[go: up one dir, main page]

JP3666831B2 - Thermal analysis and X-ray measurement equipment - Google Patents

Thermal analysis and X-ray measurement equipment Download PDF

Info

Publication number
JP3666831B2
JP3666831B2 JP19538596A JP19538596A JP3666831B2 JP 3666831 B2 JP3666831 B2 JP 3666831B2 JP 19538596 A JP19538596 A JP 19538596A JP 19538596 A JP19538596 A JP 19538596A JP 3666831 B2 JP3666831 B2 JP 3666831B2
Authority
JP
Japan
Prior art keywords
sample
ray
thermal analysis
measurement
ray measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19538596A
Other languages
Japanese (ja)
Other versions
JPH1019815A (en
Inventor
佳澄 杉浦
和男 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP19538596A priority Critical patent/JP3666831B2/en
Publication of JPH1019815A publication Critical patent/JPH1019815A/en
Application granted granted Critical
Publication of JP3666831B2 publication Critical patent/JP3666831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱分析測定及びX線測定の両方の測定を行うことができる熱分析及びX線測定装置に関する。
【0002】
【従来の技術】
熱分析というのは、試料の温度を変化させたときのその試料の性質の温度依存症を測定することである。具体的な分析方法としては非常に多種類の方法があるが、代表的なものをあげれば、例えば、示差熱分析(DTA:Differential Thermal Analysis)や、示差走査熱量測定(DSC:Differential Scanning Calorimetry)等がある。
【0003】
DTAというのは、試料と標準物質とを同時に加熱して、反応の際に両者間に現れた温度差から試料に発生した熱変化を知る方法である。DSCというのは、試料内に発生した熱変化を、それを補償するのに必要な熱量として求めるものであり、具体的には、試料と標準物質との間に温度差が生じたら、いずれか一方に供給する単位時間当たりの熱量を増やしたり、減らしたりして、等速昇温、等速冷却あるいは等温の状態を保つように温度コントロールし、そのときに増やしたり、減らしたりした熱量を測定するものである。DTAは、試料の熱変化を温度差の形で間接的に測定するものであって、例えば、転移熱すなわち潜熱は測定できないが、DSCはその転移熱も測定できる。
【0004】
一方、X線測定というのは、試料にX線を照射してその試料で回折又は反射するX線を検出してその試料の性質を測定することである。このX線測定の具体的な分析手法としても非常に多種類の方法があるが、例えばX線回折測定、X線反射率測定がある。
【0005】
X線回折測定というのは、試料で回折したX線を検出する測定であり、X線反射率測定というのは、試料で反射したX線を検出する測定である。一般には、試料に入射するX線の入射角度が大きい場合に、X線が試料で回折することが多い。そして、X線入射角度が小さい場合に、X線が試料で反射することが多い。
【0006】
従来、産業界においては、熱分析についてはそれ専用の測定装置を使ってその測定を行い、X線測定についてはそれ専用の測定装置を使ってその測定を行うというのが一般的であった。しかしながら、少ない例ではあるが、熱分析及びX線測定の両方を1つの測定装置によって行うようにしたものも提案されている。例えば、図5及び図6に示すように、円筒形状のヒータ51又は52の内部に試料53及び標準物質54を配置し、試料53及び標準物質54の両方をヒータ51,52によって加熱しながら、試料53にX線Rを照射してX線測定を行い、一方、熱電対55によって試料53及び標準物質54の温度を検出して熱分析を行うようにした装置が知られている。
【0007】
【発明が解決しようとする課題】
しかしながら、図5及び図6に示すような従来の熱分析及びX線測定装置においては、0℃以下の温度に関する測定や、試料温度を急速に加熱冷却するような測定を行うことができなかった。また、図5に示すように高さの高いヒータ51を用いる場合には、X線Rを試料53へ低角度で入射させることができないという問題がある。一方、図6に示すような高さの低いヒータ52を用いる場合には、X線Rを低角度から試料53へ入射することができるものの、ヒータ52による試料室H内の温度分布が極端に悪くなるという問題が発生する。
【0008】
本発明は、上記の問題点を解消するためになされたものであって、熱分析及びX線測定の両方の測定を1つの測定装置によって行う場合に、試料を均一な温度分布で加熱でき、しかも試料に対して低角度からX線を入射できるようにすることを第1の目的とする。
【0009】
また、熱分析及びX線測定の両方の測定を1つの測定装置によって行う場合に、0℃以下の温度に関する測定や、試料温度を急速に加熱冷却するような測定を行うことができるようにすることを第2の目的とする。
【0010】
【課題を解決するための手段】
上記第の目的を達成するため、本発明に係る熱分析及びX線測定装置は、試料の温度を変化させたときのその試料の性質の温度依存性を測定する熱分析測定と、試料にX線を照射してその試料で回折又は反射するX線を検出してその試料の性質を測定するX線測定との両方の測定を行うことができる熱分析及びX線測定装置において、ブロック部材の凹部と該凹部を覆うと共にX線を通過させることができるカバーとによって形成された試料室と、前記試料室内に配置された試料を加熱する試料加熱手段と、前記試料室内に配置された試料を冷却するための試料冷却手段とを有し、前記試料冷却手段は、前記試料室を取り囲むように前記ブロック部材の中に円筒形状に形成されると共に寒剤を貯留又は流す冷媒タンクを有することを特徴とする。
【0011】
また、上記第1の目的を達成するため、本発明に係る熱分析及びX線測定装置において、前記試料加熱手段は、前記試料のX線照射面の裏側であってその試料に接触又は近接する位置にヒータを設けることが望ましい。
【0012】
上記試料冷却手段の構成は特定のものに限定されないが、望ましくは、試料のまわりに冷媒タンクを設け、その冷媒タンク内に液体窒素を貯留する。また、冷媒タンク内に液体窒素その他の寒剤を流すようにすることもできる。
【0013】
試料のX線照射面の裏側であってその試料に接触又は近接する位置にヒータを設けた構成の熱分析及びX線測定装置では、図6に示すような高さの低い円筒状ヒータを用いた従来の装置に比べて、試料を均一な温度分布で加熱することができ、しかも、図5に示すような高さの高い円筒状ヒータを用いた従来の装置に比べて、試料に対するX線の入射角度を低角度側へ広げることができる。つまり、X線測定における測角範囲を広く維持すること及び試料の温度分布を均一に維持することの両方の要求を同時に達成できる。
【0014】
試料加熱手段及び試料冷却手段の両手段を備えた構造の熱分析及びX線測定装置では、試料を高温にしたいときには試料加熱手段を用い、試料を0℃以下にしたいときには試料冷却手段を用い、また、試料温度を高温から急速に冷却したいときには試料加熱手段及び試料冷却手段の両方を用いる。
【0015】
【発明の実施の形態】
(第1実施形態)
図1は、本発明に係る熱分析及びX線測定装置の一実施形態を示している。この装置は、円筒状のブロック部材2と、ブロック部材2の中心部に形成した凹状の試料室Hと、試料室Hの上部を気密に覆う円弧状のカバー6と、そして試料室Hのまわりを取り囲むようにブロック部材2の内部に形成したリング状の冷媒タンク7とを有している。
【0016】
試料室Hの内部には、2本の支持棒8a及び8bが立てられ、それらの支持棒の上端に試料皿9a及び9bが設けられている。一方の試料皿9aの上には試料3が載せられ、他方の試料皿9bの上には標準物質4が載せられている。標準物質4としては、温度変化しても性質に変化のない材料、すなわち熱的に安定な材料が用いられる。試料3の直下、すなわち試料3のX線照射面の裏側であってその試料3に接触又は近接する位置には、上下2段にわたってヒータ1aが設けられる。また、標準物質4の直下にもヒータ1bが上下2段にわたって設けられる。
【0017】
カバー6は、図2に示すように、上から見ると長方形状に形成され、その中央部にはX線透過窓10が設けられている。試料室H内が比較的低温、例えば500℃程度までしか上がらない場合は、例えばステンレスや真鍮によってカバー6を形成する。また、試料室Hが比較的高温、例えば1500℃程度まで上がる場合は、例えばアルミナによってカバー6を形成する。また、X線透過窓10は、気密性を保持でき、さらにX線を透過できる材料、例えば、ベリリウム(Be)やニッケル等によって形成する。
【0018】
図1において、冷媒タンク7の内部には、冷却媒体、例えば液化窒素(LN2)が貯留されている。支持棒8a及び8bの内部には、それぞれ、試料3の底面及び標準物質4の底面を測温点とする熱電対5a及び5bが格納されている。
【0019】
上記の試料支持系の上方にはX線測定系11が配設され、その下方には熱分折系12が配設されている。本実施形態の場合、X線測定系11はθ−θ走査形式のX線回折装置によって構成され、熱分析系12は示差走査熱量測定(DSC)装置によって構成されている。詳しく説明すれば、X線測定系11は、X線源Fと、X線カウンタ13と、X線強度演算回路14と、そしてX線回折記録計15とによって構成されている。熱分析系12は、T及びΔT測定回路16と、熱量補償回路17と、そして熱分析記録計18とによって構成されている。
【0020】
以下、上記構成により成る熱分析及びX線測定装置の動作について説明する。試料室Hの内部は、冷媒タンク7内のLN2 によって一定の冷却能力で冷却される。そして同時に、試料3及び標準物質4は、それぞれに対応するヒータ1a及び1bによって等しい温度に加熱される。ヒータ 1a,1bはそれぞれ試料3及び標準物質4に接触又は近接して設けられるので、試料3及び標準物質4はそれらの全域にわたって均一に加熱されて、均一に昇温する。試料室H内の昇温及び降温状態は、温度コントローラを兼ねた熱量補償回路17に予め記憶されたプログラムに従って制御される。LN2 を用いた冷却手段を設置してあるので、試料室Hの内部を0℃以下に設定することもでき、また、一旦設定した高温を急速に冷却することもできる。
【0021】
このように試料3及び標準物質4を温度制御した状態で、以下の通りに、X線回折測定系11によるX線回折測定及び熱分析系12による示差走査熱量測定(DSC)が行われる。
【0022】
(X線回折測定)
X線源Fが試料3を中心として図の上下方向へ走査回転(いわゆるθ回転)し、それに同期してX線カウンタ13が、等しい速度で反対方向へ試料3を中心として走査回転(いわゆるθ回転)する。これらのθ回転の間、X線源Fから出たX線Rが試料3に入射する。図示はしてないが、必要に応じて、X線源Fから試料3に至るX線光路上にはX線Rの発散を規制する発散規制スリットや、連続X線を単色化するモノクロメータ等が配設される。
【0023】
試料3に入射するX線と試料3の結晶格子面との間で、周知のブラッグ条件が満足されると、試料3でX線が回折する。回折したX線は、X線カウンタ13の内部に取り込まれて電気的なパルス信号に変換されて出力され、その出力パルスはX線強度演算回路14に送られる。図示はしていないが、必要に応じて、X線カウンタ13と試料3との間には、散乱X線がX線カウンタ13に入るのを防止する散乱線阻止スリットや、X線カウンタ13に向かう回折X線の断面形状を一定の大きさに規制する受光スリット等が配設される。
【0024】
X線強度演算回路14はX線強度、すなわち単位時間当たりの出力パルス数(cps)を演算して、その結果を記録計15へ送る。記録計15は、入射X線Rに対するX線カウンタ13の回転角度、すなわち2θ角度値に対する回折X線強度を求め、周知のX線回折図形を作成する。このX線回折図形を検討することにより、試料3を構成する物質の同定や、結晶構造の判定や、その他種々の解析が行われる。
【0025】
(示差走査熱量測定)
熱電対5aによって検出される試料3の表面温度及び熱電対5bによって検出される標準物質4の表面温度は、T及びΔT測定回路16へ送られる。測定回路16は、試料3及び標準物質4の温度(T)を測定し、同時に両者の差(ΔT)を演算する。演算結果は熱量補償回路17へ送られる。熱量補償回路17は、ΔTが0(ゼロ)でないとき、それを補償してΔT=0となるように、試料側ヒータ1a又は標準物質側ヒータ1bのいずれかへの通電量を調節し、そのときに供給した熱量を測定する。これにより、試料3に発生する熱量変化が検出される。熱分析記録計18は、試料温度(T)と試料に発生した熱量変化との関係を求めてグラフ上に表示する。このグラフを検討することにより、試料3の物理的持性、例えば転移点や融解点等の温度依存性を測定する。
【0026】
以上のように、本実施例の熱分析及びX線測定装置によれば、1つの試料3に対してX線測定及び熱分析の2種類の測定を同時に行うことができる。
【0027】
(第2実施形態)
図4は、本発明に係る熱分析及びX線測定装置の他の実施形態を示している。この熱分析及びX線測定装置が図1に示した装置と異なる点は、熱分析系22として、示差走査熱量測定(DSC)装置に代えて示差熱分析(DTA)装置を用いた点である。
【0028】
このDTA装置は、T及びΔT測定回路16と、熱分析記録計18と、そして温度コントローラ27とを有している。温度コントローラ27は予め決められたプログラムに従って、試料側ヒータ1a及び標準物質側ヒータ1bへの通電を制御する。熱分析記録計18は、試料3と標準物質4との間の温度差(ΔT)と、試料3の温度変化(T)との関係を求めてグラフ上に表示する。
【0029】
以上、好ましい実施例をあげて本発明を説明したが、本発明はその実施例に限られることなく、請求の範囲に記載した技術的範囲内で種々に改変できる。
例えば、LN2 を冷媒タンク7内に貯留するのではなくて、常時その冷媒タンク7を通過させて流すようにすることもできる。また図3に示すように、冷媒タンク7に替えて、図の上方から見て螺旋状の冷媒パイプ19を試料室Hのまわりに配設しこの冷媒パイプ19の上端吸入口20から導入したLN2 を下端排出口21から排出するように構成しても良い。
【0030】
熱分析系は上記説明で例示したDSC及びDTA以外の任意の熱分析系を適用できる。X線測定系は上記説明で例示したX線回折装置以外に、X線反射率測定装置や、蛍光X線装置等といったその他の任意のX線装置を適用できる。
【0031】
【発明の効果】
本発明に係る熱分析及びX線測定装置によれば、熱分析及びX線測定の両方の測定を1つの測定装置によって行う場合に、0℃以下の温度に関する測定や、試料温度を急速に加熱冷却するような測定を行うことができる。
【0032】
本発明に係る熱分析及びX線測定装置において、試料のX線照射面の裏側であってその試料に接触又は近接する位置にヒータを設けることにすれば、試料を均一な温度分布で加熱でき、しかも試料に対して低角度からX線を入射できる。ずなわち、試料を均一に加熱するという要求と、X線装置の測角範囲を広く維持するという要求の2つの要求を同時に満足できる。
【0033】
特に、本発明に係る熱分析及びX線測定装置において、試料のX線照射面の裏側であってその試料に接触又は近接する位置にヒータを設けることにすれば、試料の均一加熱、X線装置の測角範囲の拡大、0℃以下の試料温度に関する測定、そして試料温度の急速加熱又は急速冷却といった全ての要求を満足できる。
【0034】
本発明に係る熱分析及びX線測定装置によれば、簡単な構造で効率良く試料を冷却できる。
【0035】
【図面の簡単な説明】
【図1】本発明に係る熱分析及びX線測定装置の一実施形態を示す断面模式図である。
【図2】同熱分析及びX線測定装置の平面図である。
【図3】本発明に係る熱分析及びX線測定装置の他の一実施形態を示す断面図である。
【図4】本発明に係る熱分析及びX線測定装置のさらに他の一実施形態を示す断面図である。
【図5】従来の熱分析及びX線測定装置の一例を示す断面図である。
【図6】従来の熱分析及びX線測定装置の他の一例を示す断面図である。
【符号の説明】
1a,1b ヒータ
2 ブロック部材
3 試料
4 標準物質
5a,5b 熱電対
6 カバー
7 冷媒タンク
8a,8b 支持棒
9a,9b 試料皿
10 X線透過窓
11 X線測定系
12 熱分析系
13 X線カウンタ
19 冷媒パイプ
22 熱分析系
R X線
H 試料室
F X線源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal analysis and X-ray measurement apparatus capable of performing both thermal analysis measurement and X-ray measurement.
[0002]
[Prior art]
Thermal analysis is the measurement of the temperature dependence of the properties of a sample when the temperature of the sample is changed. There are very many kinds of specific analysis methods. Typical examples include differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Etc.
[0003]
DTA is a method in which a sample and a standard substance are heated at the same time, and the thermal change generated in the sample is known from the temperature difference that appears between them during the reaction. DSC is a method for obtaining the heat change generated in a sample as the amount of heat necessary to compensate for it. Specifically, if there is a temperature difference between the sample and the standard substance, Increase or decrease the amount of heat per unit time supplied to one side, and control the temperature so that constant temperature rise, constant cooling or isothermal state is maintained, and measure the amount of heat increased or decreased at that time To do. The DTA indirectly measures the thermal change of the sample in the form of a temperature difference. For example, the transition heat, that is, the latent heat cannot be measured, but the DSC can also measure the transition heat.
[0004]
On the other hand, X-ray measurement is to measure the properties of a sample by irradiating the sample with X-rays, detecting X-rays diffracted or reflected by the sample. There are very many kinds of specific analysis methods for this X-ray measurement, for example, X-ray diffraction measurement and X-ray reflectivity measurement.
[0005]
The X-ray diffraction measurement is a measurement for detecting X-rays diffracted by the sample, and the X-ray reflectance measurement is a measurement for detecting X-rays reflected by the sample. In general, when the incident angle of X-rays incident on the sample is large, the X-rays are often diffracted by the sample. When the X-ray incident angle is small, the X-ray is often reflected by the sample.
[0006]
Conventionally, in the industry, it has been common to perform a measurement using a dedicated measuring device for thermal analysis and to perform a measurement using a dedicated measuring device for X-ray measurement. However, although there are few examples, there is also proposed one in which both thermal analysis and X-ray measurement are performed by one measuring device. For example, as shown in FIGS. 5 and 6, a sample 53 and a standard material 54 are arranged inside a cylindrical heater 51 or 52, and both the sample 53 and the standard material 54 are heated by the heaters 51 and 52. An apparatus is known in which X-ray measurement is performed by irradiating the sample 53 with X-rays R, while thermal analysis is performed by detecting the temperatures of the sample 53 and the standard material 54 with a thermocouple 55.
[0007]
[Problems to be solved by the invention]
However, in the conventional thermal analysis and X-ray measurement apparatus as shown in FIG. 5 and FIG. 6, it was not possible to perform measurement related to a temperature of 0 ° C. or less or measurement to rapidly heat and cool the sample temperature. . Also, as shown in FIG. 5, when the heater 51 having a high height is used, there is a problem that the X-ray R cannot be incident on the sample 53 at a low angle. On the other hand, when the heater 52 having a low height as shown in FIG. 6 is used, the X-ray R can be incident on the sample 53 from a low angle, but the temperature distribution in the sample chamber H by the heater 52 is extremely high. The problem of getting worse occurs.
[0008]
The present invention has been made to solve the above-described problems, and when both the thermal analysis and the X-ray measurement are performed by one measuring device, the sample can be heated with a uniform temperature distribution, Moreover, a first object is to allow X-rays to enter the sample from a low angle.
[0009]
Further, when both the thermal analysis and the X-ray measurement are performed by a single measuring device, it is possible to perform a measurement related to a temperature of 0 ° C. or less and a measurement that rapidly heats and cools the sample temperature. This is the second purpose.
[0010]
[Means for Solving the Problems]
In order to achieve the second object, the thermal analysis and X-ray measurement apparatus according to the present invention includes a thermal analysis measurement for measuring the temperature dependence of the property of the sample when the temperature of the sample is changed, In a thermal analysis and X-ray measuring apparatus capable of performing both X-ray measurement by irradiating X-rays and detecting X-rays diffracted or reflected by the sample and measuring the properties of the sample, a block member A sample chamber formed by a concave portion of the substrate and a cover that covers the concave portion and allows X-rays to pass therethrough, a sample heating means for heating the sample disposed in the sample chamber, and a sample disposed in the sample chamber Sample cooling means for cooling the sample cooling means, the sample cooling means having a refrigerant tank formed in a cylindrical shape in the block member so as to surround the sample chamber and storing or flowing a cryogen. Features and That.
[0011]
In order to achieve the first object, in the thermal analysis and X-ray measurement apparatus according to the present invention, the sample heating means is behind the X-ray irradiation surface of the sample and is in contact with or close to the sample. It is desirable to provide a heater at the position.
[0012]
The configuration of the sample cooling means is not limited to a specific one. Desirably, a refrigerant tank is provided around the sample, and liquid nitrogen is stored in the refrigerant tank. Further, Ru can also be caused to flow through the liquid nitrogen other cryogen in the refrigerant tank.
[0013]
In the thermal analysis and X-ray measurement apparatus having a configuration in which a heater is provided on the back side of the X-ray irradiation surface of the sample and in contact with or close to the sample, a cylindrical heater having a low height as shown in FIG. 6 is used. Compared to the conventional apparatus, the sample can be heated with a uniform temperature distribution, and moreover, X-rays to the sample are compared with the conventional apparatus using a cylindrical heater having a high height as shown in FIG. The incident angle can be widened to the low angle side. That is, it is possible to simultaneously satisfy both the requirements of maintaining a wide angle measurement range in X-ray measurement and maintaining a uniform temperature distribution of the sample.
[0014]
In a thermal analysis and X-ray measurement apparatus having a structure including both a sample heating unit and a sample cooling unit, a sample heating unit is used when the sample is to be heated to a high temperature, and a sample cooling unit is used when the sample is to be 0 ° C. or lower. When it is desired to rapidly cool the sample temperature from a high temperature, both the sample heating means and the sample cooling means are used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows an embodiment of a thermal analysis and X-ray measurement apparatus according to the present invention. This apparatus includes a cylindrical block member 2, a concave sample chamber H formed at the center of the block member 2, an arc-shaped cover 6 that covers the upper portion of the sample chamber H in an airtight manner, and around the sample chamber H And a ring-shaped refrigerant tank 7 formed inside the block member 2 so as to surround the.
[0016]
Inside the sample chamber H, two support bars 8a and 8b are erected, and sample dishes 9a and 9b are provided at the upper ends of the support bars. The sample 3 is placed on one sample tray 9a, and the standard substance 4 is placed on the other sample tray 9b. As the standard substance 4, a material that does not change its properties even when the temperature changes, that is, a thermally stable material is used. A heater 1a is provided directly below the sample 3, that is, on the back side of the X-ray irradiation surface of the sample 3 and in contact with or close to the sample 3 in two upper and lower stages. Further, a heater 1b is also provided directly below the standard material 4 in two upper and lower stages.
[0017]
As shown in FIG. 2, the cover 6 is formed in a rectangular shape when viewed from above, and an X-ray transmission window 10 is provided at the center thereof. When the inside of the sample chamber H rises only to a relatively low temperature, for example, about 500 ° C., the cover 6 is formed of, for example, stainless steel or brass. When the sample chamber H rises to a relatively high temperature, for example, about 1500 ° C., the cover 6 is formed of alumina, for example. The X-ray transmission window 10 is formed of a material that can maintain hermeticity and can transmit X-rays, such as beryllium (Be) or nickel.
[0018]
In FIG. 1, a coolant such as liquefied nitrogen (LN 2 ) is stored in the refrigerant tank 7. Thermocouples 5a and 5b having temperature measurement points on the bottom surface of the sample 3 and the bottom surface of the standard material 4 are stored in the support rods 8a and 8b, respectively.
[0019]
An X-ray measurement system 11 is disposed above the sample support system, and a thermal analysis system 12 is disposed below the X-ray measurement system 11. In the case of the present embodiment, the X-ray measurement system 11 is configured by a θ-θ scanning type X-ray diffraction apparatus, and the thermal analysis system 12 is configured by a differential scanning calorimetry (DSC) apparatus. More specifically, the X-ray measurement system 11 includes an X-ray source F, an X-ray counter 13, an X-ray intensity calculation circuit 14, and an X-ray diffraction recorder 15. The thermal analysis system 12 includes a T and ΔT measurement circuit 16, a calorific value compensation circuit 17, and a thermal analysis recorder 18.
[0020]
Hereinafter, the operation of the thermal analysis and X-ray measurement apparatus configured as described above will be described. The inside of the sample chamber H is cooled with a constant cooling capacity by LN 2 in the refrigerant tank 7. At the same time, the sample 3 and the standard material 4 are heated to the same temperature by the corresponding heaters 1a and 1b. Since the heaters 1a and 1b are provided in contact with or in close proximity to the sample 3 and the standard material 4, respectively, the sample 3 and the standard material 4 are uniformly heated over their entire area to raise the temperature uniformly. The temperature rise and temperature drop state in the sample chamber H is controlled according to a program stored in advance in the heat quantity compensation circuit 17 that also serves as a temperature controller. Since the cooling means using LN 2 is installed, the inside of the sample chamber H can be set to 0 ° C. or less, and the set high temperature can be rapidly cooled.
[0021]
As described below, the X-ray diffraction measurement by the X-ray diffraction measurement system 11 and the differential scanning calorimetry (DSC) by the thermal analysis system 12 are performed in the state where the temperature of the sample 3 and the standard substance 4 is controlled as described below.
[0022]
(X-ray diffraction measurement)
The X-ray source F scans and rotates in the vertical direction in the figure (so-called θ rotation) around the sample 3 and the X-ray counter 13 scans and rotates around the sample 3 in the opposite direction at the same speed (so-called θ rotation). Rotate. During these θ rotations, the X-ray R emitted from the X-ray source F enters the sample 3. Although not shown, if necessary, a divergence regulating slit for regulating the divergence of X-ray R on the X-ray optical path from the X-ray source F to the sample 3, a monochromator for monochromatic continuous X-rays, etc. Is disposed.
[0023]
When a known Bragg condition is satisfied between the X-ray incident on the sample 3 and the crystal lattice plane of the sample 3, the X-ray is diffracted by the sample 3. The diffracted X-ray is taken into the X-ray counter 13, converted into an electrical pulse signal and output, and the output pulse is sent to the X-ray intensity calculation circuit 14. Although not shown, if necessary, a scattered radiation blocking slit for preventing scattered X-rays from entering the X-ray counter 13 or an X-ray counter 13 between the X-ray counter 13 and the sample 3 may be provided. A light receiving slit or the like for restricting the cross-sectional shape of the diffracted X-rays to a certain size is provided.
[0024]
The X-ray intensity calculation circuit 14 calculates the X-ray intensity, that is, the number of output pulses (cps) per unit time, and sends the result to the recorder 15. The recorder 15 calculates the rotation angle of the X-ray counter 13 with respect to the incident X-ray R, that is, the diffracted X-ray intensity with respect to the 2θ angle value, and creates a known X-ray diffraction pattern. By examining this X-ray diffraction pattern, identification of substances constituting the sample 3, determination of the crystal structure, and various other analyzes are performed.
[0025]
(Differential scanning calorimetry)
The surface temperature of the sample 3 detected by the thermocouple 5 a and the surface temperature of the standard material 4 detected by the thermocouple 5 b are sent to the T and ΔT measurement circuit 16. The measurement circuit 16 measures the temperature (T) of the sample 3 and the standard material 4 and simultaneously calculates the difference (ΔT) between them. The calculation result is sent to the heat compensation circuit 17. The calorific value compensation circuit 17 adjusts the energization amount to either the sample side heater 1a or the standard material side heater 1b so that when ΔT is not 0 (zero) and ΔT = 0, Sometimes measure the amount of heat supplied. Thereby, a change in the amount of heat generated in the sample 3 is detected. The thermal analysis recorder 18 obtains the relationship between the sample temperature (T) and the change in the amount of heat generated in the sample and displays it on the graph. By examining this graph, the physical properties of the sample 3, such as the temperature dependence of the transition point and melting point, are measured.
[0026]
As described above, according to the thermal analysis and X-ray measurement apparatus of the present embodiment, two types of measurement of X-ray measurement and thermal analysis can be simultaneously performed on one sample 3.
[0027]
(Second Embodiment)
FIG. 4 shows another embodiment of the thermal analysis and X-ray measurement apparatus according to the present invention. This thermal analysis and X-ray measurement apparatus is different from the apparatus shown in FIG. 1 in that a differential thermal analysis (DTA) apparatus is used as the thermal analysis system 22 instead of the differential scanning calorimetry (DSC) apparatus. .
[0028]
This DTA apparatus has a T and ΔT measurement circuit 16, a thermal analysis recorder 18, and a temperature controller 27. The temperature controller 27 controls energization to the sample side heater 1a and the standard material side heater 1b according to a predetermined program. The thermal analysis recorder 18 obtains the relationship between the temperature difference (ΔT) between the sample 3 and the standard material 4 and the temperature change (T) of the sample 3 and displays it on the graph.
[0029]
The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the embodiments, and various modifications can be made within the technical scope described in the claims.
For example, instead of storing LN 2 in the refrigerant tank 7, it is possible to always pass the refrigerant tank 7 through it. As shown in FIG. 3, instead of the refrigerant tank 7, a spiral refrigerant pipe 19 as viewed from above is arranged around the sample chamber H and is introduced from the upper end suction port 20 of the refrigerant pipe 19. 2 may be discharged from the lower end discharge port 21.
[0030]
As the thermal analysis system, any thermal analysis system other than the DSC and DTA exemplified in the above description can be applied. As the X-ray measurement system, in addition to the X-ray diffractometer exemplified in the above description, any other X-ray apparatus such as an X-ray reflectivity measurement apparatus or a fluorescent X-ray apparatus can be applied.
[0031]
【The invention's effect】
According to the thermal analysis and X-ray measurement apparatus according to the present invention, when both the thermal analysis and the X-ray measurement are performed by one measurement apparatus, the measurement relating to the temperature of 0 ° C. or lower and the sample temperature are rapidly heated. Measurements such as cooling can be performed.
[0032]
Oite thermal analysis and X-ray measuring apparatus according to the present invention, there is provided a back side of the X-ray irradiation surface of the sample that the to lever providing a heater at a position in contact with or in proximity to the sample, the sample uniform temperature distribution And X-rays can be incident on the sample from a low angle. In other words, it is possible to simultaneously satisfy the two requirements, that is, the requirement to uniformly heat the sample and the requirement to maintain a wide angle measurement range of the X-ray apparatus.
[0033]
In particular, Oite thermal analysis and X-ray measuring apparatus according to the present invention, there is provided a back side of the X-ray irradiation surface of the sample that the to lever providing a heater at a position in contact with or in proximity to the sample, uniform heating of the sample All the requirements such as expansion of the angle range of the X-ray apparatus, measurement of sample temperature below 0 ° C., and rapid heating or cooling of the sample temperature can be satisfied.
[0034]
According to the thermal analysis and X-ray measurement apparatus according to the present invention, the sample can be efficiently cooled with a simple structure.
[0035]
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a thermal analysis and X-ray measurement apparatus according to the present invention.
FIG. 2 is a plan view of the thermal analysis and X-ray measurement apparatus.
FIG. 3 is a cross-sectional view showing another embodiment of the thermal analysis and X-ray measurement apparatus according to the present invention.
FIG. 4 is a cross-sectional view showing still another embodiment of a thermal analysis and X-ray measurement apparatus according to the present invention.
FIG. 5 is a cross-sectional view showing an example of a conventional thermal analysis and X-ray measurement apparatus.
FIG. 6 is a cross-sectional view showing another example of a conventional thermal analysis and X-ray measurement apparatus.
[Explanation of symbols]
1a, 1b Heater 2 Block member 3 Sample 4 Reference materials 5a, 5b Thermocouple 6 Cover 7 Refrigerant tanks 8a, 8b Support rods 9a, 9b Sample pan 10 X-ray transmission window 11 X-ray measurement system 12 Thermal analysis system 13 X-ray counter 19 Refrigerant pipe 22 Thermal analysis system R X-ray H Sample chamber F X-ray source

Claims (3)

試料の温度を変化させたときのその試料の性質の温度依存性を測定する熱分析測定と、試料にX線を照射してその試料で回折又は反射するX線を検出してその試料の性質を測定するX線測定との両方の測定を行うことができる熱分析及びX線測定装置において、
ブロック部材の凹部と該凹部を覆うと共にX線を通過させることができるカバーとによって形成された試料室と、
前記試料室内に配置された試料を加熱する試料加熱手段と、
前記試料室内に配置された試料を冷却するための試料冷却手段とを有し、
前記試料冷却手段は、前記試料室を取り囲むように前記ブロック部材の中に円筒形状に形成されると共に寒剤を貯留又は流す冷媒タンクを有する
ことを特徴とする熱分析及びX線測定装置。
Thermal analysis measurement that measures the temperature dependence of the properties of the sample when the temperature of the sample is changed, and the properties of the sample by irradiating the sample with X-rays and detecting X-rays that are diffracted or reflected by the sample In the thermal analysis and X-ray measurement apparatus capable of performing both the X-ray measurement and the X-ray measurement,
A sample chamber formed by a recess of the block member and a cover that covers the recess and allows X-rays to pass through;
Sample heating means for heating the sample disposed in the sample chamber ;
Possess the sample cooling means for cooling the placed sample into the sample chamber,
The thermal analysis and X-ray measurement characterized in that the sample cooling means has a refrigerant tank that is formed in a cylindrical shape in the block member so as to surround the sample chamber and that stores or flows a cryogen. apparatus.
請求項1記載の熱分析及びX線測定装置において、前記試料加熱手段は、前記試料のX線照射面の裏側であってその試料に接触又は近接する位置にヒータを設けたことを特徴とする熱分析及びX線測定装置。2. The thermal analysis and X-ray measurement apparatus according to claim 1, wherein the sample heating means is provided with a heater on the back side of the X-ray irradiation surface of the sample and in contact with or close to the sample. Thermal analysis and X-ray measurement equipment. 請求項1又は請求項2記載の熱分析及びX線測定装置において、
前記試料室の中に配置されていて測定試料を載置するための測定試料用試料皿と、
前記試料室の中に配置されていて標準物質を載置するための標準物質用試料皿とを有し、
前記測定試料用試料皿の表面と前記標準物質用試料皿の表面は同一平面上に配置される
ことを特徴とする熱分析及びX線測定装置。
In the thermal analysis and X-ray measurement apparatus according to claim 1 or 2,
A sample pan for a measurement sample disposed in the sample chamber for placing a measurement sample;
A standard substance sample pan placed in the sample chamber for placing a standard substance,
The thermal analysis and X-ray measurement apparatus characterized in that the surface of the sample pan for measurement sample and the surface of the sample pan for standard material are arranged on the same plane .
JP19538596A 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment Expired - Fee Related JP3666831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19538596A JP3666831B2 (en) 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19538596A JP3666831B2 (en) 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment

Publications (2)

Publication Number Publication Date
JPH1019815A JPH1019815A (en) 1998-01-23
JP3666831B2 true JP3666831B2 (en) 2005-06-29

Family

ID=16340289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19538596A Expired - Fee Related JP3666831B2 (en) 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment

Country Status (1)

Country Link
JP (1) JP3666831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636503A (en) * 2011-11-24 2012-08-15 大连理工大学 CT (Electronic Computed X-ray Tomography technique) reformer for natural gas hydrate nature core and using method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137512A (en) 2001-11-02 2003-05-14 Rigaku Corp Metal oxide manufacturing method, semiconductor device and metal oxide manufacturing apparatus
JP2004125582A (en) 2002-10-02 2004-04-22 Rigaku Corp Analyzer and analysis method
JP3907120B2 (en) * 2004-02-05 2007-04-18 株式会社リガク Sample support device for X-ray analysis and X-ray analysis device
JP2010048618A (en) * 2008-08-20 2010-03-04 Tokyo Institute Of Technology Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
JP5283535B2 (en) * 2009-02-20 2013-09-04 株式会社日立ハイテクサイエンス Differential scanning calorimeter
JP5024968B2 (en) * 2009-03-02 2012-09-12 株式会社リガク X-ray and thermal analyzer
JP5448587B2 (en) * 2009-06-10 2014-03-19 本田技研工業株式会社 Sample holder for X-ray diffraction measurement and X-ray diffraction measurement method
JP5361005B2 (en) * 2010-12-20 2013-12-04 株式会社リガク X-ray diffraction / thermal analysis simultaneous measurement system
CN102519991B (en) * 2011-12-20 2013-11-06 大连理工大学 Natural gas hydrate heat transfer performance testing apparatus used in X-ray CT equipment
CN103487459B (en) * 2013-10-15 2016-04-06 北京大学 A kind of microscale liquid cooling appts heat dispersion test macro and method of testing thereof
CN105181509B (en) * 2015-08-07 2017-12-12 辽宁科技大学 A kind of detection method of refractory material performance
CN109164128B (en) * 2018-10-29 2020-11-10 中国科学院上海硅酸盐研究所 A furnace body for thermal analysis instrument
CN110865090A (en) * 2019-12-23 2020-03-06 陕西师范大学 A portable temperature-variable mold for powder diffractometer and its application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636503A (en) * 2011-11-24 2012-08-15 大连理工大学 CT (Electronic Computed X-ray Tomography technique) reformer for natural gas hydrate nature core and using method thereof

Also Published As

Publication number Publication date
JPH1019815A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
JP3666831B2 (en) Thermal analysis and X-ray measurement equipment
US5141331A (en) Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry
US5439291A (en) Method and apparatus for AC Differential thermal analysis
US7448796B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
US5005985A (en) Method of determining thermal coefficient of materials
JP3338699B2 (en) Infrared heating differential thermal analyzer
JP5205268B2 (en) Temperature control and pattern compensation device
US6798036B2 (en) Temperature measuring method and apparatus in semiconductor processing apparatus, and semiconductor processing method and apparatus
EP0634649B1 (en) Method and apparatus for thermal conductivity measurements
US6536944B1 (en) Parallel screen for rapid thermal characterization of materials
US5258929A (en) Method for measuring thermal conductivity
US20240255452A1 (en) Massive differential scanning calorimetry analysis method and apparatus
JPH06118039A (en) Thermal analyzing device
US5505543A (en) Emissivity measurement apparatus and method
JPH09222404A (en) Method and device for measuring specific heat capacity
JP3669615B2 (en) Sample heating / cooling device and thermal analysis device
US20020012379A1 (en) Thermal analysis apparatus
US3504525A (en) Apparatus for measuring thermic characteristics of extremely small amounts of test material
US10646960B2 (en) Compact absorptivity measurement system for additive manufacturing
JPH03237346A (en) Method for measuring specific heat
JPH0618333A (en) Method and apparatus for measuring temperature by infrared radiation spectrum
JPH04348265A (en) Differential thermal analyzer having soaking zone
JPH0613484Y2 (en) Thermal conductivity measuring device
SU1711006A2 (en) Differential microcalorimeter
JPH03111740A (en) Measuring apparatus for fourier-transformation infrared-ray spectrophotometer having differential scanning calorimeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees