JP3665184B2 - Wiping cloth with durable static elimination - Google Patents
Wiping cloth with durable static elimination Download PDFInfo
- Publication number
- JP3665184B2 JP3665184B2 JP20662097A JP20662097A JP3665184B2 JP 3665184 B2 JP3665184 B2 JP 3665184B2 JP 20662097 A JP20662097 A JP 20662097A JP 20662097 A JP20662097 A JP 20662097A JP 3665184 B2 JP3665184 B2 JP 3665184B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- conductive
- wiping
- cloth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004744 fabric Substances 0.000 title claims description 104
- 230000003068 static effect Effects 0.000 title description 14
- 230000008030 elimination Effects 0.000 title description 7
- 238000003379 elimination reaction Methods 0.000 title description 7
- 239000000835 fiber Substances 0.000 claims description 129
- 229920001410 Microfiber Polymers 0.000 claims description 43
- 229920000642 polymer Polymers 0.000 claims description 29
- 229920002647 polyamide Polymers 0.000 claims description 11
- 239000004952 Polyamide Substances 0.000 claims description 9
- 239000010419 fine particle Substances 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 4
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 3
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 31
- 239000002131 composite material Substances 0.000 description 25
- 239000000428 dust Substances 0.000 description 25
- -1 for example Polymers 0.000 description 22
- 238000011156 evaluation Methods 0.000 description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 description 15
- 239000005020 polyethylene terephthalate Substances 0.000 description 15
- 238000004140 cleaning Methods 0.000 description 14
- 238000005406 washing Methods 0.000 description 14
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 11
- 239000006229 carbon black Substances 0.000 description 10
- 229920002292 Nylon 6 Polymers 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000009987 spinning Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000009941 weaving Methods 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 238000007786 electrostatic charging Methods 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229960002715 nicotine Drugs 0.000 description 2
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004230 Fast Yellow AB Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010036 direct spinning Methods 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003958 fumigation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Multicomponent Fibers (AREA)
- Woven Fabrics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は除塵性に優れたワイピングクロスに関し、塵や埃が付着していないことが高度に要求される分野で使用可能なワイピングクロスに関し、また除塵性が250回洗濯した後でも低下しない、いわゆる除塵性の持続効果が非常に高いワイピングクロスに関する。
【0002】
【従来の技術】
ワイピングクロスとしてはセルロ−ス繊維等からなるものが多いが、かかるものは強度、耐久性の点で劣っており、かかる欠点を改良し、さらに清掃力を向上させるために繊維表面積を大きくとり、これにより吸着表面を増大させて優れた清掃力を得る目的として極細繊維を使用したワイピングクロスが提案されている(特公昭59−30419号公報、特公昭61−58573号公報等)。
特公昭59−30419号公報には親油性ポリマ−と親水性ポリマ−との組み合わせによって親水性の汚れと親油性の汚れの両方を除去することが記載されている。
しかしながらこのようなポリマ−の組み合わせは相溶性が悪く、このようなポリマ−を複合紡糸して織編物を作成すると紡糸、延伸から製織までの工程でフィブリル化が生じ易く、安定な加工が困難であるという問題があった。
【0003】
また、特公昭61−58573号公報には耳ほつれや目乱れの少ない、高密度の織編物を得る方法として極細繊維からなる織編物に高圧水流を噴射し、該織編物の糸−糸間および糸内の両方で極細繊維を交絡させれば耳ほつれや目乱れの少ない織編物が得られることが記載されている。
しかしながら、これらいずれも合成繊維の極細繊維を使用しているため、被清掃物との間に摩擦による静電気帯電が高いという欠点があった。
【0004】
一般に合成繊維は天然繊維に比較し、かかる静電気帯電が大きいということはよく知られていることであるが、この傾向は繊維の繊度が小さい程、極細繊維を使用する程被清掃物との間の接触面積が大きくなるためより顕著となる問題があった。すなわち、極細繊維により被清掃物表面の汚れを清拭しても、その際の摩擦により被清掃物の表面に静電気が発生し、被清掃物の表面に空気中の微小な塵埃が静電気により付着する現象が生じるのである。
近年、発塵や静電気帯電等を嫌う医薬品工業、電子精密工業等の分野で使用する場合には、従来のワイピングクロスでは静電気帯電による塵の付着、放電による素子破壊といった問題が発生しており、不都合をきたす場合が多かった。
一方、合成繊維は静電気を生じ易く、衣料として使用した時に衣服が体にまとわりついて不快な放電音が発生したり、埃が付着し易い等の問題を引き起こしやすいため、静電気を防止し、制電性あるいは導電性とすることは従来から研究が進められており、数々の方法が提案されている。
【0005】
具体的には、帯電防止剤を後処理により繊維に付与させる方法、帯電防止性の樹脂を繊維表面にコ−ティングさせる方法、制電剤を繊維中に混在させて筋状に分散させる方法、芯鞘複合繊維の芯部に制電性、導電性物質を含有させる方法等が提案されている。
かかる方法を、優れた清掃力を得ることができる極細繊維を主体とする布帛に適用しようとした場合、摩擦や洗浄等により帯電防止剤、コ−ティング樹脂が脱落したり、繊維がフィブリル化したりと、耐久性のある帯電防止効果を望むことはできなかった。また、芯鞘複合繊維では繊維径が大きすぎて十分な清掃力を得ることができず、ワイピングクロスとしての使用は不適であった。
【0006】
従来の制電性繊維、導電性繊維は埃や塵を寄せ付けない防塵性を有しており、逆にゴミの吸着は繊維表面への静電気吸着が主体と考えられることから、これらの制電性、導電性繊維をワイピングクロスに使用することが提案されてはいるが、初期の帯電電荷量、所謂制電性、導電性が低く、その上制電性、導電性の持続性が短いのでワイピング耐久性が非常に悪い問題点を有していた。
【0007】
初期の導電性を高くする意味では導電性物質としてカ−ボンブラックを使用することが提案され、実施されているが、黒であることから、意匠性が求められる分野には敬遠されがちである。ワイピングクロス分野においても、近年は清掃力のみならず、意匠性をも求められるようになってきており、優れた清掃力、防塵性、洗濯耐久性、意匠性等を有するワイピングクロスが要求されている。
【0008】
【発明が解決しようとする課題】
本発明は、優れた清掃力、防塵性、洗濯耐久性、意匠性等を有するワイピングクロスであって、かかる諸性能が多数回の洗濯によりほとんど低下しない、耐久性のあるワイピングクロスを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、単繊維繊度が0.01〜0.8デニ−ルであって、かつ20度以上120度以下の角度を少なくとも2つ有する断面からなる極細繊維を主体として構成された布帛に、導電性カ−ボンブラックを含有するポリアミド層を最内層、無機微粒子を10重量%以上含有するポリマ−層を中間層、繊維形成性のポリマ−からなる最外層よりなる三層構造の導電性繊維であって、1KV印加時の電気抵抗値が9×108Ω/cm・f以下の導電性繊維を3重量%以下混入してなるワイピングクロスである。
【0010】
【発明の実施形態】
本発明のワイピングクロスの構成要素である極細繊維は従来一般的に用いられている円形断面あるいは近似の断面に比較して、20度以上120度以下の角度を少なくとも2つ有する断面であることが重要である。かかる角度を有する断面にすることにより従来の円形断面の繊維(糸条)では拭き取りにくかった微小な汚れを簡単に拭き取ることができる。拭き取り面に対する該クロスを構成する糸条の角度により拭き取り性は大きく相違するのである。前記角度外の角度を少なくとも2つ有する断面形状の繊維は、たとえ偏平断面形状であっても微小な汚れを拭き取る効果が低下する。
好ましい角度は30度以上、110度以下である。
【0011】
とくに上記の角度を有し、断面形状が偏平断面形状であることが微小な汚れの拭き取り性の点で好ましい。この偏平断面とは3つまたは4つの角を有し、偏平率(最長辺/最短辺)が1以上、とくに1.5以上であることを示す。
本発明のワイピングクロスは上述の角度を有する極細繊維(糸条)で構成されているので糸条間に適当な空隙が生じ、拭き取られた微小な汚れ成分が順次該空隙内に押し込められ、極限に至るまで拭き取られた汚れ部分は再付着することがない。また角度を有することから腰があり、ワイピング作業耐久性をも有するのである。
【0012】
また本発明の極細繊維は単繊維繊度が0.01〜0.8デニ−ル、好ましくは0.05〜0.5である。極細繊維の単繊維繊度が0.01デニ−ル未満の場合には繊維強度が弱くなり過ぎて清掃中に繊維が切断されて発塵する問題が生じやすくなる。一方、単繊維繊度が0.8デニ−ルを越えると十分な清掃力が得られにくい。
かかる極細繊維を構成するポリマ−としては、ポリエステル、ポリアミド、ポリオレフィン、エチレン−ビニルアルコ−ル系共重合体、これらの共重合体、多成分の混合体等が好ましい。
【0013】
本発明においては、後述するように、水性汚れおよび油性汚れ両方に対する拭き取り性が良好であることも目的の1つであることから、極細繊維は疎水性繊維と親水性繊維との混合であることが好ましい。そして親水性繊維の布帛(ワイピングクロス)中に占める割合は10〜60重量%、とくに10〜50重量%であることが拭き取り性の点で好ましい。
【0014】
そして、かかる単繊維繊度を有する極細繊維は直接紡糸法により製造することも可能ではあるが、以下に述べる方法により製造することが好ましい。
具体的には、2種類以上の繊維形成性ポリマ−からなる海島型複合繊維や分割型複合繊維等から形成される脱海繊維、分割繊維が好ましい。
たとえば、ポリエステルとポリアミドとからなる多層貼合わせ型複合繊維を、ポリアミドに対し、膨潤性能を有するベンジルアルコ−ルまたは安息香酸で処理、あるいは熱水で撹拌処理することにより得られるフィブリル化繊維、該複合繊維をポリエステルの加水分解剤であるアルカリ水溶液で処理することにより得られるフィブリル化繊維、該複合繊維を仮撚捲縮加工とアルカリ減量加工との併用系で処理することにより得られるフィブリル化繊維等を挙げることができる。
また、ポリエステルを島成分に、ポリスチレンまたはスルホイソフタル酸を共重合した共重合ポリエステルを海成分にした海島型複合繊維の海成分を溶解除去して得られる極細繊維を挙げることができる。
複合繊維を構成するポリマ−の組み合わせは目的に応じて設定し得るが、水性汚れおよび油性汚れ両方に対する拭き取り性を付与するには、親水性ポリマ−と親油性ポリマ−との組み合わせ、たとえばポリエステルとポリアミド等の組み合わせが好ましい。
【0015】
上述の単繊維繊度および断面形状を有する極細繊維を主体構成要件とするワイピングクロスとしては不織布や織編物が包含される。
不織布は通常の長繊維または短繊維からなるウエッブをニ−ドルパンチまたはウオ−タ−パンチによる処理を施したもの、メルトブロ−法により形成されたもの等を挙げることができ、不織布の製造法はとくに限定されるものではない。
また織物としては通常は平織物が適用されるが、朱子織、綾織、梨地織、緯サテン二重織等、いかなる織組織でも適用できる。
編み物としては経編、丸編いずれの編組織も適用できる。
このようなクロスは本発明の目的を阻害しない範囲でバインダ−繊維や樹脂を含有していてもよい。さらには表面をカレンダ−加工したり、ニ−ドルやウオ−タ−ジェトによるパンチング処理や起毛処理を施してもさしつかえない。
上述の極細化はクロスを形成した後に脱海処理や剥離・分割処理が施されて極細繊維化されてもよい。
【0016】
そして、該クロスは上述の極細繊維100%で形成されていてもよいが、本発明の効果を満足するには該クロスを構成する繊維の20重量%以上が上述の極細繊維であることが好ましい。
【0017】
該クロスに3重量%以下の割合で混入させる導電性繊維は、1KV印加時の電気抵抗値が9×108 Ω/cm・f以下であり、白色または無色の導電性繊維であることが好ましい。かかる白色または無色の導電性繊維を使用することにより、クロスの意匠性、審美性に幅広い応用が可能である。
本発明において、白色または無色の導電性繊維とは白度指数が25以上の繊維であることを示す。該白度指数はJIS L 1013B法に準拠して測定される値であり、後述の方法により測定算出することができるものである。このような白度指数を有する導電性繊維は、クロスに混入されても審美性が劣ることはないのである。
【0018】
本発明に係わる導電性繊維としては、1KV印加時の電気抵抗値が9×108Ω/cm・f以下であり、白色または無色の導電性繊維であり、意匠性、審美性を考慮すると特開平5−263318号公報に記載の導電性繊維を使用する。すなわち、繊維形成性のポリマ−からなる最外層(A)、無機微粒子を含有するポリマ−層からなる中間層(B)および導電カ−ボンブラックを含有するポリアミド層からなる最内層(C)の三層からなる複合繊維である。
【0019】
かかる複合繊維について若干説明する。
最内層(C)に含有される導電性カ−ボンブラックは10-3〜10-2Ω・cmの固有抵抗を有するものが好ましく、種類は限定されるものではない。
ポリマ−中でカ−ボンブラックが完全に粒子状分散をしている場合には一般に導電性は不良であって、ストラクチャ−と呼ばれる連鎖構造をとると導電性が向上して導電性カ−ボンブラックとなることはよく知られていることである。したがって導電性カ−ボンブラックによってポリマ−を導電化するにあたっては、カ−ボンブラックのストラクチャ−構造を破壊しないようにポリマ−中に分散させることが肝要となる。導電性カ−ボンブラックのポリマ−中への混合分散は公知の任意の方法によって行うことができるが、導電性カ−ボンブラックに過大な剪断応力が作用するとストラクチャ−構造が破壊され導電性が著しく低下することがあるので、混合はこのような点に注意して行われる必要がある。
【0020】
導電性カ−ボンブラックを含有するポリマ−層の電気伝導メカニズムとしてはカ−ボンブラック連鎖の接触によるものと、トンネル効果によるものとが考えられるが、一般には前者のほうが主であると考えられている。したがって、カ−ボンブラックの連鎖は長い方が、また高密度でポリマ−中に存在する方が接触確率が大となり高い導電性が付与される。カ−ボンブラックによる導電性の発現効果を考慮すると、最内層(C)中の導電カ−ボンブラックの含有量は、15〜50重量%、とくに20〜40重量%が好ましい。該含有量が50重量%を越えても導電性能の向上効果は認められず、かえって最内層(C)の流動性が悪くなり、導電性繊維の紡糸性が悪くなる。
【0021】
上述のように、該カ−ボンブラックはポリマ−中でそのストラクチャ−構造を破壊しないように分散されている必要がある。そのためにはカ−ボンブラックを含有させるポリマ−としてポリアミド系樹脂が最適であり、具体的にはナイロン6、ナイロン66、ナイロン12、メタキシレンジアミンナイロンまたはこれらを主成分とする樹脂を挙げることができる。
最内層(C)を形成するポリマ−としてポリアミド系樹脂を使用することにより、カ−ボンブラックの分散性が良好で、紡糸時の異常なフィルタ−詰まりが生じず、最内層(C)の機械物性が良好となるのである。
【0022】
中間層(B)は最内層(C)の着色性の改良に寄与され、かかる中間層(B)には二酸化チタン、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、二酸化ケイ素、硫酸バリウム、炭酸カルシウム、炭酸ナトリウム、タルク、カオリン等の白色系顔料、白色系充填剤が含有されている。最内層(C)の着色性の改良、すなわち隠蔽性を考慮すると中間層(B)に含有される物は二酸化チタン、酸化亜鉛が好ましく、平均粒径が5μm以下、とくに1μm以下のものが好ましい。さらにこれらの無機微粒子の含有量は10〜80重量%、とくに20〜70重量%であることが隠蔽性の点で好ましい。
【0023】
中間層(B)を構成するポリマ−としては繊維形成性のポリマ−であればとくに制限されるものではない。具体的にはナイロン6、ナイロン66、ナイロン12、メタキシレンジアミンナイロン等のポリアミド系樹脂、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリヘキサメチレンテレフタレ−ト等のポリエステル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン系樹脂、ポリウレタン系熱可塑性エラストマ−、ポリエステル系熱可塑性エラストマ−等を挙げることができる。中でも多量の無機微粒子を含有した際の流動性、耐熱性、無機微粒子との接着性等の点でポリアミド系樹脂、熱可塑性エラストマ−等が好ましい。
【0024】
最外層(A)を構成するポリマ−としては融点が150℃以上の熱可塑性ポリマ−樹脂が好適であり、曵糸性に優れていることがより好ましい。具体的にはポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト等のポリエステル系樹脂、ナイロン6、ナイロン66、メタキシレンジアミンナイロン等のポリアミド系樹脂を挙げることができ、中でもポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト等のポリエステル系樹脂が加工性の点で好ましい。
【0025】
上述の層(A)、層(B)および層(C)の複合比率は1KV印加時の繊維の電気抵抗値が9×108 Ω/cm・f以下を満足するような複合比率であればとくに制限はなく、層(B)の隠蔽効果が十分に発揮できて白色または無色に近い繊維となるような複合比率であることがより好ましい。
具体的には、繊維断面の最内層(C)の最長径をx、中間層(B)の最小厚をy、最外層(A)の最小厚をzとしたときに、下記式(1)(2)を満足する複合形態であることが好ましい。
0.11≦y/x≦1.82 ・・・・(1)
0.35≦z/(x+y) ・・・・(2)
【0026】
ここでxは最内層(C)の最長径を示すが、該層(C)の形状は円、楕円、多角形と多々考えられ、該層(C)が円、楕円の場合には直径、長軸を示し、多角形の場合には辺、対角線を含め、その中で最も長いものを示す。また、yは中間層(B)の最小厚を示すが、これは最内層(C)の外周と中間層(B)の外周とで形成される中間層(B)の最小厚を示す。さらにzは最外層(A)の最小厚を示すが、これは中間層(B)の外周と最外層(A)の外周とで形成される最外層(A)の最小厚を示す。
【0027】
上述の導電性繊維の複合形状は、最内層(C)、中間層(B)が繊維の長さ方向に連続しており、かつ最内層(C)の周囲に中間層(B)、その外周に最外層(A)が位置する繊維断面を有していればよく、他は限定されることはない。また上述のように最内層(C)および中間層(B)の断面形状は種々あり、とくに導電ポリマ−層である最内層(C)が鋭角や凹凸をもつ形状であることは除電性能上好ましいものである。導電性繊維の断面形状も円形であっても非円形であってもよい。
【0028】
上述の導電性繊維は最内層(C)が中間層(B)に完全に被覆されていなくてもよく、また中間層(B)が最外層(A)に完全に被覆されていなくてもよい。白色または無色であれば、最内層(C)や中間層(B)が繊維表面に露出していてもよい。
【0029】
該導電性繊維は従来公知の複合繊維の製造方法で得ることができる。たとえば、500〜2500m/分の速度で通常の紡糸を行い、その延伸、熱処理を行う方法、1500〜5000m/分の速度で紡糸を行い、つづいて延伸・仮撚加工を行う方法、5000m/分以上の高速で紡糸し、延伸工程を省略する方法等、任意の製造方法を採用することができる。
【0030】
上述の導電性繊維の単繊維繊度はクロスを主として構成する極細繊維の単繊維繊度と同じであることが好ましいが、該極細繊維より太繊度でもよい。ただし、クロスとしての拭き取り作業性等を考慮して15デニ−ル以下であることが好ましい。
【0031】
本発明においては、かかる導電性繊維をクロス中に3.0重量%以下、とくに0.2〜2.0重量%の範囲で混入させることが防塵性、埃、塵の再付着防止性、導電性の洗濯耐久性の点で好ましい。混入量が3重量%を越えても、クロスとしての拭き取り性、塵・埃の再付着防止性の向上効果は認められない。
導電性繊維のクロスへの混入の方法はとくに制限されるものではなく、クロスを構成する繊維または糸条に導電性繊維を混合してもよく、あるいは交編、交織してもよい。クロスが織物の場合には適当な間隔で経糸、緯糸の少なくとも一方に導電性繊維を挿入してもよい。導電性繊維はモノフィラメントの形態、マルチフィラメントの形態、カットステ−プルの形態などの任意の形態で極細繊維または極細繊維からなる布帛に混入される。
【0032】
上述のように、特定の電気抵抗値を有する導電性繊維を3.0重量%以下の割合で混入させてなり、特定の断面形状を有する極細繊維を主体としてなるクロスは、250回の洗濯後の帯電電荷密度が7μC/m2 以下という高い除電性を維持することができ、したがって防塵性、防汚性はもとより、布帛の白度維持性、すなわち優れた意匠性、ワイピング作業耐久性、塵・埃の再付着性の防止に優れたクロスを得ることができる。
本発明で使用する導電性繊維は導電カ−ボンブラックを使用しているにもかかわらず、染色が可能であり、極細繊維と同じ色に染色が可能であるので、本発明のワイピングクロスは、ワイピングクロスとしての使用域が拡大されるものである。
【0033】
【実施例】
以下、実施例により本発明を詳述するが、本発明はこれら実施例により何等限定されるものではない。なお、実施例中の各測定値は以下の方法により測定・算出された値である。
(1)極細繊維の断面における角度の測定
電子顕微鏡により繊維断面の写真を撮り、任意の20本の繊維の断面を紙に写しとり、3つまたは4つの角度を測定し、20〜120度の範囲内の角度の数の平均値と、その個々の角度の平均値を示した。
(2)導電性繊維の電気抵抗値
試料を10cm長に切断し、切断面に導電塗料(ド−タイト)を塗布して繊維端部を固定した後、該端部を電極として印加電圧1KVにおける電気抵抗値を測定した。
【0034】
(3)導電性繊維の白度指数
JIS L 1013B法に準拠して求めた。すなわち試料の筒編地を作製し、それを8つ折にして分光光度計(307型、日立製作所製)を用いて、標準白板に対する波長450nm、550nmの反射率を測定し、下記式により白度指数を算出した。
白度指数=4R1 −3R2
R1 :450nmにおける反射率
R2 :550nmにおける反射率
(4)クロスの拭き取り性能評価
汚染物質を付着させたスライドグラスを摩擦試験機(JIS l 0823に準拠した試験機)の平面型試験台に仮接着し、試験布を装着した摩擦子により拭き取りを実施した。拭き取り荷重は200g、拭き取り幅は20mm、拭き取り応力は100g/mmの条件で拭き取りを数回行い、拭き取り前後の透過光率を測定し、下記により算出した。
拭き取り率(%)=[(Wn−W0 )/(Wb−W0 )]×100
Wb:スライドグラスの380nmまたは580nmにおける透過率
Wn:拭き取り後の透過率
W0 :拭き取り前の透過率
[汚染物質]
a.ニコチンに対する清掃力
燻蒸箱中にスライドグラス(20枚)を水平に設置し、タバコ(ピ−ス)約20本にて燻蒸し、ニコチンを主体として汚染物質を付着させた。可視光線透過率は20%以下になるように調整した。
b.潤滑油に対する清掃力
スライドグラスに枠を設置し、市販の潤滑油を30cmの距離から3秒間スプレ−して試料とした。
c.糊に対する清掃力
スライドグラスにコ−ンスタ−チ10g/lよりなる糊(0.5g/cm2 )を塗布した。
【0035】
(5)クロスの帯電電荷密度
労働省安全研究所発行の静電気安全指針のRIISTR78−1によって行った。(22℃、30%RHの部屋に24時間放置後測定)
洗濯は、浴比1:30、合成洗剤(弱アルカリ性)を標準使用量添加して、40℃で5分間洗濯し、ついで浴比1:30の水で2回溜め濯ぎを行い5分間脱水を行う過程を250回繰り返した。
(6)摩擦帯電圧
測定装置は図1に示すように、樹脂平板(アクリル板またはポリエチレン板)が金属製の架台上に、また樹脂平板の背後に表面電位計(スタチロンM:回転セクタ−型/1〜100KV)が設置され、清拭後の樹脂平板の帯電圧が測定できる。洗濯は上記(5)記載の方法によって行った。
【0036】
(7)放電現象
清拭過程における放電現象は、樹脂平板の背後に設置したル−プアンテナで放電ノイズを、アナライジングレコ−ダ(横河電機3655E/DC RANGE2.0V) で放電現象を観測することができる。
評価は樹脂平板上を試料で拭く動作を行った場合の樹脂平板の帯電圧と、拭き取り過程の放電現象(パチパチ放電音)により行った。
なお、条件は22℃、30%RH、摩擦回数は10回であった。
また、拭き取り過程に発生する静電気を帯電圧のみにより測定した場合、帯電圧はある値を越えると拭き取り過程の放電現象(パチパチ放電音)を伴い、図2に示すように、同じ帯電圧でも放電現象が異なる場合があり、帯電圧単独で拭き取り過程に発生する静電気を評価することはできないことがわかる。
放電現象の判定
◎:放電音、放電パルス共に観測されない。
○:放電音は観測されないが、放電パルスは観測される。
△:放電音、放電パルス共に観測される。
×:放電音、放電パルス共に著しい。
なお、洗濯は上記(5)記載の方法によって行った。
【0037】
(8)除電性能の評価
帯電球と放電球との距離を1cmに設定し、起電機を用いて帯電球に帯電せしめ、放電を起こして置く。この帯電球に試料を近接させたときの放電の有無を観測した。放電が停止することは除電が行われていることを意味する。
○:放電が停止
×:放電が持続
なお、洗濯は上記(5)の方法によって行った。
【0038】
実施例1
まず、特開平5−263318号公報に記載の方法にしたがって下記に示す条件で電気抵抗値が3.0×107 Ω/cm・fの25デニ−ル/2フィラメントの導電性繊維を得た。
最外層(A)・・・・平均粒径0.18μmの二酸化チタンを0.5重量%含有ポリエチレンテレフタレ−ト[極限粘度:0.65(フェノ−ル/テトラクロロエタン等重量混合溶液を使用して30℃で測定)]
中間層(B)・・・・平均粒径0.2μmの二酸化チタンを50重量%含有したナイロン6[宇部興産社製、1013BK]
最内層(C)・・・・導電性カ−ボンブラックを35重量%含有したナイロン6[宇部興産社製、1013BK]
複合比率(重量%)・・・・・・層(A)/層(B)/層(C)=70/25/5
【0039】
次にナイロン6[宇部興産社製、1013BK]と極限粘度0.70のポリエチレンテレフタレ−トを用い、別々の押出機で溶融押出し、複合割合がナイロン6:ポリエチレンテレフタレ−ト=33:67(重量比)となるようにそれぞれギアポンプで計量した後、紡糸パック内に供給し、口金温度290℃で吐出し、速度1000m/分で巻き取った。ついで倍率2.9倍で75℃のロ−ラヒ−タ−で延伸を施し、130℃のプレ−トヒ−タ−で熱セットして75デニ−ル/24フィラメントの延伸糸を得た。糸条の断面は、縦割り分割型断面(11層交互貼り合わせ型)構造とした。
続いて、この延伸糸に仮撚数3390T/M、温度170℃で仮撚を施し、分割処理を行った。得られたポリエステルおよびポリアミドからなる捲縮加工糸の単繊維繊度は約0.3デニ−ルであった。この極細繊維を用いて筒編地を作成し、リラックス、水洗、乾燥、プレセット、アルカリ減量、水洗処理を施して乾燥し、布帛を得た。
この布帛に上述の導電性繊維を0.9重量%混入させて、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
【0040】
実施例2
実施例1において、分割処理後の捲縮加工糸の単繊維繊度を0.50デニ−ルに代えた以外は同様にして、筒編地を作成し、各種の処理を施して乾燥し、布帛を得た。
この布帛に上述の導電性繊維を0.9重量%混入させて、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
分割処理後の極細繊維の単繊維繊度が大きくなったので拭き取り性能が実施例1で得られたクロスに比較して若干低くなっている程度であった。
【0041】
実施例3
実施例1において、極細繊維中に占める親水性繊維の割合を49重量%にした以外は同様にして、筒編地を作成し、各種の処理を施して乾燥し、布帛を得た。
この布帛に上述の導電性繊維を0.9重量%混入させて、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
【0042】
実施例4
実施例1において、導電性繊維の中間層に含有させる無機微粒子の量を70重量%に変更した以外は同様にして、極細繊維からなる筒編地を作成し、各種処理を施して乾燥し布帛を得た。
この布帛に、中間層に含有させる無機微粒子の含有量を変更した導電性繊維を0.9重量%混入させて、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
【0043】
実施例5
実施例4において、縦割り分割型断面形状の複合繊維を構成するポリマ−として、ナイロン6の代わりにエチレン−ビニルアルコ−ル系共重合体(エチレン含有量44モル%、ケン化度99%、クラレ製E−105)を使用して複合繊維を得、分割処理を施して極細繊維を得た以外は同様にして布帛を作成した。
この布帛に実施例4で使用した導電性繊維を混入させてワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
【0044】
実施例6
実施例5において、極細繊維の単繊維繊度を0.19デニ−ルに変更した以外は同様にして布帛を作成した。
この布帛に実施例4で使用した導電性繊維を混入させてワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
【0045】
実施例7
5−ナトリウムスルホイソフタル酸2.5モル%、ポリエチレングリコ−ル8重量%共重合したポリエチレンテレフタレ−ト(極限粘度0.61)とポリエチレンテレフタレ−ト(極限粘度0.68)からなる縦割り分割型断面構造の複合繊維を得、ついでアルカリ減量加工を施して、前者の共重合ポリエチレンテレフタレ−トを溶解除去して、ポリエチレンテレフタレ−トからなる極細繊維を得た。
この極細繊維を使用して、実施例1と同様に布帛を作成し、この布帛に実施例1で使用した導電性繊維を混入させて、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
親水性繊維を含んでいないので、拭き取り性能は実施例1で得られたワイピングクロスに比較して若干劣っていた。
【0046】
比較例1
実施例1において、導電性繊維として電気抵抗値が5×1011Ω/cm・fの繊維を使用した以外は同様にして、極細繊維からなる筒網地を作成し、各種の処理を施して乾燥し布帛を得た。
この布帛に上記の導電性繊維を混入させて、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
電気対抗値が小さい導電性繊維が混入されているので、帯電電荷量が高く、放電音が観測されるなど、除電性能はないに等しいものであった。
【0047】
比較例2
実施例1において布帛に導電性繊維を混入させなかった以外は同様にして極細繊維からなる筒網地を作成し、各種の処理を施して乾燥し布帛を得た。
このワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
拭き取り性能は高いものであったが、被清掃面の表面を拭き取った後、しばらくして空気中の塵や埃が被清掃面に再付着した。
【0048】
比較例3
実施例1において、導電性繊維の最内層(C)を形成するポリマ−として高密度ポリエチレンを使用した以外は同様にして、極細繊維からなる筒編地を作成し、各種の処理を施して乾燥し布帛を得た。
この布帛に上記の導電性繊維を混入してワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
初期の拭き取り性能は優れていたが、250回の洗濯後の除電性能には著しい低下が見られ、耐久性はないといってよいものであった。
【0049】
比較例4
実施例1において、極細繊維の単繊維繊度を0.90デニ−ルにした以外は同様にして極細繊維からなる筒編地を作成し、各種の処理を施して乾燥し布帛を得た。
この布帛に導電性繊維を混入し、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
極細繊維の単繊維繊度が大きくなれば、拭き取り性能が著しく低下することがわかる。
【0050】
比較例5
実施例1において、導電性繊維として導電カ−ボンブラックを35重量%含有するナイロン6を芯部、ポリエチレンテレフタレ−トを鞘部とし、芯:鞘=10:90(重量比)の二層構造の導電性繊維を使用した以外は同様にして、極細繊維からなる筒編地を作成し、各種の処理を施して乾燥し布帛を得た。
この布帛に上記の二層構造の導電性繊維を混入し、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
除電性能の耐久性は有するものの、導電性繊維のクロが目立ち、意匠性が劣るものであった。
【0051】
比較例6
海成分として5−ナトリウムスルホイソフタル酸2.5モル%、ポリエチレングリコ−ル8重量%共重合したポリエチレンテレフタレ−ト(極限粘度0.61)を、島成分としてポリエチレンテレフタレ−ト(極限粘度0.68)を用いて海島型複合繊維(島数17)を製糸し、ついでアルカリ減量加工により海成分である共重合ポリエチレンテレフタレ−トを溶解除去して、単繊維繊度0.29デニ−ルで丸断面のポリエチレンテレフタレ−ト極細繊維を得た。この極細繊維を使用して筒編地を作成し、各種の処理を施して乾燥し、布帛を作成した。
この布帛に、実施例1で使用した導電性繊維を混入し、ワイピングクロスとしての性能評価を行った。結果を表1および表2に示す。
極細繊維であっても断面形状が丸断面であるために拭き取り性能が悪いものであった。
【0052】
【表1】
【0053】
【表2】
【0054】
【発明の効果】
本発明のワイピングクロスは、除電効果が高いので塵・埃を拭き取った後も、被清掃物の表面に空気中の塵・埃が再付着することがなく、綺麗な面を保持することができる。さらにこの性能は250回の洗濯後にも保持されており、非常に耐久性のあるワイピングクロスが得られるのである。
【図面の簡単な説明】
【図1】摩擦帯電圧および放電現象を測定する装置の該略図である。
【図2】放電パルスの一状態を示す図である。
【図3】実施例1で得られたクリ−ニングクロスの放電パルスを示す図である。
【図4】比較例2で得られたクリ−ニングクロスの放電パルスを示す図である。
【符号の説明】
1:アナライジングレコ−ダ(放電ノイズ記録計)
2:帯電圧記録計
3:表面電位計
4:ル−プアンテナ
5:プロ−ブ
6:樹脂平板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiping cloth excellent in dust removal, relates to a wiping cloth that can be used in a field that is highly required to be free of dust and dust, and the dust removal does not decrease even after washing 250 times, so-called The present invention relates to a wiping cloth having a very high dust removal effect.
[0002]
[Prior art]
Many of the wiping cloths are made of cellulose fiber, etc., but these are inferior in strength and durability. In order to improve such drawbacks and further improve the cleaning power, the fiber surface area is increased, As a result, wiping cloths using extra fine fibers have been proposed for the purpose of increasing the adsorption surface and obtaining an excellent cleaning force (Japanese Patent Publication No. 59-30419, Japanese Patent Publication No. 61-58573, etc.).
Japanese Examined Patent Publication No. 59-30419 describes that both hydrophilic soil and lipophilic soil are removed by a combination of a lipophilic polymer and a hydrophilic polymer.
However, such a combination of polymers has poor compatibility, and when a woven or knitted fabric is produced by composite spinning of such a polymer, fibrillation is likely to occur in the process from spinning, stretching to weaving, and stable processing is difficult. There was a problem that there was.
[0003]
Japanese Patent Publication No. 61-58573 discloses a method for obtaining a high-density woven or knitted fabric with less fraying and distortion of the ears, by spraying a high-pressure water stream onto the woven or knitted fabric made of ultrafine fibers, It is described that a woven or knitted fabric with less fraying and distortion of the ears can be obtained by entanglement of ultrafine fibers both in the yarn.
However, since both of these use synthetic fine fibers, there is a drawback that electrostatic charging due to friction is high with the object to be cleaned.
[0004]
In general, it is well known that synthetic fibers have a higher electrostatic charge than natural fibers. However, this tendency tends to decrease between finer fibers and the use of extra fine fibers. There is a problem that becomes more prominent because the contact area becomes larger. In other words, even if the surface of the object to be cleaned is wiped with ultrafine fibers, static electricity is generated on the surface of the object to be cleaned due to friction at that time, and minute dust in the air adheres to the surface of the object to be cleaned due to static electricity. A phenomenon occurs.
In recent years, when used in fields such as the pharmaceutical industry, electronic precision industry, etc. that do not like dust generation or electrostatic charging, problems such as adhesion of dust due to electrostatic charging and element destruction due to discharge have occurred in conventional wiping cloths. There were many cases of inconvenience.
Synthetic fibers, on the other hand, are prone to static electricity, and when used as clothing, clothes tend to cling to the body, causing unpleasant discharge noise and dust. Research has been conducted on making it conductive or conductive, and a number of methods have been proposed.
[0005]
Specifically, a method of applying an antistatic agent to the fiber by post-processing, a method of coating an antistatic resin on the fiber surface, a method of dispersing an antistatic agent in the fiber and dispersing it in a streak shape, A method of incorporating an antistatic or conductive substance into the core portion of the core-sheath composite fiber has been proposed.
When this method is applied to a fabric mainly composed of ultrafine fibers capable of obtaining an excellent cleaning power, the antistatic agent and the coating resin may fall off due to friction or washing, or the fibers may become fibrillated. And a durable antistatic effect could not be desired. In addition, the core-sheath composite fiber has a fiber diameter that is too large to obtain a sufficient cleaning force, and is unsuitable for use as a wiping cloth.
[0006]
Conventional antistatic fibers and conductive fibers have a dustproof property that keeps out dust and dust, and conversely, the adsorption of dust is considered to be mainly due to electrostatic adsorption on the fiber surface. Although it has been proposed to use conductive fibers for the wiping cloth, the initial charge amount, so-called antistatic, low conductivity, and low antistatic and conductive durability, so wiping Durability was very bad.
[0007]
In order to increase the initial conductivity, the use of carbon black as a conductive material has been proposed and implemented, but since it is black, it tends to be avoided in fields where design is required. . Also in the field of wiping cloth, in recent years, not only cleaning power but also designability has been demanded, and wiping cloth having excellent cleaning power, dustproofness, washing durability, designability, etc. is required. Yes.
[0008]
[Problems to be solved by the invention]
The present invention provides a wiping cloth having excellent cleaning power, dustproofness, washing durability, designability, etc., and having such a performance that such performances are hardly deteriorated by many washings. It is intended.
[0009]
[Means for Solving the Problems]
The present invention provides a fabric mainly composed of ultrafine fibers having a cross-section having a single fiber fineness of 0.01 to 0.8 denier and at least two angles of 20 degrees to 120 degrees, A conductive fiber having a three-layer structure comprising a polyamide layer containing conductive carbon black as an innermost layer, a polymer layer containing 10% by weight or more of inorganic fine particles as an intermediate layer, and an outermost layer made of a fiber-forming polymer. The electrical resistance value when 1 KV is applied is 9 × 108A wiping cloth in which 3% by weight or less of conductive fiber of Ω / cm · f or less is mixed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The ultrafine fiber that is a constituent element of the wiping cloth of the present invention has a cross section having at least two angles of 20 degrees or more and 120 degrees or less as compared with a circular section or an approximate section generally used in the past. is important. By making the cross section having such an angle, fine dirt that is difficult to wipe off with a conventional fiber (yarn) having a circular cross section can be easily wiped off. The wiping performance varies greatly depending on the angle of the yarn constituting the cloth with respect to the wiping surface. Even if the fiber having a cross-sectional shape having at least two angles outside the above-mentioned angle has a flat cross-sectional shape, the effect of wiping off minute dirt is reduced.
A preferable angle is 30 degrees or more and 110 degrees or less.
[0011]
In particular, it is preferable from the viewpoint of wiping off fine dirt that the angle is as described above and the cross-sectional shape is a flat cross-sectional shape. This flat cross section has 3 or 4 corners, and the flatness ratio (longest side / shortest side) is 1 or more, particularly 1.5 or more.
Since the wiping cloth of the present invention is composed of the ultrafine fibers (yarns) having the above-mentioned angles, an appropriate gap is generated between the yarns, and the fine dirt components wiped off are sequentially pushed into the gaps. Dirty parts wiped off to the limit will not reattach. Moreover, since it has an angle, it has a waist and has wiping work durability.
[0012]
The ultrafine fiber of the present invention has a single fiber fineness of 0.01 to 0.8 denier, preferably 0.05 to 0.5. When the single fiber fineness of the ultrafine fiber is less than 0.01 denier, the fiber strength becomes too weak, and the problem that the fiber is cut and dust is generated during cleaning tends to occur. On the other hand, when the single fiber fineness exceeds 0.8 denier, it is difficult to obtain a sufficient cleaning force.
As the polymer constituting such ultrafine fibers, polyesters, polyamides, polyolefins, ethylene-vinyl alcohol copolymers, copolymers thereof, multicomponent mixtures and the like are preferable.
[0013]
In the present invention, as described later, one of the purposes is to have good wiping properties against both aqueous and oily soils, and therefore the ultrafine fibers are a mixture of hydrophobic fibers and hydrophilic fibers. Is preferred. The proportion of the hydrophilic fiber in the cloth (wiping cloth) is preferably 10 to 60% by weight, particularly preferably 10 to 50% by weight from the viewpoint of wiping property.
[0014]
And it is possible to manufacture the ultrafine fiber having such a single fiber fineness by a direct spinning method, but it is preferable to manufacture it by the method described below.
Specifically, sea-seas-type composite fibers or split-type composite fibers made of two or more types of fiber-forming polymers are preferable.
For example, a fibrillated fiber obtained by treating a multi-layer laminated composite fiber composed of polyester and polyamide with a benzyl alcohol or benzoic acid having swelling performance, or stirring with hot water, on the polyamide, A fibrillated fiber obtained by treating a composite fiber with an aqueous alkali solution that is a polyester hydrolyzing agent, and a fibrillated fiber obtained by treating the composite fiber with a combined system of false twist crimping and alkali weight reduction. Etc.
Moreover, the ultrafine fiber obtained by melt | dissolving and removing the sea component of the sea-island type composite fiber which used polyester as an island component and polystyrene or sulfoisophthalic acid copolymerized polyester as a sea component can be mentioned.
The combination of polymers constituting the composite fiber can be set according to the purpose. However, in order to provide wiping properties against both aqueous and oily soils, a combination of a hydrophilic polymer and a lipophilic polymer, for example, polyester and Combinations such as polyamide are preferred.
[0015]
Non-woven fabrics and knitted fabrics are included as the wiping cloth mainly composed of ultrafine fibers having a single fiber fineness and a cross-sectional shape.
Nonwoven fabrics include those obtained by treating a web made of ordinary long fibers or short fibers with a needle punch or a water punch, those formed by a melt blow method, etc. It is not limited.
As the woven fabric, a plain woven fabric is usually applied, but any woven structure such as satin weaving, twill weaving, satin weaving or weft satin double weaving can be applied.
As the knitting, warp knitting or circular knitting can be applied.
Such cloth may contain a binder fiber or a resin as long as the object of the present invention is not impaired. Furthermore, the surface may be calendered, punched or brushed with a needle or a water jet.
In the above-described ultrafine processing, after forming a cloth, seawater removal treatment or peeling / division processing may be performed to form ultrafine fibers.
[0016]
The cloth may be formed of the above-described ultrafine fiber 100%, but in order to satisfy the effects of the present invention, it is preferable that 20% by weight or more of the fibers constituting the cloth is the above-described ultrafine fiber. .
[0017]
The conductive fiber mixed in the cloth at a ratio of 3% by weight or less has an electric resistance value of 9 × 10 when 1 KV is applied.8Ω / cm · f or less, preferably white or colorless conductive fiber. By using such white or colorless conductive fibers, a wide range of applications can be applied to the design and aesthetics of the cloth.
In the present invention, the white or colorless conductive fiber means a fiber having a whiteness index of 25 or more. The whiteness index is a value measured according to the JIS L 1013B method, and can be measured and calculated by the method described later. The conductive fiber having such a whiteness index is not inferior in aesthetics even when mixed in a cloth.
[0018]
The conductive fiber according to the present invention has an electrical resistance value of 9 × 10 when 1 KV is applied.8Ω / cm · f or less, which is a white or colorless conductive fiber, and the conductive fiber described in JP-A-5-263318 is used in consideration of design and aesthetics. That is, an outermost layer (A) made of a fiber-forming polymer, an intermediate layer (B) made of a polymer layer containing inorganic fine particles, and an innermost layer (C) made of a polyamide layer containing conductive carbon black. It is a composite fiber consisting of three layers.
[0019]
Such composite fibers will be described briefly.
The conductive carbon black contained in the innermost layer (C) is 10-3-10-2Those having a specific resistance of Ω · cm are preferred, and the type is not limited.
When carbon black is completely dispersed in a polymer, the conductivity is generally poor. When a chain structure called a structure is adopted, the conductivity is improved and the conductive carbon is improved. It is well known that it becomes black. Therefore, when conducting a polymer with conductive carbon black, it is important to disperse the polymer in the polymer so as not to destroy the structure of the carbon black. The conductive carbon black can be mixed and dispersed in the polymer by any known method. However, if excessive shear stress is applied to the conductive carbon black, the structure is destroyed and the conductivity is reduced. Mixing must be done with this in mind as it can be significantly reduced.
[0020]
The electrical conduction mechanism of the polymer layer containing conductive carbon black is considered to be due to the contact of the carbon black chain and due to the tunnel effect, but generally the former is considered to be the main. ing. Therefore, the longer the carbon black chain is, the higher the density of the carbon black present in the polymer, the higher the contact probability and the higher conductivity is imparted. Considering the effect of the conductivity of carbon black, the content of conductive carbon black in the innermost layer (C) is preferably 15 to 50% by weight, particularly preferably 20 to 40% by weight. Even if the content exceeds 50% by weight, the effect of improving the conductive performance is not recognized, and on the contrary, the fluidity of the innermost layer (C) is deteriorated, and the spinnability of the conductive fiber is deteriorated.
[0021]
As mentioned above, the carbon black must be dispersed in the polymer so as not to destroy its structure. For that purpose, a polyamide-based resin is optimal as a polymer containing carbon black, and specifically, nylon 6, nylon 66, nylon 12, metaxylenediamine nylon, or a resin mainly composed of these may be mentioned. it can.
By using a polyamide-based resin as a polymer for forming the innermost layer (C), the carbon black has good dispersibility and does not cause abnormal filter clogging during spinning. The physical properties are good.
[0022]
The intermediate layer (B) contributes to the improvement of the colorability of the innermost layer (C). The intermediate layer (B) includes titanium dioxide, zinc oxide, magnesium oxide, aluminum oxide, silicon dioxide, barium sulfate, calcium carbonate, carbonic acid. It contains white pigments such as sodium, talc and kaolin, and white fillers. Considering improvement of the colorability of the innermost layer (C), that is, concealing property, the material contained in the intermediate layer (B) is preferably titanium dioxide or zinc oxide, and the average particle size is preferably 5 μm or less, particularly preferably 1 μm or less. . Further, the content of these inorganic fine particles is preferably 10 to 80% by weight, particularly 20 to 70% by weight, from the viewpoint of concealment.
[0023]
The polymer constituting the intermediate layer (B) is not particularly limited as long as it is a fiber-forming polymer. Specifically, polyamide resins such as nylon 6, nylon 66, nylon 12, metaxylenediamine nylon, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polyethylene And polyolefin resins such as polypropylene, polystyrene resins, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers and the like. Of these, polyamide resins, thermoplastic elastomers, and the like are preferable in terms of fluidity, heat resistance, adhesion to inorganic fine particles, and the like when a large amount of inorganic fine particles are contained.
[0024]
As the polymer constituting the outermost layer (A), a thermoplastic polymer resin having a melting point of 150 ° C. or more is suitable, and it is more preferable that the polymer has excellent spinnability. Specific examples include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and polyamide resins such as nylon 6, nylon 66, and metaxylenediamine nylon. Among them, polyethylene terephthalate, Polyester resins such as polybutylene terephthalate are preferred in terms of processability.
[0025]
The composite ratio of the above-mentioned layer (A), layer (B) and layer (C) is such that the electrical resistance value of the fiber when 1 KV is applied is 9 × 10.8The composite ratio is not particularly limited as long as the composite ratio satisfies Ω / cm · f or less, and the composite ratio is such that the concealing effect of the layer (B) can be sufficiently exerted and white or colorless fibers are obtained. More preferred.
Specifically, when the longest diameter of the innermost layer (C) in the fiber cross section is x, the minimum thickness of the intermediate layer (B) is y, and the minimum thickness of the outermost layer (A) is z, the following formula (1) A composite form satisfying (2) is preferred.
0.11 ≦ y / x ≦ 1.82 (1)
0.35 ≦ z / (x + y) (2)
[0026]
Here, x represents the longest diameter of the innermost layer (C), but the shape of the layer (C) is often considered to be a circle, an ellipse, or a polygon, and when the layer (C) is a circle or ellipse, the diameter, The major axis is shown, and in the case of a polygon, the longest one is shown, including sides and diagonal lines. Further, y represents the minimum thickness of the intermediate layer (B), which indicates the minimum thickness of the intermediate layer (B) formed by the outer periphery of the innermost layer (C) and the outer periphery of the intermediate layer (B). Furthermore, z indicates the minimum thickness of the outermost layer (A), which indicates the minimum thickness of the outermost layer (A) formed by the outer periphery of the intermediate layer (B) and the outer periphery of the outermost layer (A).
[0027]
The composite shape of the conductive fibers described above is such that the innermost layer (C) and the intermediate layer (B) are continuous in the length direction of the fiber, and the intermediate layer (B) is disposed around the innermost layer (C). It is sufficient that the outermost layer (A) has a fiber cross section where the outermost layer (A) is positioned, and others are not limited. Further, as described above, the innermost layer (C) and the intermediate layer (B) have various cross-sectional shapes, and in particular, the innermost layer (C), which is a conductive polymer layer, is preferably a shape having acute angles and irregularities in terms of static elimination performance. Is. The cross-sectional shape of the conductive fiber may be circular or non-circular.
[0028]
In the conductive fiber described above, the innermost layer (C) may not be completely covered with the intermediate layer (B), and the intermediate layer (B) may not be completely covered with the outermost layer (A). . If it is white or colorless, the innermost layer (C) or the intermediate layer (B) may be exposed on the fiber surface.
[0029]
The conductive fiber can be obtained by a conventionally known method for producing a composite fiber. For example, a method in which normal spinning is performed at a speed of 500 to 2500 m / min, the drawing and heat treatment are performed, a method in which spinning is performed at a speed of 1500 to 5000 m / min, followed by stretching and false twisting, 5000 m / min. Any manufacturing method such as a method of spinning at the above high speed and omitting the drawing step can be adopted.
[0030]
The single fiber fineness of the above-mentioned conductive fiber is preferably the same as the single fiber fineness of the ultrafine fibers mainly constituting the cloth, but may be larger than the ultrafine fibers. However, it is preferably 15 denier or less in consideration of the wiping workability as a cloth.
[0031]
In the present invention, mixing such conductive fibers in the cloth in an amount of 3.0% by weight or less, particularly 0.2 to 2.0% by weight is dustproof, dust and anti-reattachment of dust, conductive From the viewpoint of washing durability of the sex. Even if the mixing amount exceeds 3% by weight, no effect of improving the wiping property as a cloth and preventing the reattachment of dust / dust is recognized.
The method for mixing the conductive fibers into the cloth is not particularly limited, and the conductive fibers may be mixed into the fibers or yarns constituting the cloth, or may be knitted or woven. When the cloth is a woven fabric, conductive fibers may be inserted into at least one of the warp and the weft at an appropriate interval. The conductive fibers are mixed into a fabric made of ultrafine fibers or ultrafine fibers in an arbitrary form such as a monofilament form, a multifilament form, and a cut staple form.
[0032]
As described above, a cloth mainly composed of ultrafine fibers having a specific cross-sectional shape is mixed with conductive fibers having a specific electric resistance value in a proportion of 3.0% by weight or less. Has a charge density of 7 μC / m2High static neutralization can be maintained as follows, and therefore not only dust resistance and antifouling properties, but also whiteness maintenance of fabrics, that is, excellent design, durability of wiping work, and prevention of dust and dust reattachment. An excellent cloth can be obtained.
Although the conductive fiber used in the present invention can be dyed despite the use of conductive carbon black, it can be dyed in the same color as the ultrafine fiber. The range of use as a wiping cloth is expanded.
[0033]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In addition, each measured value in an Example is a value measured and calculated by the following method.
(1) Measurement of angle in cross section of ultrafine fiber
Take a photo of the fiber cross-section with an electron microscope, copy the cross-section of any 20 fibers onto paper, measure 3 or 4 angles, and average the number of angles in the range of 20-120 degrees; The average value of the individual angles is shown.
(2) Electrical resistance value of conductive fiber
The sample was cut to a length of 10 cm, and a conductive paint (deutite) was applied to the cut surface to fix the fiber end, and then the electrical resistance value at an applied voltage of 1 KV was measured using the end as an electrode.
[0034]
(3) Whiteness index of conductive fibers
It calculated | required based on JISL1013B method. In other words, a cylindrical knitted fabric of a sample was prepared, and it was folded in eight, and using a spectrophotometer (307 type, manufactured by Hitachi, Ltd.), the reflectance at wavelengths of 450 nm and 550 nm with respect to a standard white plate was measured. The index was calculated.
Whiteness index = 4R1-3R2
R1: Reflectance at 450 nm
R2: Reflectance at 550 nm
(4) Evaluation of cloth wiping performance
The slide glass to which the contaminants were adhered was temporarily bonded to a flat test table of a friction tester (tester conforming to JIS l 0823), and was wiped off with a friction piece equipped with a test cloth. The wiping load was 200 g, the wiping width was 20 mm, and the wiping stress was 100 g / mm. Wiping was performed several times, the transmitted light rate before and after wiping was measured, and calculated as follows.
Wiping rate (%) = [(Wn−W0) / (Wb-W0] X 100
Wb: Transmittance of the slide glass at 380 nm or 580 nm
Wn: transmittance after wiping off
W0: Permeability before wiping
[Pollutants]
a. Cleaning power against nicotine
A slide glass (20 sheets) was placed horizontally in the fumigation box, fumigated with about 20 cigarettes (pieces), and pollutants were adhered mainly with nicotine. The visible light transmittance was adjusted to 20% or less.
b. Cleaning power against lubricating oil
A frame was placed on the slide glass, and a commercially available lubricant was sprayed from a distance of 30 cm for 3 seconds to prepare a sample.
c. Cleaning power against glue
Glue (0.5 g / cm) consisting of 10 g / l of cone starch on a slide glass2) Was applied.
[0035]
(5) Cloth charge density
This was performed according to RIISTR78-1, a static electricity safety guide issued by the Labor Safety Institute. (Measured after being left in a room at 22 ° C and 30% RH for 24 hours)
For washing, 1:30 bath ratio, standard detergent (weak alkaline) added, wash for 5 minutes at 40 ° C., then rinse twice with 1:30 bath water and rinse for 5 minutes. The process was repeated 250 times.
(6) Friction voltage
As shown in FIG. 1, the measuring apparatus has a resin flat plate (acrylic plate or polyethylene plate) on a metal base, and a surface electrometer (Statilon M: rotating sector type / 1-100 KV) behind the resin flat plate. The charged voltage of the resin flat plate after installation and wiping can be measured. Washing was performed by the method described in (5) above.
[0036]
(7) Discharge phenomenon
As for the discharge phenomenon in the wiping process, the discharge noise can be observed with a loop antenna installed behind the resin flat plate, and the discharge phenomenon can be observed with an analyzing recorder (Yokogawa 3655E / DC RANGE 2.0V).
The evaluation was performed based on the charged voltage of the resin flat plate when the operation of wiping the resin flat plate with the sample and the discharge phenomenon (cracking discharge sound) in the wiping process.
The conditions were 22 ° C., 30% RH, and the number of frictions was 10.
In addition, when the static electricity generated in the wiping process is measured only by the charged voltage, if the charged voltage exceeds a certain value, a discharge phenomenon (pricking discharge sound) occurs in the wiping process. It can be seen that the phenomenon may be different, and the static electricity generated in the wiping process cannot be evaluated by the charged voltage alone.
Judgment of discharge phenomenon
A: Neither discharge sound nor discharge pulse is observed.
○: Discharge sound is not observed, but discharge pulse is observed.
Δ: Both discharge sound and discharge pulse are observed.
X: Both discharge sound and discharge pulse are remarkable.
The washing was performed by the method described in (5) above.
[0037]
(8) Evaluation of static elimination performance
The distance between the charged sphere and the discharge sphere is set to 1 cm, and the charged sphere is charged by using an electromotive machine to cause discharge. The presence or absence of discharge was observed when the sample was brought close to the charged sphere. Stopping the discharge means that static elimination is performed.
○: Discharge stops
×: Discharge continues
Washing was performed by the method (5) above.
[0038]
Example 1
First, according to the method described in JP-A-5-263318, the electrical resistance value is 3.0 × 10 6 under the following conditions.7A conductive fiber of 25 denier / 2 filament of Ω / cm · f was obtained.
Outermost layer (A): Polyethylene terephthalate containing 0.5% by weight of titanium dioxide having an average particle size of 0.18 μm [Intrinsic viscosity: 0.65 (using a mixed solution of phenol / tetrachloroethane, etc.) Measured at 30 ° C)]
Intermediate layer (B): nylon 6 containing 50% by weight of titanium dioxide having an average particle diameter of 0.2 μm [manufactured by Ube Industries, Ltd., 1013BK]
Innermost layer (C): Nylon 6 containing 35% by weight of conductive carbon black [manufactured by Ube Industries, 1013BK]
Composite ratio (% by weight): Layer (A) / Layer (B) / Layer (C) = 70/25/5
[0039]
Next, nylon 6 [manufactured by Ube Industries, Ltd., 1013BK] and polyethylene terephthalate having an intrinsic viscosity of 0.70 were melt-extruded with separate extruders, and the composite ratio was nylon 6: polyethylene terephthalate = 33: 67. (Weight ratio) Each was measured with a gear pump, then supplied into a spinning pack, discharged at a base temperature of 290 ° C., and wound at a speed of 1000 m / min. Then, the film was stretched with a roller heater of 75 ° C. at a magnification of 2.9 times, and heat-set with a plate heater of 130 ° C. to obtain a 75 denier / 24 filament drawn yarn. The cross section of the yarn was a vertically divided type cross section (11 layers alternately laminated type) structure.
Subsequently, the drawn yarn was false twisted at a false twist number of 3390 T / M and a temperature of 170 ° C., and divided. The single fiber fineness of the crimped yarn made of polyester and polyamide obtained was about 0.3 denier. A cylindrical knitted fabric was prepared using these ultrafine fibers, and subjected to relaxation, water washing, drying, presetting, alkali weight loss, water washing treatment and drying to obtain a fabric.
The above-mentioned conductive fiber was mixed in 0.9% by weight to this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
[0040]
Example 2
In Example 1, except that the single fiber fineness of the crimped yarn after the split treatment was changed to 0.50 denier, a tubular knitted fabric was prepared, subjected to various treatments and dried, and the fabric Got.
The above-mentioned conductive fiber was mixed in 0.9% by weight to this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
Since the single fiber fineness of the ultrafine fiber after the division treatment was increased, the wiping performance was slightly lower than that of the cloth obtained in Example 1.
[0041]
Example 3
A tubular knitted fabric was prepared in the same manner as in Example 1 except that the ratio of hydrophilic fibers in the ultrafine fibers was 49% by weight, and various fabrics were processed and dried to obtain a fabric.
The above-mentioned conductive fiber was mixed in 0.9% by weight to this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
[0042]
Example 4
In Example 1, except that the amount of inorganic fine particles contained in the intermediate layer of the conductive fiber was changed to 70% by weight, a tubular knitted fabric made of ultrafine fibers was prepared, subjected to various treatments and dried, and then the fabric Got.
Conductivity evaluation as a wiping cloth was performed by mixing 0.9% by weight of conductive fibers having a changed content of inorganic fine particles to be contained in the intermediate layer. The results are shown in Tables 1 and 2.
[0043]
Example 5
In Example 4, instead of nylon 6, an ethylene-vinyl alcohol copolymer (ethylene content 44 mol%, saponification degree 99%, Kuraray) was used as the polymer constituting the vertically split split cross-section composite fiber. A fabric was prepared in the same manner except that a composite fiber was obtained using E-105), and an ultrafine fiber was obtained by performing a splitting process.
The conductive fibers used in Example 4 were mixed in this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
[0044]
Example 6
A fabric was prepared in the same manner as in Example 5, except that the single fiber fineness of the ultrafine fiber was changed to 0.19 denier.
The conductive fibers used in Example 4 were mixed in this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
[0045]
Example 7
Vertically composed of polyethylene terephthalate (intrinsic viscosity 0.61) and polyethylene terephthalate (intrinsic viscosity 0.68) copolymerized with 2.5 mol% of 5-sodium sulfoisophthalic acid and 8% by weight of polyethylene glycol A composite fiber having a split-divided cross-sectional structure was obtained, followed by alkali weight reduction, and the former copolymer polyethylene terephthalate was dissolved and removed to obtain ultrafine fibers made of polyethylene terephthalate.
Using this ultrafine fiber, a fabric was prepared in the same manner as in Example 1, and the conductive fiber used in Example 1 was mixed into this fabric to evaluate the performance as a wiping cloth. The results are shown in Tables 1 and 2.
Since the hydrophilic fiber was not included, the wiping performance was slightly inferior to the wiping cloth obtained in Example 1.
[0046]
Comparative Example 1
In Example 1, the electrical resistance value is 5 × 10 as the conductive fiber.11In the same manner except that fibers of Ω / cm · f were used, a tube network made of ultrafine fibers was prepared, subjected to various treatments and dried to obtain a fabric.
The conductive fibers described above were mixed into this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
Since conductive fibers having a small electrical resistance value were mixed, the charge charge amount was high, and discharge noise was observed.
[0047]
Comparative Example 2
Except that the conductive fiber was not mixed into the fabric in Example 1, a tubular network composed of ultrafine fibers was prepared in the same manner, subjected to various treatments, and dried to obtain a fabric.
Performance evaluation as this wiping cloth was performed. The results are shown in Tables 1 and 2.
The wiping performance was high, but after wiping the surface of the surface to be cleaned, dust and dirt in the air reattached to the surface to be cleaned after a while.
[0048]
Comparative Example 3
In Example 1, except that high density polyethylene was used as the polymer for forming the innermost layer (C) of the conductive fibers, a tubular knitted fabric made of ultrafine fibers was prepared, subjected to various treatments and dried. A woven fabric was obtained.
The conductive fibers described above were mixed in this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
Although the initial wiping performance was excellent, the static elimination performance after 250 washings was significantly reduced, and it could be said that there was no durability.
[0049]
Comparative Example 4
A tubular knitted fabric made of ultrafine fibers was prepared in the same manner except that the single fiber fineness of the ultrafine fibers was changed to 0.90 denier in Example 1, and various treatments were applied to dry to obtain a fabric.
Conductive fibers were mixed in this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
It can be seen that the wiping performance is significantly reduced when the single fiber fineness of the ultrafine fiber is increased.
[0050]
Comparative Example 5
In Example 1, as a conductive fiber, nylon 6 containing 35% by weight of conductive carbon black is used as a core, polyethylene terephthalate is used as a sheath, and two layers of core: sheath = 10: 90 (weight ratio). A tubular knitted fabric made of ultrafine fibers was prepared in the same manner except that conductive fibers having a structure were used, and various treatments were applied and dried to obtain a fabric.
The fabric was mixed with the conductive fibers having the above two-layer structure, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
Despite the durability of the static elimination performance, the blackness of the conductive fibers was conspicuous and the design was inferior.
[0051]
Comparative Example 6
Polyethylene terephthalate (intrinsic viscosity 0.61) copolymerized with 2.5 mol% of 5-sodium sulfoisophthalic acid and 8% by weight of polyethylene glycol as sea component, and polyethylene terephthalate (ultimate viscosity) as island component 0.68) was used to fabricate sea-island type composite fibers (number of islands: 17), and then the copolymer polyethylene terephthalate, which is a sea component, was dissolved and removed by alkali weight reduction processing to obtain a single fiber fineness of 0.29 denier. A polyethylene terephthalate microfiber with a round cross section was obtained. A cylindrical knitted fabric was prepared using these ultrafine fibers, subjected to various treatments and dried to prepare a fabric.
Conductive fibers used in Example 1 were mixed into this fabric, and performance evaluation as a wiping cloth was performed. The results are shown in Tables 1 and 2.
Even if it was an ultrafine fiber, since the cross-sectional shape was a round cross section, the wiping performance was bad.
[0052]
[Table 1]
[0053]
[Table 2]
[0054]
【The invention's effect】
Since the wiping cloth of the present invention has a high static elimination effect, even after wiping off dust / dust, dust / dust in the air does not reattach to the surface of the object to be cleaned, and a clean surface can be maintained. . Furthermore, this performance is maintained after 250 washings, resulting in a very durable wiping cloth.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an apparatus for measuring frictional voltage and discharge phenomena.
FIG. 2 is a diagram showing one state of a discharge pulse.
3 is a diagram showing a discharge pulse of a cleaning cloth obtained in Example 1. FIG.
4 is a diagram showing a discharge pulse of a cleaning cloth obtained in Comparative Example 2. FIG.
[Explanation of symbols]
1: Analyzing recorder (discharge noise recorder)
2: Electrostatic voltage recorder
3: Surface potential meter
4: Loop antenna
5: Probe
6: Resin flat plate
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20662097A JP3665184B2 (en) | 1997-07-31 | 1997-07-31 | Wiping cloth with durable static elimination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20662097A JP3665184B2 (en) | 1997-07-31 | 1997-07-31 | Wiping cloth with durable static elimination |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1150350A JPH1150350A (en) | 1999-02-23 |
JP3665184B2 true JP3665184B2 (en) | 2005-06-29 |
Family
ID=16526399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20662097A Expired - Fee Related JP3665184B2 (en) | 1997-07-31 | 1997-07-31 | Wiping cloth with durable static elimination |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3665184B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4726365B2 (en) * | 2001-09-28 | 2011-07-20 | Kbセーレン株式会社 | Cleaning fabric having antistatic performance |
JP4969323B2 (en) * | 2006-06-08 | 2012-07-04 | 小松精練株式会社 | High durability antistatic wiping cloth |
JP2008272183A (en) * | 2007-04-27 | 2008-11-13 | Unitika Ltd | Anti-static wiper |
CN114248515A (en) * | 2020-09-24 | 2022-03-29 | 无锡市正龙无纺布有限公司 | PET-based disposable electrostatic dust-sticking wiping cloth |
-
1997
- 1997-07-31 JP JP20662097A patent/JP3665184B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1150350A (en) | 1999-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5009300B2 (en) | Rubbing cloth | |
JP4384383B2 (en) | Composite staple fiber and method for producing the same | |
JP4367038B2 (en) | Fiber and fabric | |
JPWO2002075030A1 (en) | Fiber composite and its use | |
JP2008194329A (en) | Rotating brush for vacuum cleaner | |
JP3665184B2 (en) | Wiping cloth with durable static elimination | |
JP6271856B2 (en) | Fabric manufacturing method and textile manufacturing method | |
JP3132791B2 (en) | Conductive composite fiber | |
JPS6037203B2 (en) | Manufacturing method of water-absorbing artificial fiber | |
JP4315009B2 (en) | Blended yarn and textile products comprising the same | |
JP2705096B2 (en) | Material for antistatic wiping | |
JP2005133250A (en) | Core-sheath conjugate fiber | |
JPS5929283B2 (en) | Antistatic furnace cloth | |
JP3770254B2 (en) | Nanoporous fiber | |
JPH02258007A (en) | Filter paper | |
JPH1150351A (en) | Cleaning cloth with durable static elimination | |
JP2011157647A (en) | Wiping cloth | |
JP4292893B2 (en) | Polymer alloy crimped yarn | |
JP4726365B2 (en) | Cleaning fabric having antistatic performance | |
JP2010255143A (en) | Stain-resistant polyester fabric and manufacturing method of the same and fiber product | |
JPS61228821A (en) | High performance wiper | |
JP2004270110A (en) | Polymer alloy fiber | |
JP3210793B2 (en) | Durable conductive mixed yarn | |
JP2512579B2 (en) | Bulk paper manufacturing method | |
US20240110314A1 (en) | Conjugate fiber and multifilament |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050331 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080408 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100408 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110408 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110408 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120408 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120408 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130408 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130408 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |