions spherical, Se and Te are positively added. It is recommended. By adding these elements, the fracture splitting property can be further improved, the hot workability can be improved, and the crack preventing effect at the time of rolling or hot forging can be obtained. However, if the amount is too large, the effect is saturated and the cost is increased. Therefore, it is preferable to control Se: 0.1% or less and Te: 0.1% or less (both elements do not include 0%). .
[0033]
Further, in the steel of the present invention, Nb can be positively added.
[0034]
Nb: 0.15% or less (excluding 0%)
Nb is an element that forms fine carbides or nitrides and precipitates on ferrite ground, thereby contributing to an increase in strength such as yield strength and fatigue strength. In order to effectively exhibit such an action, it is preferable to set Nb: 0.005% or more. However, even if contained excessively, the effect is saturated and the cost is increased, so the upper limit is preferably Nb: 0.15%. More preferably, Nb: 0.1% or less.
[0035]
Furthermore, in the steel of the present invention, the following Pb and / or Bi can be positively added.
[0036]
Pb: 0.3% or less (excluding 0%)
Bi: 0.3% or less (excluding 0%)
These elements are all elements that contribute to the improvement of machinability. In order to effectively exhibit such an action, it is preferable to add Pb: 0.01% or more and Bi: 0.01% or more. However, since the effect will be saturated even if it adds excessively, it is preferable to make the upper limit into Pb: 0.3% and Bi: 0.3%. More preferably, they are Pb: 0.25% and Bi: 0.25% or less. These elements may be used alone or in combination of two or more.
[0037]
The steel of the present invention contains the above-described elements as necessary or necessary. Others: The steel of the present invention is substantially composed of Fe, but contains other permissible components within a range not impairing the function of the present invention. It can also be contained.
[0038]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any appropriate design change in accordance with the gist of the preceding and following description is within the technical scope of the present invention. Is included.
[0039]
【Example】
Steel Nos. 2 to 12 having the chemical composition shown in Table 1 were melted in a 50 kg experimental furnace, then forged into a plate having a thickness of 25 mm and a width of 70 mm by hot forging, and cut to a predetermined length. .
[0040]
A 1 mm 2 field of view was observed with an optical microscope (1000 ×) in a longitudinal section of ¼ part width of the flat plate thus obtained, and the number of sulfide inclusions having a width of 1 μm or more, and the inclusions. The average aspect ratio of the objects was measured.
[0041]
Further, tensile test pieces and impact test pieces were taken in parallel to the forging direction of the flat plate, and each test was performed. At that time, the surface of a flat plate that was flattened and forged to a thickness of 15 mm was visually observed, and the presence or absence of forging cracks was also investigated at the same time. The brittle fracture surface ratio was visually observed according to the method described in JIS Z 2242, and the ratio of the area of the brittle fracture surface to the total area of the fracture surface was calculated by comparison with the standard fracture surface.
[0042]
Table 1 shows the number of sulfide inclusions having a width of 1 μm or more, the average aspect ratio of the inclusions, the presence or absence of cracks during forging, the tensile strength, the impact value, and the brittle fracture surface ratio. In the table, “−” in each item of “tensile strength”, “impact value” and “brittle fracture surface ratio” means that the measurement was stopped.
[0043]
[Table 1]
[0044]
From these results, it can be considered as follows.
First, Nos. 4 and 5 are examples that satisfy all of the requirements defined in the present invention. Forging cracks do not occur, the impact value is smaller than the standard 20 J / cm 2 , and the brittle fracture surface ratio. Is 100%, which is an essential condition, and it can be seen that good fracture splitting properties are obtained.
[0045]
On the other hand, Nos. 8 to 12 that do not satisfy any of the requirements specified in the present invention have the following problems.
[0046]
No. 8 is an example in which the number of sulfide inclusions is large, and hot forging cracks are observed. On the other hand, No. 9 is an example in which the number of sulfide inclusions is small, and neither the impact value nor the brittle fracture surface ratio has reached the target level.
[0047]
In No. 10, the number of sulfide inclusions satisfies the requirements of the present invention, but the aspect ratio exceeds the upper limit, and neither the impact value nor the brittle fracture surface ratio has reached the target level.
[0048]
Further, No. 11 is an example in which both the number of sulfide inclusions and the aspect ratio do not satisfy the requirements of the present invention, and neither the impact value nor the brittle fracture surface ratio has reached the target level.
[0049]
No. 12 is an example in which the S content is high and the aspect ratio of the sulfide inclusions is large, but hot forging cracks were observed.
[0050]
【The invention's effect】
Since the present invention is configured as described above, it is possible to obtain a non-heat treated steel for hot forging that satisfies high strength, low toughness, and excellent fracture splitting property.
Claims (3)
C :0.15〜0.6%,
Si:1.5%以下(0%を含まない),
P :0.15%以下(0%を含まない),
Cr:2%以下(0%を含まない),
Al:0.06%以下(0%を含まない),
N :0.03%以下(0%を含まない),
Mn:2.0%以下(0%を含まない),
S :0.038〜0.061%,
V :0.45%以下(0%を含まない)
Ca:0.0018%以下(0%を含まない)
を夫々含有し、更に
Zr :0.2%以下(0%を含まない)
Ti :0.1%以下(0%を含まない)
Mg :0.01%以下(0%を含まない)
REM:0.3%以下(0%を含まない)
よりなる群から選択される少なくとも一種を含有し、
(但し、Zrを含有するときは、Zrを0.08%以上とする)
残部がFeおよび不可避不純物からなると共に、
鍛造材の表面から1/4厚さ位置における縦断面において、幅1μm以上の硫化物系介在物が100〜4000個/mm2存在すると共に、該硫化物の平均アスペクト比(長さ/幅)が10以下であることを特徴とする破断分断性に優れた破断分割型コンロッド用熱間鍛造用非調質鋼。Steel component is mass% (hereinafter the same)
C: 0.15-0.6%,
Si: 1.5% or less (excluding 0%),
P: 0.15% or less (excluding 0%),
Cr: 2% or less (excluding 0%),
Al: 0.06% or less (excluding 0%),
N: 0.03% or less (excluding 0%),
Mn: 2.0% or less (excluding 0%),
S: 0.038-0.061%,
V: 0.45% or less (excluding 0%)
Ca: 0.0018% or less (excluding 0%)
And Zr: 0.2% or less (excluding 0%)
Ti: 0.1% or less (excluding 0%)
Mg: 0.01% or less (excluding 0%)
REM: 0.3% or less (excluding 0%)
Containing at least one selected from the group consisting of :
(However, when Zr is contained, Zr is set to 0.08% or more.)
The balance consists of Fe and inevitable impurities ,
In longitudinal section of the 1/4 thickness position from the surface of the forging material, the sulfide inclusions in the above range 1μm is 100 to 4000 pieces / mm 2 is present, the average aspect ratio of sulfides (length / width) Is a non-tempered steel for hot forging for fracture split type connecting rods, which is excellent in fracture splitting characteristics, characterized in that is 10 or less.
Nb:0.15%以下(0%を含まない)
を含有するものである請求項1に記載の破断分割型コンロッド用熱間鍛造用非調質鋼。Nb: 0.15% or less (excluding 0%)
The non-tempered steel for hot forging for fracture split type connecting rods according to claim 1.
Pb:0.3%以下(0%を含まない)及び/又は
Bi:0.3%以下(0%を含まない)
を含有するものである請求項1または2に記載の破断分割型コンロッド用熱間鍛造用非調質鋼。Furthermore, Pb: 0.3% or less (not including 0%) and / or Bi: 0.3% or less (not including 0%)
The non-heat treated steel for hot forging for fracture split type connecting rods according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24389698A JP3671688B2 (en) | 1998-08-28 | 1998-08-28 | Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24389698A JP3671688B2 (en) | 1998-08-28 | 1998-08-28 | Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000073141A JP2000073141A (en) | 2000-03-07 |
JP3671688B2 true JP3671688B2 (en) | 2005-07-13 |
Family
ID=17110620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24389698A Expired - Lifetime JP3671688B2 (en) | 1998-08-28 | 1998-08-28 | Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3671688B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170110132A (en) | 2015-03-09 | 2017-10-10 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel and section |
WO2018061642A1 (en) | 2016-09-29 | 2018-04-05 | 新日鐵住金株式会社 | Hot-rolled steel and steel part |
KR20180049074A (en) | 2015-10-19 | 2018-05-10 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel and section |
US10036086B2 (en) | 2013-04-30 | 2018-07-31 | Nippon Steel & Sumitomo Metal Corporation | Non-heat treated steel |
KR20180087371A (en) | 2015-12-25 | 2018-08-01 | 신닛테츠스미킨 카부시키카이샤 | River |
WO2019203348A1 (en) | 2018-04-20 | 2019-10-24 | 日本製鉄株式会社 | Steel, machine component, and connecting rod |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5023410B2 (en) * | 2001-03-02 | 2012-09-12 | 大同特殊鋼株式会社 | Non-tempered steel for hot forging with easy fracture separation |
JP4032915B2 (en) * | 2002-05-31 | 2008-01-16 | Jfeスチール株式会社 | Wire for machine structure or steel bar for machine structure and manufacturing method thereof |
DE602004017144D1 (en) * | 2003-03-18 | 2008-11-27 | Sumitomo Metal Ind | NON-SCREENED / TEMPERED PULLEY AND ASSOCIATED METHOD OF MANUFACTURE |
JP2007119819A (en) * | 2005-10-26 | 2007-05-17 | Nissan Motor Co Ltd | Non-heat treated steel for connecting rod, and connecting rod |
EP2000553B1 (en) * | 2006-03-15 | 2012-09-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Rolled material for fracture split connecting rod excelling in fracture splittability, hot forged part for fracture split connecting rod excelling in fracture splittability, and fracture split connecting rod |
JP5068087B2 (en) * | 2007-02-23 | 2012-11-07 | 株式会社神戸製鋼所 | Steel for fracture split type connecting rods with excellent fracture splitability and machinability |
JP4264460B1 (en) * | 2007-12-03 | 2009-05-20 | 株式会社神戸製鋼所 | Steel for fracture split type connecting rods with excellent fracture splitability and machinability |
KR20120049405A (en) * | 2008-02-26 | 2012-05-16 | 신닛뽄세이테쯔 카부시키카이샤 | Non-heat treated steel for hot forging and steel for hot rolling excellent in fracture splittability and machinability, and hot forging non-heat treated steel part |
JP5454740B2 (en) | 2011-05-19 | 2014-03-26 | 新日鐵住金株式会社 | Non-tempered steel and non-tempered steel parts |
EP3396002A4 (en) * | 2015-12-25 | 2019-08-14 | Nippon Steel Corporation | STEEL COMPONENT |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013421B2 (en) * | 1979-05-25 | 1985-04-06 | 大同特殊鋼株式会社 | structural steel |
JPS61204353A (en) * | 1985-03-07 | 1986-09-10 | Nippon Steel Corp | Steel material with excellent strength and toughness even after warm forging |
JPS62196359A (en) * | 1986-02-24 | 1987-08-29 | Sumitomo Metal Ind Ltd | Manufacturing method of non-thermal steel for hot forging |
JP3211627B2 (en) * | 1995-06-15 | 2001-09-25 | 住友金属工業株式会社 | Steel for nitriding and method for producing the same |
FR2742448B1 (en) * | 1995-12-14 | 1998-01-16 | Ascometal Sa | STEEL FOR THE MANUFACTURE OF SECABLE MECHANICAL PARTS AND OBTAINED PART |
JPH09310152A (en) * | 1996-05-21 | 1997-12-02 | Kobe Steel Ltd | Non-heat treated steel for hot forging |
JP3472675B2 (en) * | 1996-11-25 | 2003-12-02 | 住友金属工業株式会社 | High-strength free-cut non-heat treated steel |
JPH10219393A (en) * | 1997-02-04 | 1998-08-18 | Sumitomo Metal Ind Ltd | Steel material for nitrocarburizing, nitrocarburizing component and method of manufacturing the same |
JP2000008141A (en) * | 1998-06-23 | 2000-01-11 | Sumitomo Metal Ind Ltd | Non-heat treated nitrocarburized steel forged parts and method of manufacturing the same |
-
1998
- 1998-08-28 JP JP24389698A patent/JP3671688B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10036086B2 (en) | 2013-04-30 | 2018-07-31 | Nippon Steel & Sumitomo Metal Corporation | Non-heat treated steel |
KR20170110132A (en) | 2015-03-09 | 2017-10-10 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel and section |
KR20180049074A (en) | 2015-10-19 | 2018-05-10 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel and section |
US10344363B2 (en) | 2015-10-19 | 2019-07-09 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel and steel component |
KR20180087371A (en) | 2015-12-25 | 2018-08-01 | 신닛테츠스미킨 카부시키카이샤 | River |
WO2018061642A1 (en) | 2016-09-29 | 2018-04-05 | 新日鐵住金株式会社 | Hot-rolled steel and steel part |
KR20190042672A (en) | 2016-09-29 | 2019-04-24 | 닛폰세이테츠 가부시키가이샤 | Hot-rolled steel and section |
WO2019203348A1 (en) | 2018-04-20 | 2019-10-24 | 日本製鉄株式会社 | Steel, machine component, and connecting rod |
Also Published As
Publication number | Publication date |
---|---|
JP2000073141A (en) | 2000-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3671688B2 (en) | Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting | |
JP4266340B2 (en) | High strength wire for induction hardening with excellent cold workability and impact resistance, and steel parts using this wire | |
JPH0892690A (en) | Carburized parts having excellent fatigue resistance and method for manufacturing the same | |
JP3255296B2 (en) | High-strength steel for spring and method of manufacturing the same | |
JP4797673B2 (en) | Hot forging method for non-tempered parts | |
JP3587348B2 (en) | Machine structural steel with excellent turning workability | |
JPH0790484A (en) | High strength induction hardened shaft parts | |
JP2783145B2 (en) | Steel for nitrided spring and nitrided spring with excellent fatigue strength | |
JP2001026836A (en) | Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength | |
JPH073386A (en) | Non-heat treated steel for hot forging excellent in fatigue strength and method for manufacturing non-heat treated hot forged product using the steel | |
JP5432590B2 (en) | Hot forged parts excellent in fracture splitting property, manufacturing method thereof, and automotive internal combustion engine parts | |
JP3235442B2 (en) | High strength, low ductility non-heat treated steel | |
JPH10324954A (en) | Machine structural steel | |
JP4801485B2 (en) | Cold forged parts, manufacturing method for obtaining the same, and steel materials | |
KR100706005B1 (en) | High strength steel with excellent fatigue strength and manufacturing method | |
JP3304550B2 (en) | Manufacturing method of induction hardened parts with notches | |
JP4773106B2 (en) | Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts | |
JP4422924B2 (en) | Steel for high-strength tapping bolt, high-strength tapping bolt and method for producing high-strength tapping bolt | |
JP3644217B2 (en) | Induction-hardened parts and manufacturing method thereof | |
JPH09176786A (en) | High strength / low ductility non-heat treated steel | |
JP4515347B2 (en) | Method for determining fatigue resistance of spring steel wires and spring steel wires | |
JP3416868B2 (en) | High-strength, low-ductility non-heat treated steel with excellent machinability | |
JP2003055743A (en) | Steel for cold die having excellent machinability | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JP3617187B2 (en) | Manufacturing method of high strength connecting rod |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040726 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050411 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |