[go: up one dir, main page]

JP3661320B2 - Microchip electrophoresis device - Google Patents

Microchip electrophoresis device Download PDF

Info

Publication number
JP3661320B2
JP3661320B2 JP32472996A JP32472996A JP3661320B2 JP 3661320 B2 JP3661320 B2 JP 3661320B2 JP 32472996 A JP32472996 A JP 32472996A JP 32472996 A JP32472996 A JP 32472996A JP 3661320 B2 JP3661320 B2 JP 3661320B2
Authority
JP
Japan
Prior art keywords
sample
microchip
electrophoresis
channel
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32472996A
Other languages
Japanese (ja)
Other versions
JPH10148628A (en
Inventor
昭博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP32472996A priority Critical patent/JP3661320B2/en
Publication of JPH10148628A publication Critical patent/JPH10148628A/en
Application granted granted Critical
Publication of JP3661320B2 publication Critical patent/JP3661320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、極微量のタンパク質や核酸などを高速、かつ高分解能に分析する装置に関し、更に詳しくは、一対の透明板状部材を備え、少なくとも一方の板状部材の表面に液が流れる溝が形成され、他方の板状部剤にはその溝に対応する位置に貫通穴が設けられ、これら板状部材が前記溝を内側にして張り会わされてその溝により互いに交差する分離流路と試料導入流路が形成されているマイクロチップを用い、分離流路に泳動液を満たし、試料導入流路から分離流路に試料を導入し、分離流路の両端間に泳動電圧を印加して試料を分離流路で電気泳動分離させるマイクロチップ電気泳動装置に関するものである。
【0002】
【従来の技術】
極微量のタンパク質や核酸などを分析する場合には、従来から電気泳動装置が用いられており、その代表的なものとしてキャピラリ電気泳動装置がある。キャピラリ電気泳動装置は、内径が50μm程度又はそれ以下のガラスキャピラリー内に泳動バッファを充填し、一端側に試料を導入した後、両端間に高電圧を印加して分析対象物をキャピラリー内で展開させるものである。キャピラリー内は容積に対して表面積が大きい、すなわち冷却効率が高いことから、高電圧の印加が可能となり、DNAなどの極微量試料を高速、かつ高分解能にて分析することができる。
【0003】
キャピラリーはその外形が数10μm〜100μm程度と細く破損しやすいため、ユーザーが行なうべきキャピラリー交換時の取扱いが容易でない問題を有する。そのため、D. J. Harrison et al./ Anal. Chim. Acta 283 (1993) 361-366に示されているように、2枚の基板を接合して形成されたキャピラリー電気泳動チップ(マイクロチップという)が提案されている。そのマイクロチップの例を図1に示す。一対の透明ガラス基板51,52からなり、一方の基板52の表面にエッチングにより互いに交差する泳動用キャピラリー溝54,55を形成し、他方の基板51にはその溝54,55の端に対応する位置に貫通穴53を設けたものである。
【0004】
このマイクロチップを使用するときは、両基板51,52を(C)に示すように重ね、いずれかの貫通孔53から泳動液を溝54,55中に注入する。その後、短い方の溝54の一方の端の貫通孔53に試料を注入しその溝54の両端の貫通孔53,53間に電極を差し込んで所定時間だけ高電圧を印加する。これにより、試料は溝54中に分散される。
【0005】
次に、長い方の溝55の両端の貫通孔53,53に電極を差し込み、泳動電圧を印加する。これにより、両溝54,55の交差部分56に存在する試料が溝55内を電気泳動する。溝55の適当な位置に紫外可視分光光度計、蛍光光度計、電気化学検出器等の検出器を配置しておくことにより、分離成分の検出を行なう。
このようなマイクロチップを用いた電気泳動は、高速動作が可能、極微量分析が可能、小型などの特徴を持つことが知られており、その装置化技術が進歩すれば、これまでにないユニ−クな分析装置となる可能性を秘めている。
【0006】
これまでのマイクロチップを用いた技術では、分析前に必要不可欠な泳動液用の貫通孔53から流路54,55への泳動液の充填、及び試料注入用の貫通孔53への試料の注入は全て手操作によっている。泳動液用の貫通穴は泳動液のリザ−バの役割を果たし、試料を注入する貫通穴は試料容器に相当する。分析前の操作として、泳動液をどれか一つの貫通穴53からシリンジなどで手で送液し、試料は試料導入用の溝54の一端の貫通穴53から別のシリンジで注入している。
【0007】
【発明が解決しようとする課題】
泳動液の充填や試料注入の操作は、煩雑であるだけでなく、泳動液や試料の注入も含めた全体の分析時間を長くする結果となり、秒単位で分離が可能というマイクロチップ電気泳動の特徴を活かすことにならない。
そこで、本発明はマイクロチップ電気泳動の操作を自動化して容易にすることを目的とするものである。
【0008】
【課題を解決するための手段】
本発明のマイクロチップ電気泳動装置では、マイクロチップへの泳動液の充填と試料注入を自動化するために、マイクロチップを移動させる移動機構と、試料を供給するニードルがマイクロチップの試料注入孔の移動軌跡上で上下に移動して試料注入孔に試料を注入する試料注入機構と、泳動液を供給する泳動液供給口がマイクロチップの泳動液注入孔の移動軌跡上で上下に移動して泳動液注入孔に泳動液を注入する泳動液注入機構と、試料注入孔を試料注入機構のニードル直下の位置、泳動液注入孔を泳動液注入機構の泳動液供給口直下の位置、及び分離流路上の検出点を検出部の位置にそれぞれ位置決めするように移動機構によるマイクロチップの移動の制御、並びに試料注入機構と泳動液注入機構の動作の制御を行なう制御部とを備えている。
【0009】
流路に泳動液が充填されていないドライの状態で、マイクロチップが移動機構に装着され、動作が開始されると、移動機構によりマイクロチップの試料注入孔と泳動液注入孔がそれぞれ試料供給用ニードル直下と泳動液供給口直下に位置決めされる。試料供給用ニードルと泳動液供給口がマイクロチップへ降下し、泳動液の充填と試料注入が行なわれる。
【0010】
その後、試料供給用ニードルと泳動液供給口がともに上昇し、マイクロチップは移動機構により移動させられて検出点が検出部の位置に位置決めされ、分析が行なわれる。
分析終了後、マイクロチップはさらに移動機構により移動させられて、未使用の流路を用いて、同様に泳動液の充填、試料注入、分析が繰り返される。
【0011】
【実施例】
図2に、一実施例で使用するマイクロチップを示す。マイクロチップ1は図1に示されたものと同様に、一対の透明ガラス基板の一方の表面にエッチングにより互いに交差するキャピラリー溝2−1,3−1の組と、2−2,3−2の組を形成し、他方の基板にはそれらの溝の端に対応する位置に貫通穴B1,D1,S1,W1,B2,D2,S2,W2を設けたものである。キャピラリー溝2−1は分離流路でその両端に泳動液リザーバB1,D1がそれぞれ配置され、キャピラリー溝3−1は試料導入流路でその一端に試料注入口S1、他端に試料廃液溜めW1が配置されている。この2つの流路2−1と3−1の組を1組目の流路セットとし、それらの流路2−1と3−1の交差部分の体積の試料が分析される。同様にキャピラリー溝2−2は分離流路でその両端に泳動液リザーバB2,D2がそれぞれ配置され、キャピラリー溝3−2は試料導入流路でその一端に試料注入口S2、他端に試料廃液溜めW2が配置されている。この2つの流路2−2と3−2の組を2組目の流路セットとし、それらの流路2−2と3−2の交差部分の体積の試料が分析される。
【0012】
このマイクロチップ1では2組の流路の組が形成されており、各組の試料注入口S1とS2、泳動液リザーバD1とD2、検出点M1とM2はそれぞれ同じ直線上に配置されており、それらの直線は互いに平行である。それらの直線の方向をY方向とする。マイクロチップ1は、後述の移動機構によりその直線方向(Y方向)に移動させられる。
【0013】
図3(A),(B)は各貫通穴B1,D1,S1,W1,B2,D2,S2,W2に電圧を印加するための電極パターン4を示したものである。(A)は平面図、(B)はそのA−A’線位置での断面図である。各貫通穴につながる電極パターン4は1ヶ所のコネクタ部5に集約され、コネクタ部5から電源装置に接続することにより操作性を向上させている。電極パターン4はマイクロチップ1の表面に蒸着などの方法により形成したものである。
【0014】
図3の例では、同じ機能をもつリザーバどうしが導通しているため、同じ機能をもつリザーバには同時に電圧が印加される。そのため、1つの流路セットに試料を注入した後、その流路セットの泳動を行ない、その後に次の流路セットに試料を注入するというように、同じマイクロチップの流路セットであっても試料注入をまとめて行なっておくことはできない。
【0015】
一方、図4は流路セットごとに別の電極が設けられた例である。この例では、各流路セットで独立した端子が使われるので、マイクロチップの両方の流路セットに試料を注入しておき、順次に電圧を印加して泳動を行なうことができる。
1つのマイクロチップに設ける流路セットの数は2つに限らない。図5(A)のように1組であってもよく、(B)のように3組以上であってもよい。
【0016】
図6と図7により一実施例を示す。
10はマイクロチップローディング用トレイであり、マイクロチップ1を装着して固定することができる。トレイ10はY方向に移動できるように支持されている。トレイ10の側部にはギア10aが形成され、そのギア10aが、モータ11により回転が駆動されるギア10bと噛み合っていることにより、トレイ10がY方向に移動する。トレイ10の移動によりマイクロチップ1の試料注入口S1とS2が試料注入用ニードル12が降下する位置Iに、泳動液リザーバB1とB2が泳動液加圧送液用ロッド13が降下する位置Pに、検出点M1とM2が検出部の位置にそれぞれ位置決めされる。
【0017】
泳動液供給口をもつロッド13はその先端にマイクロチップ1の表面と接触して気密性を保つためのシール部材14を備えている。ニードル12とロッド13は1つのブロック15に固定され、そのブロック15はX方向に移動するXマウント16と、上下方向に移動するZマウント17のアームによって、X方向の水平移動と垂直方向の上下移動可能に支持されている。
【0018】
ロッド13とブロック15の間には、先端のシール部材14を適度の圧力でマイクロチップ1の表面に押しつけるためのバネ18が設けられており、ニードル12とブロック15の間には、ニードル12の先端をマイクロチップ1の試料注入口S1,S2の底部に接触させるための弱いバネ19が設けられている。
【0019】
ロッド13の基端部はバルブ21を介して泳動液を吸入しているシリンジ20に接続されている。バルブ21が開かれ、シリンジ20が押し込まれることによりロッド13の先端から泳動液が吐出される。ロッド13、シール部材14、バルブ21及びシリンジ20により泳動液注入機構を構成している。
ニードル12の基端部はシリンジ20に接続されており、そのシリンジ20により試料を吸入し、吐出できるようになっている。
【0020】
トレイ10の側方には洗浄瓶23とサンプルトレイ24に配置された試料容器25が配置されており、洗浄瓶23にはロッド13とニードル12がそれぞれ移動してきて浸されて洗浄され、試料容器25にはニードル12が移動してきて浸されて試料吸引がなされる。試料容器25には標準試料又は分析試料が収容され、ニードルには1μl程度の試料が吸引される。
【0021】
モータM1、Xマウント16、Zマウント17、シリンジ20,22、及びバルブ21の動作は駆動回路26によりなされ、その駆動回路26は制御部に該当するCPUにより制御されている。
なお、図6ではニードル12とロッド13の組が2組あるように描かれているが、実際には1組のみが備えられており、図は移動した状態を表わしたものである。
【0022】
次に、この実施例の動作について説明する。
トレイ10にドライ状態のマイクロチップ1を装着し、動作を開始させると、モータM1によりトレイ10がY方向に移動させられ、マイクロチップ1の試料注入口S1と泳動液リザーバB1がそれぞれロッド13が降下する位置Pとニードル12が降下する位置Iに位置決めされる。一方、ニードル12が試料容器25から試料を吸入した後、ニードル12とロッド13がそれぞれI,Pの位置に移動する。ニードル12とロッド13はマイクロチップ1上に降下して、ロッド13はバネ18により先端のシール部材がマイクロチップ1の表面に押しつけられ、ニードル12の先端はバネ19により試料注入口S1の底部に接触させられる。その状態でシリンジ20により泳動液が送液され、マイクロチップ1の分離流路2−1と試料導入流路3−1が泳動液で満たされた後、シリンジ22から試料がニードル12により試料注入口S1に注入される。
【0023】
その後、Zマウント17によりニードル12とロッド13が上昇させられ、マイクロチップ1を固定したトレイ10が再度Y方向に移動し、流路の検出点M1を検出部の位置に合わせにいく。
分析は従来どおり、試料注入口S1と試料廃液溜めW1に電圧を所定時間印加し、次いで泳動液リザーバB1とD1に電圧を切り換えることで、両流路2−1と3−1の交差部分のサンプルが分離流路2−1方向にプラグ状で導入され、分離されて検出される。
【0024】
ニードル12とロッド13は洗浄瓶23の方向に移動し、まずニードル12が洗浄瓶23で洗浄された後、ロッド13が洗浄瓶23に、ニードル12が試料容器25にそれぞれ挿入され、ロッド13の洗浄とニードル12への次の試料の吸入がなされる。
【0025】
モータM1によりトレイ10が再度Y方向に移動させられ、マイクロチップ1の試料注入口S2と泳動液リザーバB2がそれぞれロッド13が降下する位置Pとニードル12が降下する位置Iに位置決めされ、1組目の流路セットへの泳動液の充填、試料注入、分析と同様にして、2組目の流路セットへの泳動液の充填、試料注入、分析が行なわれる。
【0026】
本発明は、他の局面として次のものを含んでいる。マイクロチップは互いに交差する分離流路と試料導入流路の組を少なくとも2組備えており、かつそれらの組の泳動液注入孔、試料導入流路の試料注入孔、及び検出点が互いに平行な線上に位置するように配置されたものである。
さらに、実際の分析では標準試料と実試料の最低2回は分析する必要があるため、試料導入路と分離流路を1組のみ備えたマイクロチップでは、分析途中で流路をいったん洗浄する必要があり、マニュアル操作では更に時間を要する結果となる。
【0027】
そこで、マイクロチップに2組以上の流路セットが設けられている場合には、1組目の流路セットで標準試料を分析し、他の流路セットで未知試料を分析するように使用することができるなど、同一のマイクロチップで複数の試料を順次連続して分析することが可能になる。マイクロチップの流路に泳動液が充填され、試料が注入された後は、分析に要する時間は極めて短かいため、標準試料と未知試料を1枚のマイクロチップの別々の流路で分析する場合でも、全体としての分析時間は短かくてすむ。
【0028】
【発明の効果】
本発明では、マイクロチップを移動させる機構、マイクロチップの流路に泳動液を自動的に供給する機構、及びマイクロチップの流路に試料を自動的に注入する機構を備えたので、マイクロチップを用いた電気泳動操作を容易に行なうことができるようになる。
また、マイクロチップを分離流路に対して直交する方向に移動させることにより、検出点の位置決め機構を兼ねることができる。
【図面の簡単な説明】
【図1】従来のマイクロチップを示す図であり、(A)と(B)はマイクロチップを構成する透明板状部材を示す平面図、(C)は正面図である。
【図2】一実施例で使用するマイクロチップを示す平面図である。
【図3】図2のマイクロチップの各貫通穴に電圧を印加する電極パターンの一例を示す図であり、(A)は平面図、(B)は(A)のA−A’線位置での断面図である。
【図4】図2のマイクロチップの各貫通穴に電圧を印加する電極パターンの他の例を示す平面図である。
【図5】(A)と(B)はそれぞれ各貫通穴に電圧を印加する電極を備えたマイクロチップの他の例を示す平面図である。
【図6】一実施例を示す斜視図である。
【図7】同実施例の制御系を示す概略構成図である。
【符号の説明】
1 マイクロチップ
2−1,2−2 分離流路
3−1,3−2 試料導入流路
4 電極パターン
5 コネクタ部
10 マイクロチップローディング用トレイ
12 試料注入用ニードル
13 泳動液加圧送液用ロッド
16 Xマウント
17 Zマウント
20,22 シリンジ
26 駆動回路
B1,B2 泳動液リザーバ
S1,S2 試料注入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for analyzing trace amounts of proteins, nucleic acids, and the like at high speed and with high resolution. More specifically, the present invention includes a pair of transparent plate-like members, and a groove through which liquid flows on the surface of at least one plate-like member. The other plate-shaped member is formed with a through hole at a position corresponding to the groove, and the plate-like member is stretched with the groove inside and the separation channel and the sample intersect each other by the groove. Using a microchip in which an introduction channel is formed, the separation channel is filled with the electrophoresis solution, the sample is introduced from the sample introduction channel to the separation channel, and an electrophoresis voltage is applied between both ends of the separation channel. The present invention relates to a microchip electrophoretic apparatus for performing electrophoretic separation on a separation channel.
[0002]
[Prior art]
In the case of analyzing a very small amount of protein or nucleic acid, an electrophoresis apparatus has been conventionally used, and a typical example is a capillary electrophoresis apparatus. A capillary electrophoresis device is a glass capillary with an inner diameter of about 50 μm or less, filled with an electrophoresis buffer, and after introducing a sample to one end, a high voltage is applied between the two ends to develop the analyte in the capillary. It is something to be made. Since the capillary has a large surface area relative to the volume, that is, the cooling efficiency is high, it is possible to apply a high voltage, and it is possible to analyze a trace amount sample such as DNA with high speed and high resolution.
[0003]
Since the capillaries are thin and easily broken to a few tens of μm to 100 μm, the capillaries have a problem that they are not easy to handle when replacing the capillary. Therefore, as shown in DJ Harrison et al./ Anal. Chim. Acta 283 (1993) 361-366, a capillary electrophoresis chip (called a microchip) formed by joining two substrates is proposed. Has been. An example of the microchip is shown in FIG. A pair of transparent glass substrates 51 and 52 are formed, and electrophoresis capillary grooves 54 and 55 that cross each other are formed on the surface of one substrate 52 by etching, and the other substrate 51 corresponds to the ends of the grooves 54 and 55. A through hole 53 is provided at a position.
[0004]
When this microchip is used, both the substrates 51 and 52 are overlapped as shown in (C), and the electrophoretic solution is injected into the grooves 54 and 55 from one of the through holes 53. Thereafter, a sample is injected into the through hole 53 at one end of the shorter groove 54, an electrode is inserted between the through holes 53, 53 at both ends of the groove 54, and a high voltage is applied for a predetermined time. As a result, the sample is dispersed in the groove 54.
[0005]
Next, an electrode is inserted into the through holes 53 at both ends of the longer groove 55, and an electrophoresis voltage is applied. As a result, the sample present at the intersecting portion 56 of both grooves 54 and 55 is electrophoresed in the groove 55. By disposing a detector such as an ultraviolet-visible spectrophotometer, a fluorophotometer, or an electrochemical detector at an appropriate position in the groove 55, the separation component is detected.
Electrophoresis using such a microchip is known to have features such as high-speed operation, ultra-trace analysis, and compactness. -It has the potential to become a reliable analyzer.
[0006]
In the conventional technology using a microchip, filling of the electrophoretic liquid from the through hole 53 for the electrophoretic liquid, which is indispensable before the analysis, into the flow paths 54 and 55, and injection of the sample into the through hole 53 for injecting the sample Are all manually operated. The through hole for the electrophoretic liquid serves as a reservoir for the electrophoretic liquid, and the through hole into which the sample is injected corresponds to the sample container. As an operation before the analysis, the electrophoresis solution is manually fed from any one of the through holes 53 by a syringe or the like, and the sample is injected from another through hole 53 at one end of the sample introduction groove 54 by another syringe.
[0007]
[Problems to be solved by the invention]
Electrophoresis filling and sample injection operations are not only complicated, but also result in longer overall analysis time including injection of the electrophoresis solution and sample, and the characteristics of microchip electrophoresis that can be separated in seconds. I will not make use of it.
Therefore, the present invention aims to automate and facilitate the operation of microchip electrophoresis.
[0008]
[Means for Solving the Problems]
In the microchip electrophoresis apparatus of the present invention, in order to automate the filling of the electrophoresis solution into the microchip and the sample injection, the moving mechanism for moving the microchip and the needle for supplying the sample move the sample injection hole of the microchip. The sample injection mechanism that moves up and down on the locus and injects the sample into the sample injection hole, and the electrophoresis solution supply port that supplies the electrophoresis solution moves up and down on the movement locus of the electrophoresis solution injection hole of the microchip. Electrophoretic liquid injection mechanism for injecting the electrophoretic liquid into the injection hole, the sample injection hole at the position immediately below the needle of the sample injection mechanism, the electrophoretic liquid injection hole at the position immediately below the electrophoretic liquid supply port of the electrophoretic liquid injection mechanism, and the separation channel A control unit for controlling the movement of the microchip by the moving mechanism so as to position the detection point at the position of the detecting unit, and for controlling the operation of the sample injection mechanism and the electrophoresis solution injection mechanism, respectively. There.
[0009]
When the microchip is mounted on the moving mechanism and the operation is started in a dry state where the electrophoresis solution is not filled in the flow path, the sample injection hole and the electrophoresis solution injection hole of the microchip are used for sample supply by the moving mechanism. Positioned just below the needle and just below the electrophoresis solution supply port. The sample supply needle and the electrophoresis solution supply port descend to the microchip, and the electrophoresis solution is filled and the sample is injected.
[0010]
Thereafter, both the sample supply needle and the electrophoresis solution supply port rise, the microchip is moved by the moving mechanism, the detection point is positioned at the position of the detection unit, and the analysis is performed.
After the analysis is completed, the microchip is further moved by a moving mechanism, and the filling of the electrophoretic solution, the sample injection, and the analysis are repeated using the unused channel.
[0011]
【Example】
FIG. 2 shows a microchip used in one embodiment. In the same manner as shown in FIG. 1, the microchip 1 has a pair of capillary grooves 2-1 and 3-1 that intersect each other by etching on one surface of a pair of transparent glass substrates, and 2-2 and 3-2. The other substrate is provided with through holes B1, D1, S1, W1, B2, D2, S2, and W2 at positions corresponding to the ends of the grooves. The capillary groove 2-1 is a separation channel, and electrophoresis solution reservoirs B1 and D1 are arranged at both ends thereof. The capillary groove 3-1 is a sample introduction channel, and has a sample inlet S1 at one end and a sample waste liquid reservoir W1 at the other end. Is arranged. A set of the two flow paths 2-1 and 3-1 is used as a first flow path set, and a sample of the volume at the intersection of the flow paths 2-1 and 3-1 is analyzed. Similarly, the capillary groove 2-2 is a separation channel, and electrophoresis solution reservoirs B2 and D2 are respectively arranged at both ends thereof. The capillary groove 3-2 is a sample introduction channel and has a sample inlet S2 at one end and a sample waste liquid at the other end. A reservoir W2 is arranged. The set of the two flow paths 2-2 and 3-2 is set as a second flow path set, and a sample of the volume at the intersection of the flow paths 2-2 and 3-2 is analyzed.
[0012]
In the microchip 1, two sets of flow paths are formed, and the sample inlets S1 and S2, the electrophoresis solution reservoirs D1 and D2, and the detection points M1 and M2 are arranged on the same straight line. The straight lines are parallel to each other. The direction of these straight lines is defined as the Y direction. The microchip 1 is moved in the linear direction (Y direction) by a moving mechanism described later.
[0013]
3A and 3B show an electrode pattern 4 for applying a voltage to each of the through holes B1, D1, S1, W1, B2, D2, S2, and W2. (A) is a plan view, and (B) is a cross-sectional view taken along the line AA ′. The electrode pattern 4 connected to each through hole is concentrated in one connector portion 5, and the operability is improved by connecting the connector portion 5 to the power supply device. The electrode pattern 4 is formed on the surface of the microchip 1 by a method such as vapor deposition.
[0014]
In the example of FIG. 3, since the reservoirs having the same function are electrically connected, a voltage is simultaneously applied to the reservoirs having the same function. Therefore, even if the same microchip channel set is used, after the sample is injected into one channel set, the channel set is migrated and then the sample is injected into the next channel set. Sample injection cannot be performed collectively.
[0015]
On the other hand, FIG. 4 is an example in which another electrode is provided for each channel set. In this example, since an independent terminal is used in each channel set, the sample can be injected into both channel sets of the microchip, and electrophoresis can be performed by sequentially applying a voltage.
The number of flow channel sets provided in one microchip is not limited to two. One set may be used as shown in FIG. 5A, or three or more sets may be used as shown in FIG.
[0016]
One embodiment is shown in FIG. 6 and FIG.
Reference numeral 10 denotes a microchip loading tray on which the microchip 1 can be mounted and fixed. The tray 10 is supported so as to be movable in the Y direction. A gear 10a is formed on the side of the tray 10, and the gear 10a meshes with a gear 10b whose rotation is driven by the motor 11, whereby the tray 10 moves in the Y direction. The sample injection ports S1 and S2 of the microchip 1 are moved to the position I where the sample injection needle 12 is lowered, and the electrophoresis solution reservoirs B1 and B2 are moved to the position P where the electrophoresis solution pressurizing and feeding rod 13 is lowered. The detection points M1 and M2 are respectively positioned at the positions of the detection units.
[0017]
The rod 13 having the electrophoresis solution supply port is provided with a seal member 14 at the tip thereof for contacting the surface of the microchip 1 and maintaining airtightness. The needle 12 and the rod 13 are fixed to one block 15, and the block 15 is moved horizontally in the X direction and vertically moved in the vertical direction by the arm of the X mount 16 that moves in the X direction and the Z mount 17 that moves in the vertical direction. It is supported movably.
[0018]
A spring 18 is provided between the rod 13 and the block 15 to press the sealing member 14 at the tip against the surface of the microchip 1 with an appropriate pressure. A weak spring 19 is provided for bringing the tip into contact with the bottoms of the sample inlets S1 and S2 of the microchip 1.
[0019]
The proximal end portion of the rod 13 is connected to a syringe 20 that sucks the electrophoresis solution through a valve 21. When the valve 21 is opened and the syringe 20 is pushed, the electrophoresis solution is discharged from the tip of the rod 13. The rod 13, the seal member 14, the valve 21, and the syringe 20 constitute an electrophoresis solution injection mechanism.
The proximal end portion of the needle 12 is connected to a syringe 20 so that the sample can be sucked and discharged by the syringe 20.
[0020]
On the side of the tray 10, a cleaning container 23 and a sample container 25 disposed on the sample tray 24 are disposed. The cleaning bottle 23 is moved by being immersed in the rod 13 and the needle 12, respectively, and cleaned. In 25, the needle 12 moves and is immersed, and the sample is sucked. A standard sample or an analysis sample is accommodated in the sample container 25, and about 1 μl of the sample is sucked into the needle.
[0021]
The operations of the motor M1, the X mount 16, the Z mount 17, the syringes 20 and 22, and the valve 21 are performed by a drive circuit 26, and the drive circuit 26 is controlled by a CPU corresponding to a control unit.
In FIG. 6, the needle 12 and the rod 13 are depicted as having two pairs, but only one pair is actually provided, and the figure shows the state of movement.
[0022]
Next, the operation of this embodiment will be described.
When the microchip 1 in the dry state is mounted on the tray 10 and the operation is started, the tray 10 is moved in the Y direction by the motor M1, and the rod 13 is connected to the sample inlet S1 of the microchip 1 and the electrophoresis solution reservoir B1. The position P is lowered and the position I is lowered by the needle 12. On the other hand, after the needle 12 sucks the sample from the sample container 25, the needle 12 and the rod 13 move to positions I and P, respectively. The needle 12 and the rod 13 are lowered onto the microchip 1, and the tip of the rod 13 is pressed against the surface of the microchip 1 by the spring 18, and the tip of the needle 12 is brought to the bottom of the sample inlet S 1 by the spring 19. Contacted. In this state, the electrophoresis solution is fed by the syringe 20, and the separation channel 2-1 and the sample introduction channel 3-1 of the microchip 1 are filled with the electrophoresis solution. It is injected into the inlet S1.
[0023]
Thereafter, the needle 12 and the rod 13 are raised by the Z mount 17, the tray 10 to which the microchip 1 is fixed moves again in the Y direction, and the detection point M1 of the flow path is aligned with the position of the detection unit.
As in the conventional analysis, a voltage is applied to the sample inlet S1 and the sample waste reservoir W1 for a predetermined time, and then the voltage is switched to the electrophoresis solution reservoirs B1 and D1, so that The sample is introduced in the form of a plug in the direction of the separation channel 2-1, separated and detected.
[0024]
The needle 12 and the rod 13 move in the direction of the cleaning bottle 23. After the needle 12 is first cleaned with the cleaning bottle 23, the rod 13 is inserted into the cleaning bottle 23 and the needle 12 is inserted into the sample container 25. Washing and inhalation of the next sample into the needle 12 are performed.
[0025]
The tray 10 is moved again in the Y direction by the motor M1, and the sample inlet S2 and the electrophoresis solution reservoir B2 of the microchip 1 are positioned at the position P where the rod 13 is lowered and the position I where the needle 12 is lowered, respectively. In the same manner as the filling of the electrophoretic solution into the eye channel set, the sample injection, and the analysis, the filling of the electrophoretic solution into the second channel set, the sample injection, and the analysis are performed.
[0026]
The present invention includes the following as other aspects. The microchip includes at least two pairs of separation channels and sample introduction channels that intersect each other, and the electrophoresis solution injection holes, the sample injection holes of the sample introduction channels, and the detection points of these groups are parallel to each other. It is arranged so as to be located on the line.
Furthermore, in actual analysis, it is necessary to analyze the standard sample and the actual sample at least twice. Therefore, in the case of a microchip having only one set of sample introduction channel and separation channel, the channel must be washed once during the analysis. As a result, manual operation results in more time.
[0027]
Therefore, when two or more channel sets are provided on the microchip, the standard sample is analyzed with the first channel set, and the unknown sample is analyzed with the other channel set. For example, a plurality of samples can be sequentially analyzed with the same microchip. After the microchip flow path is filled with the electrophoresis solution and the sample is injected, the time required for the analysis is extremely short, so the standard sample and the unknown sample are analyzed in separate flow paths of one microchip. However, the overall analysis time is short.
[0028]
【The invention's effect】
In the present invention, a mechanism for moving the microchip, a mechanism for automatically supplying the electrophoresis solution to the flow path of the microchip, and a mechanism for automatically injecting the sample into the flow path of the microchip are provided. The used electrophoresis operation can be easily performed.
Further, by moving the microchip in a direction orthogonal to the separation channel, it can also serve as a detection point positioning mechanism.
[Brief description of the drawings]
1A and 1B are diagrams showing a conventional microchip, in which FIGS. 1A and 1B are plan views showing a transparent plate member constituting the microchip, and FIG. 1C is a front view;
FIG. 2 is a plan view showing a microchip used in one embodiment.
3 is a diagram showing an example of an electrode pattern for applying a voltage to each through hole of the microchip of FIG. 2, (A) is a plan view, and (B) is a position along the line AA ′ of (A). FIG.
4 is a plan view showing another example of an electrode pattern for applying a voltage to each through hole of the microchip of FIG. 2; FIG.
FIGS. 5A and 5B are plan views showing other examples of microchips each provided with an electrode for applying a voltage to each through hole. FIGS.
FIG. 6 is a perspective view showing an embodiment.
FIG. 7 is a schematic configuration diagram showing a control system of the same embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Microchip 2-1, 2-2 Separation flow path 3-1, 3-2 Sample introduction flow path 4 Electrode pattern 5 Connector part 10 Microchip loading tray 12 Sample injection needle 13 Electrophoresis liquid pressurizing and feeding rod 16 X mount 17 Z mount 20, 22 Syringe 26 Drive circuit B1, B2 Electrophoresis liquid reservoir S1, S2 Sample inlet

Claims (1)

一対の透明板状部材を備え、少なくとも一方の板状部材の表面に液が流れる溝が形成され、他方の板状部材にはその溝に対応する位置に貫通穴が設けられ、これら板状部材が前記溝を内側にして張り合わされてその溝により互いに交差する分離流路と試料導入流路が形成されているマイクロチップを用い、分離流路と試料導入流路に泳動液を満たし、試料導入流路から分離流路に試料を導入し、分離流路の両端間に泳動電圧を印加して試料を分離流路で電気泳動分離させるマイクロチップ電気泳動装置において、
前記マイクロチップを移動させる移動機構と、
試料を供給するニードルが前記貫通穴の1つである試料注入孔の移動軌跡上で上下に移動して試料注入孔に試料を注入する試料注入機構と、
泳動液を供給する泳動液供給口が前記貫通穴の他の1つである泳動液注入孔の移動軌跡上で上下に移動して泳動液注入孔に泳動液を注入する泳動液注入機構と、
前記試料注入孔を試料注入機構の前記ニードル直下の位置、前記泳動液注入孔を泳動液注入機構の泳動液供給口直下の位置、及び前記分離流路上の検出点を検出部の位置にそれぞれ位置決めするように前記移動機構によるマイクロチップの移動の制御、並びに前記試料注入機構と前記泳動液注入機構の動作の制御を行なう制御部と、を備えたことを特徴とするマイクロチップ電気泳動装置。
A pair of transparent plate-like members is provided, and a groove through which liquid flows is formed on the surface of at least one plate-like member, and the other plate-like member is provided with a through hole at a position corresponding to the groove. Using a microchip in which a separation channel and a sample introduction channel that are crossed with each other are formed with the groove inside, and the separation channel and the sample introduction channel are filled with the electrophoresis solution, and the sample introduction In a microchip electrophoresis apparatus that introduces a sample from a flow channel into a separation flow channel, applies an electrophoresis voltage between both ends of the separation flow channel, and electrophoretic separates the sample in the separation flow channel,
A moving mechanism for moving the microchip;
A sample injection mechanism for injecting the sample into the sample injection hole by moving the needle for supplying the sample up and down on the movement locus of the sample injection hole which is one of the through holes;
An electrophoretic liquid injection mechanism for injecting an electrophoretic liquid into the electrophoretic liquid injection hole by moving the electrophoretic liquid supply port for supplying the electrophoretic liquid up and down on the movement trajectory of the electrophoretic liquid injection hole which is another one of the through holes;
Position the sample injection hole directly below the needle of the sample injection mechanism, position the electrophoresis solution injection hole directly below the electrophoresis solution supply port of the electrophoresis solution injection mechanism, and the detection point on the separation channel at the position of the detection unit. A microchip electrophoresis apparatus comprising: a control unit that controls the movement of the microchip by the movement mechanism and the operation of the sample injection mechanism and the electrophoresis solution injection mechanism.
JP32472996A 1996-11-19 1996-11-19 Microchip electrophoresis device Expired - Fee Related JP3661320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32472996A JP3661320B2 (en) 1996-11-19 1996-11-19 Microchip electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32472996A JP3661320B2 (en) 1996-11-19 1996-11-19 Microchip electrophoresis device

Publications (2)

Publication Number Publication Date
JPH10148628A JPH10148628A (en) 1998-06-02
JP3661320B2 true JP3661320B2 (en) 2005-06-15

Family

ID=18169057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32472996A Expired - Fee Related JP3661320B2 (en) 1996-11-19 1996-11-19 Microchip electrophoresis device

Country Status (1)

Country Link
JP (1) JP3661320B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143152A (en) * 1997-11-07 2000-11-07 The Regents Of The University Of California Microfabricated capillary array electrophoresis device and method
US6787111B2 (en) * 1998-07-02 2004-09-07 Amersham Biosciences (Sv) Corp. Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis
US6627446B1 (en) * 1998-07-02 2003-09-30 Amersham Biosciences (Sv) Corp Robotic microchannel bioanalytical instrument
US6132582A (en) * 1998-09-14 2000-10-17 The Perkin-Elmer Corporation Sample handling system for a multi-channel capillary electrophoresis device
JP4178653B2 (en) * 1999-02-26 2008-11-12 日立化成工業株式会社 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
JP2000310615A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP4178654B2 (en) * 1999-02-26 2008-11-12 日立化成工業株式会社 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
JP2001242138A (en) * 2000-02-29 2001-09-07 Hitachi Chem Co Ltd Microchip electrophresis apparatus
US7033475B2 (en) 2000-10-25 2006-04-25 Shimadzu Corporation Electrophoretic apparatus
JP4375031B2 (en) 2004-01-28 2009-12-02 株式会社島津製作所 Microchip processing method and apparatus
JP4271610B2 (en) * 2004-03-26 2009-06-03 アイダエンジニアリング株式会社 Microchip for electrophoresis
GB0502556D0 (en) * 2005-02-08 2005-03-16 Lab901 Ltd Analysis instrument
JP4720419B2 (en) * 2005-10-11 2011-07-13 株式会社島津製作所 Separation buffer solution filling apparatus for microchip and microchip processing apparatus having the same
JP2007155560A (en) * 2005-12-06 2007-06-21 Norio Okuyama Electrophoresis apparatus, and electrophoresis system
US8097470B2 (en) * 2006-07-18 2012-01-17 Shimadzu Corporation Microchip analysis method and apparatus
JP5830230B2 (en) * 2010-07-20 2015-12-09 アークレイ株式会社 Analysis apparatus and analysis method
JP5708394B2 (en) * 2011-09-14 2015-04-30 株式会社島津製作所 Solution filling mechanism
JP6098471B2 (en) * 2013-10-22 2017-03-22 株式会社島津製作所 Capillary electrophoresis device
JP6315783B2 (en) * 2014-03-17 2018-04-25 島津エンジニアリング株式会社 Automatic sealing device
JP5941092B2 (en) * 2014-04-14 2016-06-29 アークレイ株式会社 Analysis apparatus and analysis method
GB201504287D0 (en) * 2015-03-13 2015-04-29 Ge Healthcare Ltd Piercing device
EP3093656A1 (en) 2015-05-13 2016-11-16 ARKRAY, Inc. Analytical tool and analytical system
JP6619286B2 (en) * 2015-05-13 2019-12-11 アークレイ株式会社 Analysis tools and analysis systems
US10088449B2 (en) 2015-12-18 2018-10-02 Shimadzu Corporation Electrophoresis device
CN114945827A (en) * 2020-02-27 2022-08-26 株式会社岛津制作所 Column containing device and liquid chromatograph
CN117907408B (en) * 2024-03-18 2024-06-25 深圳市真迈生物科技有限公司 Chip, chip transfer device and analysis system
CN117890452B (en) * 2024-03-18 2024-06-25 深圳市真迈生物科技有限公司 Chip transfer device, equipment and analysis system

Also Published As

Publication number Publication date
JPH10148628A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
JP3661320B2 (en) Microchip electrophoresis device
JP4375031B2 (en) Microchip processing method and apparatus
JP4260369B2 (en) Automatic control microchannel bioanalytical instrument
JP3736007B2 (en) Microchip electrophoresis device
US6875403B2 (en) Method and apparatus for reproducible sample injection on microfabricated devices
JPH1010088A (en) Capillary electrophoretic device
US20020144907A1 (en) Apparatus and method of introducing a sample in a microchip electrophoresis
US7931789B2 (en) Device for charging separation buffer liquid to microchip, and microchip processing device equipped with the charging device, electrophoresis method in capillary channel and its microchip processing device
JP3562460B2 (en) Electrophoresis device
EP1006356A2 (en) Capillary electrophoretic apparatus
JP2007506092A (en) Electrophoresis apparatus and method, and electrophoresis member and sample dispensing probe
JP2007107918A (en) Microchip processor
JP4438502B2 (en) Microchip analysis method and apparatus
JP2002310990A (en) Electrophoretic equipment
JP6072619B2 (en) Electrophoresis device
Kuldvee et al. Nonconventional samplers in capillary electrophoresis
JP3887943B2 (en) Microchip electrophoresis device
JP7276439B2 (en) Microchip electrophoresis method and microchip electrophoresis apparatus
JP2010523942A (en) Microchannel cleaning method
JP5310605B2 (en) Microchip electrophoresis method and apparatus
JP2000009690A (en) Solution filling apparatus for capillary electrophoresis
US8097470B2 (en) Microchip analysis method and apparatus
US8043492B2 (en) Method for pretreatment of electrophoresis, substrate for analysis, and pretreatment apparatus for electrophoresis
US6994778B2 (en) Microfluidic device and analyzing method using the same
US10088449B2 (en) Electrophoresis device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees