JP3662474B2 - Method and apparatus for treating dioxins in waste water - Google Patents
Method and apparatus for treating dioxins in waste water Download PDFInfo
- Publication number
- JP3662474B2 JP3662474B2 JP2000147762A JP2000147762A JP3662474B2 JP 3662474 B2 JP3662474 B2 JP 3662474B2 JP 2000147762 A JP2000147762 A JP 2000147762A JP 2000147762 A JP2000147762 A JP 2000147762A JP 3662474 B2 JP3662474 B2 JP 3662474B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- dioxins
- ozone
- treatment
- ultraviolet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002351 wastewater Substances 0.000 title claims description 52
- 150000002013 dioxins Chemical class 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 34
- 238000004090 dissolution Methods 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 18
- 239000010408 film Substances 0.000 description 17
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 101100257062 Leishmania major IPCS gene Proteins 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000149 chemical water pollutant Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003295 industrial effluent Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Fire-Extinguishing Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、各種産業排水、都市下水、清掃工場廃水、埋立地浸出水等に含まれるダ イオキシン類をはじめとするハロゲン化有機化合物(以下、ダイオキシン類という) を効果的に分解し、除去する方法に関する。
【0002】
【従来の技術】
従来から前記排水は、生物的処理、凝集・沈殿、活性炭処理等の各種処理装置を単独あるいは適宜に組み合わせて処理していた。ところで、近年その混入が各地で大きな社会問題を引き起こしているダイオキシン類は、水に対する溶解度が極めて低く、その多くは有機物質や浮遊物質(SS)などに吸着された状態で存在することが判明している。従って、従来は排水から浮遊物質を分離・除去し、さらに活性炭処理などの高濃度処理を施して除去していた。
【0003】
【発明が解決しようとする課題】
しかし、前記の処理方法は、ダイオキシン類を吸着等によって除去するものであり、濃縮されたダイオキシン類を含む吸着剤が廃棄物になって発生するという問題があった。ダイオキシン類を分解、除去する有効な手段としては、紫外線による照射分解、より効率的には紫外線照射とオゾン、過酸化水素、触媒などとの併用があげられる。しかし、これらの手段を実行して紫外線を透過させにくい排水を処理する場合、従来型の紫外線処理装置を用いると排水中の透過距離が長くなって照射効果が低減するので、紫外線を均一に照射し、排水中のダイオキシン類にまで十分に到達させ、効率よく分解することのできるダイオキシン類処理方法及び装置が必要になる。本発明は、かかるダイオキシン類処理方法および処理装置の開発を課題に研究の結果、完成されたのである。
【0004】
【課題を解決するための手段】
【0005】
本発明は、前記の課題を解決する手段として、ダイオキシン類を含む排水(以下、 原排水という)を対向する複数の面から構成されている流下壁(濡れ壁)に沿って膜 状に流下させ、流下壁の間に排水膜とは非接触に紫外線の光源を配置して排水膜を照 射し、紫外線照射された排水(以下、紫外線処理排水という)の一部をオゾン溶解槽 に送水して残部を原排水に還流し、オゾン溶解槽においては紫外線処理排水にオゾン ガスを気液接触させてダイオキシン類を分解、処理することを特徴とする排水中のダ イオキシン類処理方法を提供する。そして好ましくは、オゾン溶解槽の出口排水(以 下、オゾン処理排水という)の一部を系外に導出し、残部を紫外線処理排水に還流し てオゾン溶解槽に循環させる。
【0006】
また、本発明に使用する、原排水に紫外線を照射する紫外線照射装置としては、対 向して設けられた複数の面から構成されている流下壁面と、流下壁面の間に流下する 排水膜とは非接触に取り付けられた排水膜照射用の紫外線光源とからなる装置が好適 である。前記装置においては、流下する排水膜に向けて紫外線を反射する反射器を取 付けるとよい。また、表面に溝状の凹凸が設けられている流下壁を用い、あるいは、 流下壁表面に触媒作用を付加して、紫外線によるダイオキシン処理効果を促進させる ことができる。
【0007】
【発明の実施の形態】
本発明において使用する紫外線照射装置について、実施形態例を挙げながら具体的 に説明する。図1は、本発明に使用するのに好適な紫外線照射装置の実施形態例を示 す装置断面図であって、基本的構成を説明するために示したものである。この装置で は、上部に越流堰2のある流下壁(濡れ壁)1を複数面、本例では2面、対向して設 け、原排水をそれぞれの越流堰2から流下壁表面1に沿って膜状に流下させ、流下さ せる排水膜3には触れない位置に紫外線光源4を配置して排水膜を照射し、原排水中 のダイオキシン類を処理する。7は原排水の越流面である。
【0008】
紫外線の通路にあたる保護カバー5等を含めた紫外線光源4を、排水膜3に触れな い位置に取り付けることによって、汚れのために紫外線の照射効率が低下することを 防ぎ、膜状に拡げられた原排水3中のダイオキシン類に、紫外線を効率よく均一、か つ容易に到達させるのである。使用する紫外線光源4の種類にとくに制限はないが、 紫外線照射効率の高い低圧水銀灯が好適である。紫外線光源の使用数、1灯当たりの 大きさ、たて置き、よこ置き等の配列や間隔などは紫外線の利用効率を高めるように 適宜に設計すればよく、とくに制限はない。また、図1に例示した紫外線照射装置を 多数配列して使用することもできる。そして、排水中のダイオキシン類濃度が所要の レベルに低下するまで、排水を循環して照射することもできる。
【0009】
また、紫外線の利用効率を高めるために紫外線の反射器6を設けることができる。 反射器6は、直接排水膜3を照射していないで失われる紫外線を排水膜3方向に反射 し紫外線の有効利用をはかることを目的とする。取付位置や形状等に特別な制限はな いが照射効率を高めるために汚れにくく反射効率の高い反射面を用い、排水流下膜面 を万遍なく照射するように設計し配置することが望まれる。図1には、その一例とし て複数の紫外線ランプ4と反射鏡6とをよこ置きで交互に配列した場合を示した。
【0010】
また、流下壁1は垂直、平面に限られない。たとえば、対向する面を斜面や曲面にしたり、対向する流下壁の断面を長方形、ひし形、多角形などに設定してもよい。あるいは、流下壁表面に、適宜、溝状や土手状の凹凸を設けて偏流を防ぎ、排水膜3に乱れを生じさせて表面を更新し、表面積を拡大して紫外線の照射効率を高めることができる。さらにまた、流下壁の表面1に酸化チタンなどの触媒作用を有する物質をコーティングしてダイオキシン類の分解を促進することができる。
【0011】
本発明においては、紫外線をバッチ循環照射、連続流通照射し、あるいは被照射排 水を連続供給・循環・一部連続抜出し照射等に使用することができる。また、オゾン 処理に加えて過酸化水素処理などと併用する場合にも利用してダイオキシン類の分解 を効率的にすることができる。過酸化水素を併用する場合には、排水中に所要量の過 酸化水素を一時に注入し、あるいは処理の進行にあわせ紫外線照射と並行して過酸化 水素を適量ずつ分割又は連続注入することもできる。
【0012】
本発明を本発明を具体的に説明するため、図2に紫外線照射槽11とオゾン溶解槽 12とが組み合わされたバッチ方式の排水処理装置の一例を模式的に示す。本例では 対向する2面の流下壁13と流下壁13間に水平方向に配置された紫外線ランプ14 とが設けられている。排水循環槽15に貯留された排水は、紫外線照射槽ポンプ16 によって越流堰溜17に送入され、越流堰18を越えて排水膜を形成し流下壁13に 沿い流下して排水循環槽15に循環、貯留される。
【0013】
本例では、排水循環槽15に貯留された排水の一部がオゾン溶解槽ポンプ19によってオゾン溶解槽12に送入され、紫外線照射とオゾン処理とが同時進行されることになる。オゾン溶解槽12底部にはオゾン発生器20からオゾンガスが吹き込まれ、槽内で排水と向流気液接触されている。21はオゾンガス濃度計である。排水の紫外線照射・オゾン処理時間は、排水中のダイオキシン類の種類や濃度によって異なるが一般的には0.1〜4時間程度である。
【0014】
【実施例】
本発明の効果を確認するために前記の図2に例示したのと同じフローの装置を用い実施実験を行ったので、以下に具体的にその内容を説明する。なお、紫外線照射槽の流下壁を幅2000×高さ1500mmの対向する2面で構成し、紫外線の光源は、500Wの低圧水銀ランプを3本、水平に配置した。また、ダイオキシン類の分析はダイオキシン類標準測定マニュアル(厚生省)に準じ、毒性等価係数はWHO/IPCSのものを適用した。
【0015】
実施例1
飛灰中のダイオキシン類をトルエンで抽出した後、メタノール置換した抽出液を、BOD90mg/l、COD210mg/lの浸出水原水に添加してダイオキシン類濃度が4000pg/Lの試験用排水を準備し、本発明の実施試験に供した。前記の試験排水150リットルを用い、紫外線照射槽ポンプによる試験用排水の循環量を1時間当たり1000リットルに調整し、また、オゾン溶解槽にはオゾン濃度を5g/Nm3以上に調整したオゾンガスを吹き込み、オゾン溶解槽循環ポンプによる循環量を1時間当たり5400リットルにして60分間運転した。運転後に試験用排水中のダイオキシン類濃度を測定した。その結果、試験用排水中のダイオキシン類全体の除去率は88%であって、各同族体ともに75%以上が除去されていた。
【0016】
実施例2
実施例1に用いたのと同じ装置に、図1で示したのと同じ配置で長さ2000mm、断面形状が1辺50mmのひし形であるアルミニウム製反射器を4本取り付けた以外は、実施例1と同じ条件により、試験用排水の処理実験を行った。実験後、試験排水中のダイオキシン類濃度を測定した。その結果、試験用排水中のダイオキシン類全体の除去率は92%であって、各同族体ともに78%以上が除去されていた。
【0017】
実施例3
表面に30mm間隔で長さ2000mm、1辺の長さ5mmの正三角形の鋸歯状凹凸を流下壁に取り付けた以外は実施例1に用いたのと同じ装置を用い、実施例1と同じ条件で試験用排水の処理実験を行った。実験後、試験用排水中のダイオキシン類濃度を測定した。その結果、試験用排水中のダイオキシン類全体の除去率は91%であって、各同族体ともに76%以上が除去されていた。
【0018】
実施例4
表面に光触媒作用を有する酸化チタンをコーティングした流下壁を用いた以外は実施例1に用いたのと同じ装置を用い、実施例1と同じ条件で試験用排水の処理実験を行った。実験後、試験用排水中のダイオキシン類濃度を測定した。その結果、試験用排水中のダイオキシン類全体の除去率は95%であって、各同族体ともに80%以上が除去されていた。
【0019】
比較例1
本発明紫外線照射槽に替えて、実施例1と同じ紫外線光源を取り付けた従来型浸漬型装置を使用した以外は、実施例1に用いたのと同じ装置を用い、実施例1と同じ条件で同じ時間、同量の試験用排水に対する照射処理実験を行った。実験後、試験用排水中のダイオキシン類濃度を測定した。その結果、試験用排水中のダイオキシン類全体の除去率は81%であって、各同族体ともに60〜90%の除去率であった。
【0020】
前記の実施例に示されたように本発明は、ダイオキシン類を含む排水を薄い膜状に して紫外線を照射した後、一部をオゾン処理槽に送水してオゾン処理を施し、残部は 紫外線処理装置に還流して紫外線処理を続けることにより、紫外線を透過しにくい排 水に対しても紫外線を均一に照射できると共に効率よく分解対象物に到達せしめる。 従って、ダイオキシン類をはじめとするハロゲン化有機物は効果的に脱塩素化される 。また、流下壁は、設置条件や処理条件に応じ適宜に大きさや面数などを設計変更す ることができる。
【0021】
紫外線処理装置では、必要に応じて反射器や流下壁表面の溝、触媒作用を有する流 下壁等を設けることができる。反射器は紫外線の利用効率を高め、流下壁表面の溝等 は照射表面積を増やし、排水膜の乱れを発生してダイオキシン類の分解効率を高め、 また、流下壁表面を触媒作用を有する物質によって構成し、ダイオキシン類の分解を 促進することができる。
【図面の簡単な説明】
【図1】 本発明の実施に好適な紫外線照射装置の実施形態例を示す装置断面図
【図2】本紫外線照射槽とオゾン溶解槽とが組み合わされたバッチ方式排水処理装置の一例を模式的に示す図
【符号の説明】
1:流下壁(表面) 2:越流堰 3:排水膜
4:紫外線光源 5:光源カバー 6:反射器
7:排水越流面
11:紫外線照射槽 12:オゾン溶解槽 13:流下壁
14:紫外線ランプ 15:排水循環槽 16:紫外線照射槽ポンプ
17:越流堰溜 18:越流堰 19:オゾン溶解槽ポンプ
20:オゾン発生器 21:オゾンガス濃度計[0001]
BACKGROUND OF THE INVENTION
The present invention effectively decomposes and removes halogenated organic compounds (hereinafter referred to as dioxins) such as dioxins contained in various industrial effluents, municipal sewage, wastewater from incineration plants, landfill leachate, etc. It relates to a method.
[0002]
[Prior art]
Conventionally, the waste water has been treated with various treatment devices such as biological treatment, coagulation / precipitation, activated carbon treatment, etc., alone or in appropriate combination. By the way, in recent years, it has been found that dioxins whose contamination has caused major social problems in various places have extremely low solubility in water, and many of them are adsorbed on organic substances and suspended solids (SS). ing. Therefore, conventionally, floating substances have been separated and removed from wastewater, and further subjected to high concentration treatment such as activated carbon treatment for removal.
[0003]
[Problems to be solved by the invention]
However, the above-described treatment method removes dioxins by adsorption or the like, and there is a problem that an adsorbent containing concentrated dioxins is generated as waste. An effective means for decomposing and removing dioxins is irradiation decomposition by ultraviolet rays, and more effectively, ultraviolet irradiation and combined use of ozone, hydrogen peroxide, catalyst and the like. However, when wastewater that is hard to transmit ultraviolet rays is treated by executing these means, using a conventional ultraviolet treatment device increases the transmission distance in the wastewater and reduces the irradiation effect, so the ultraviolet rays are uniformly irradiated. In addition, there is a need for a dioxin treatment method and apparatus that can sufficiently reach the dioxins in the waste water and can be efficiently decomposed. The present invention has been completed as a result of research aimed at developing such a dioxin treatment method and treatment apparatus.
[0004]
[Means for Solving the Problems]
[0005]
As a means for solving the above-mentioned problems, the present invention allows wastewater containing dioxins (hereinafter referred to as raw wastewater) to flow down in the form of a film along a falling wall (wetting wall) composed of a plurality of opposing surfaces. In addition, an ultraviolet light source is placed in contact with the drainage film between the falling walls to irradiate the drainage film, and a part of the wastewater irradiated with ultraviolet rays (hereinafter referred to as ultraviolet treatment wastewater) is sent to the ozone dissolution tank. The remainder is returned to the raw waste water, and in the ozone dissolution tank, ozone gas is brought into gas-liquid contact with the ultraviolet treated waste water to decompose and treat the dioxins . And preferably, the outlet effluent of the ozone dissolving tank (hereinafter, referred to as ozone treatment wastewater) a portion of the derived out of the system, and reflux the remainder UV wastewater is recycled to the ozone dissolving tank.
[0006]
In addition, as the ultraviolet irradiation device for irradiating the raw wastewater with ultraviolet rays used in the present invention , a falling wall surface composed of a plurality of faces provided opposite to each other, and a drainage film flowing down between the falling wall surfaces, consists of a UV light source for draining film irradiated attached to a non-contact device are preferred. In the above apparatus, it is preferable to attach a reflector that reflects ultraviolet rays toward the drainage film flowing down. Moreover, the dioxin treatment effect by ultraviolet rays can be promoted by using a falling wall having a groove-like unevenness on the surface, or by adding a catalytic action to the surface of the falling wall.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The ultraviolet irradiation apparatus used in the present invention will be specifically described with reference to an embodiment. FIG. 1 is an apparatus cross-sectional view showing an embodiment of an ultraviolet irradiation apparatus suitable for use in the present invention, and is shown for explaining a basic configuration. In this device , a plurality of flow-down walls (wet walls) 1 with
[0008]
By attaching the UV light source 4 including the
[0009]
Further, an
[0010]
Moreover, the flow-down
[0011]
In the present invention, it is possible to use ultraviolet batch circulation irradiation, the continuous flow is irradiated, or the irradiated effluent a continuous supply and circulation-part continuous withdrawal irradiation. It can also be used in combination with hydrogen peroxide treatment in addition to ozone treatment to efficiently decompose dioxins. When hydrogen peroxide is used in combination, the required amount of hydrogen peroxide may be injected into the wastewater at once, or an appropriate amount of hydrogen peroxide may be divided or continuously injected in parallel with ultraviolet irradiation as the treatment progresses. it can.
[0012]
In order to specifically explain the present invention, FIG. 2 schematically shows an example of a batch-type waste water treatment apparatus in which an ultraviolet irradiation tank 11 and an
[0013]
In this example, a part of the wastewater stored in the
[0014]
【Example】
In order to confirm the effect of the present invention, an implementation experiment was performed using the apparatus having the same flow as that illustrated in FIG. 2 described above, and the details thereof will be described below. In addition, the flow-down wall of the ultraviolet irradiation tank was composed of two opposing surfaces having a width of 2000 × height of 1500 mm, and three 500 W low-pressure mercury lamps were horizontally arranged as the ultraviolet light source. Dioxins were analyzed in accordance with the dioxin standard measurement manual (Ministry of Health and Welfare), and the toxicity equivalent coefficient of WHO / IPCS was applied.
[0015]
Example 1
After extracting dioxins in fly ash with toluene, the methanol-substituted extract was added to the raw water of BOD 90 mg / l, COD 210 mg / l leachate to prepare test effluent with a dioxin concentration of 4000 pg / L. It used for the implementation test of this invention. Using 150 liters of the above test wastewater, the circulation amount of the test wastewater by the ultraviolet irradiation tank pump is adjusted to 1000 liters per hour, and ozone gas whose ozone concentration is adjusted to 5 g / Nm3 or more is blown into the ozone dissolution tank. The operation was performed for 60 minutes at a circulation rate of 5400 liters per hour using an ozone dissolution tank circulation pump. After the operation, the concentration of dioxins in the test waste water was measured. As a result, the removal rate of all dioxins in the test waste water was 88%, and 75% or more of each homolog was removed.
[0016]
Example 2
Example except that four aluminum reflectors having the same arrangement as shown in FIG. 1 and having a length of 2000 mm and a cross-sectional shape of a diamond having a side of 50 mm are attached to the same apparatus as used in Example 1. Under the same conditions as in No. 1, a wastewater treatment experiment was conducted. After the experiment, the concentration of dioxins in the test effluent was measured. As a result, the removal rate of all dioxins in the test waste water was 92%, and 78% or more of each homologue was removed.
[0017]
Example 3
The same apparatus as used in Example 1 was used under the same conditions as in Example 1 except that equilateral triangular serrated irregularities having a length of 2000 mm and a side length of 5 mm were attached to the flow wall at intervals of 30 mm on the surface. A test treatment of waste water for testing was conducted. After the experiment, the concentration of dioxins in the test waste water was measured. As a result, the removal rate of the entire dioxins in the test wastewater was 91%, and 76% or more of each homolog was removed.
[0018]
Example 4
A test wastewater treatment experiment was conducted under the same conditions as in Example 1 using the same apparatus as used in Example 1, except that the falling wall coated with titanium oxide having photocatalytic action on the surface was used. After the experiment, the concentration of dioxins in the test waste water was measured. As a result, the removal rate of all dioxins in the test wastewater was 95%, and 80% or more of each homolog was removed.
[0019]
Comparative Example 1
The same apparatus as used in Example 1 was used under the same conditions as in Example 1 except that a conventional immersion type apparatus equipped with the same ultraviolet light source as in Example 1 was used instead of the ultraviolet irradiation tank of the present invention. An irradiation treatment experiment was performed on the same amount of test wastewater for the same time. After the experiment, the concentration of dioxins in the test waste water was measured. As a result, the removal rate of the whole dioxins in the test waste water was 81%, and the removal rate of each homolog was 60 to 90%.
[0020]
As shown in the above-mentioned examples, the present invention makes the wastewater containing dioxins into a thin film shape and irradiates with ultraviolet rays, and then sends a part of the wastewater to an ozone treatment tank to perform ozone treatment, and the rest is ultraviolet rays. By returning to the treatment device and continuing the ultraviolet treatment, it is possible to uniformly irradiate the wastewater that does not transmit ultraviolet rays, and to reach the decomposition target efficiently. Accordingly, halogenated organic substances including dioxins are effectively dechlorinated. In addition, the size and number of faces of the flow-down wall can be appropriately changed according to the installation conditions and processing conditions.
[0021]
In the ultraviolet treatment apparatus , a reflector, a groove on the surface of the falling wall, a falling wall having a catalytic action, and the like can be provided as necessary. The reflector increases the utilization efficiency of the ultraviolet rays, such as grooves falling wall surface increases the radiation area, increasing the efficiency of decomposing dioxins by generating turbulence drainage layer, also the flow down the wall surface by substances having a catalytic action Can promote the decomposition of dioxins.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an apparatus showing an embodiment of an ultraviolet irradiation apparatus suitable for carrying out the present invention. FIG. 2 is a schematic diagram showing an example of a batch-type wastewater treatment apparatus in which the ultraviolet irradiation tank and an ozone dissolution tank are combined. Figure [Explanation of symbols]
1: Downflow wall (surface) 2: Overflow weir 3: Drain film 4: UV light source 5: Light source cover 6: Reflector 7: Drain overflow surface 11: Ultraviolet irradiation tank 12: Ozone dissolution tank 13: Downflow wall 14: Ultraviolet lamp 15: Waste water circulation tank 16: Ultraviolet irradiation tank pump 17: Overflow weir 18: Overflow weir 19: Ozone dissolution tank pump 20: Ozone generator 21: Ozone gas concentration meter
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000147762A JP3662474B2 (en) | 2000-05-19 | 2000-05-19 | Method and apparatus for treating dioxins in waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000147762A JP3662474B2 (en) | 2000-05-19 | 2000-05-19 | Method and apparatus for treating dioxins in waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001321763A JP2001321763A (en) | 2001-11-20 |
JP3662474B2 true JP3662474B2 (en) | 2005-06-22 |
Family
ID=18653905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000147762A Expired - Fee Related JP3662474B2 (en) | 2000-05-19 | 2000-05-19 | Method and apparatus for treating dioxins in waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3662474B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111252846B (en) * | 2020-01-20 | 2022-07-22 | 南昌航空大学 | Method and device for photocatalytic degradation of organic pollutants in wastewater |
-
2000
- 2000-05-19 JP JP2000147762A patent/JP3662474B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001321763A (en) | 2001-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60130371D1 (en) | UV DISINFECTION SYSTEM AND METHOD FOR THE TREATMENT OF DRINKING WATER | |
EP0671363B1 (en) | Method and system for treating polluted water | |
KR102315904B1 (en) | Hospital sewage disposal system | |
JPH05228480A (en) | Device for processing hardly biodegradable substance | |
KR100581746B1 (en) | Water treatment device | |
JP3744454B2 (en) | Water treatment equipment | |
JP3662474B2 (en) | Method and apparatus for treating dioxins in waste water | |
JP3636636B2 (en) | Ultraviolet irradiation dioxin treatment equipment | |
JP3792577B2 (en) | Water treatment equipment using photocatalyst | |
JP3400942B2 (en) | Method and apparatus for decomposing organic chlorine compounds such as dioxins in landfill leachate | |
JP2008141986A (en) | Apparatus for treating tank water for fish, and method for treating tank water for fish | |
JP2003320383A (en) | Cleaning method for grease trap and apparatus therefor | |
JP3576474B2 (en) | Decomposition method of dioxins | |
JP2005152815A (en) | Sewage treatment apparatus | |
JPH1177031A (en) | Method and apparatus for ultraviolet radiation sterilizing purification | |
JP4059754B2 (en) | Non-exhaust ultraviolet ozone combined sterilization purification device | |
KR101416067B1 (en) | Apparatus for treating water using pulse UV and reactor that have UV reflector | |
KR101660512B1 (en) | Wastewater microbial treatment process and device using the principle of the redox biofilter | |
JP2001259664A5 (en) | ||
JP3916370B2 (en) | Dioxin removal method in sewage | |
JP2000334446A (en) | Method and device for water treatment | |
JPH08155445A (en) | Water treatment equipment | |
KR100713184B1 (en) | Reservoir purification system | |
JP3566143B2 (en) | How to remove dioxins from sewage | |
JP2003181448A (en) | Method and apparatus for treating water polluted with voc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050323 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090401 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090401 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110401 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110401 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120401 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |