[go: up one dir, main page]

JP3659833B2 - Operation method of multi-stage submerged membrane separator - Google Patents

Operation method of multi-stage submerged membrane separator Download PDF

Info

Publication number
JP3659833B2
JP3659833B2 JP07873499A JP7873499A JP3659833B2 JP 3659833 B2 JP3659833 B2 JP 3659833B2 JP 07873499 A JP07873499 A JP 07873499A JP 7873499 A JP7873499 A JP 7873499A JP 3659833 B2 JP3659833 B2 JP 3659833B2
Authority
JP
Japan
Prior art keywords
membrane
case
cartridge
membrane cartridge
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07873499A
Other languages
Japanese (ja)
Other versions
JP2000271409A (en
Inventor
達也 上島
山田  豊
清司 和泉
雅治 塗師
英彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP07873499A priority Critical patent/JP3659833B2/en
Publication of JP2000271409A publication Critical patent/JP2000271409A/en
Application granted granted Critical
Publication of JP3659833B2 publication Critical patent/JP3659833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下廃水処理、汚泥濃縮などに使用する多段積み浸漬型膜分離装置の運転方法に関する。
【0002】
【従来の技術】
下廃水処理、汚泥濃縮などに使用する固液分離装置に、図5〜図6に示したような浸漬型膜分離装置1がある。この膜分離装置1は、ケーシング2内の上部に平板状膜カートリッジ3を配列し、その下方に散気装置4を内設したものであり、処理槽5の内部に処理水量に応じた台数だけ設置して、原水6を連続的に導入し、散気装置4より散気する状態において、槽内の処理対象液7を膜カートリッジ3により濾過し、膜面を透過した透過水をチューブ8、集水管9、透過水導出管10を通じて槽外へ導出するようにしている。搬送や保守管理を容易にするために、ケーシング2を、膜カートリッジ3を収容する膜ケース2aと散気装置4を収容する散気ケース2bとに分割形成することも多い。
【0003】
この膜分離装置1は、散気装置4からの気泡によって生起する気液混合流を膜カートリッジ3間を上昇させることで、クロスフロー濾過および膜面洗浄を可能ならしめたものであり、安定した濾過性能を発揮するとともに、装置設置面積当たりの膜面積(膜カートリッジ3の設置数に対応)を大きくとれるため、他のタイプの膜分離装置を使用する場合に比べて処理槽5の容量を小さくすることができ、運転およびメンテナンスも容易であることが広く認められている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来は複数の膜分離装置1を間隔をおいて並列に、つまり平面的に設置していたため、膜カートリッジ3の設置数は槽内充填効率の観点からは必ずしも大きくなく、処理槽容量を低減できるという利点を生かしきれていなかった。
【0005】
このため本発明者らは特願平10−334835号において、複数の膜ケースを、間隔ケースを介して多段に積載したものを提案したが、このような多段積み浸漬型膜分離装置では、間隔ケースによって気泡がより分散するため、下段膜ケースと上段膜ケースにおける膜面洗浄効果が異なり、上段の方がより高い洗浄効果が得られる。そして洗浄効果が高い上段の膜カートリッジの方が有効膜面積が大きく保持されるため、上下段の膜カートリッジにおける透過流束を同じに設定すると、有効膜面積に限った実質的な透過流束は下段の膜カートリッジの方が高くなり、結果的に下段の膜カートリッジに先に目詰まりが生じる恐れがある。
【0006】
目詰まりによる濾過性能の低下を解消するために通常は定期的に、膜カートリッジの透過液流路に薬液を送り込む薬液逆洗を実施するが、薬液逆洗によっても解消できないケーキ層が生じた場合等には、膜カートリッジを膜ケースごと槽外へ取り出して物理的洗浄などの別途の洗浄方法を実施する必要がある。その際に、下段の膜ケースは上段の膜ケースを取り出した後でしか取り出せないため、濾過性能に支障のない上段の膜カートリッジまで槽外に取り出さなければならず、その後に上段の膜カートリッジにケーキ層が生じた時には再び取り出し作業が必要となるため、二度手間でもある。その作業の煩雑さを避けるために、濾過性能に支障のない上段の膜カートリッジも、下段の膜カートリッジと同時に槽外で洗浄することさえ考えられる。
【0007】
本発明は上記問題を解決するもので、膜面に目詰まりが生じた時の膜カートリッジの脱着を容易にかつ効率的に行えるようにすることを目的とするものである。
【0008】
【課題を解決するための手段】
上記問題を解決するために本発明は、上下が開口した膜ケースの内部に、剛性を有する複数の平板状膜カートリッジを膜面を鉛直方向にして、膜面間に一定間隙をおいて配列することにより膜ケースユニットを構成し、複数の膜ケースユニットを、膜ケース間に開放空間を形成する間隔ケースを介して多段に配置し、最下段の膜ケースユニットの下方に、散気装置を内設した散気ケースを設け、膜ケースユニットごとに、配列した各膜カートリッジの透過側に一端において連通する透過水導出管を設けた多段積み浸漬型膜分離装置を運転するに際し、各透過水導出管を通して膜差圧を生起する膜差圧生起手段を制御することにより、上段の膜カートリッジほど透過流束を大きくして運転するようにしたものである。
【0009】
膜差圧生起手段を制御するにはたとえば、透過水導出管にポンプ装置を介装した吸引濾過を行う場合に、各透過水導出管にポンプ装置を設けてそれぞれの吸引圧を調整するか、あるいはポンプ装置を共有して各透過水導出管に設けた流量調整手段を調整し、透過水導出管の他端を大気圧下に開放して水頭を利用した重力濾過を行う場合に、開口端の上下方向の位置を調整する。
【0010】
上記した構成によれば、上下各段での気泡による膜面洗浄効果の相違を考慮して、上段の膜カートリッジほど透過流束を大きくすることにより、上段の膜カートリッジの膜汚染の進行を下段の膜カートリッジに先んじさせることができる。
したがって、上下各段の膜カートリッジの透過流束に適当な差をつけることによって、槽内では解消できない膜汚染を槽外での洗浄によって除去する頻度を、脱着の容易な上段の膜カートリッジ複数回に対して、脱着の困難な下段の膜カートリッジ1回に設定することができ、各膜カートリッジを濾過性能に支障がない範囲で長く使用しながらも、膜カートリッジの脱着作業の簡素化を図ることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1に示した膜分離装置11において、上下が開口した膜ケース12の内部に、剛性を有する複数の平板状膜カートリッジ13(厚さ約6mm)を膜面を鉛直方向にして、膜面間に一定間隙をおいて(通常6〜10mm)配列することにより膜ケースユニット14を構成し、構成した膜ケースユニット14を上下に2段に配置するとともに、膜ケース12間に開放空間を形成する間隔ケース15を設け、下段の膜ケースユニット14の下方に、散気装置16を内設した散気ケース17を設けている。
【0012】
膜カートリッジ13は、図2(a)(b)に示したようなものであり、ABS樹脂などで製作した剛性を有する濾板13Aの両表面に濾過膜シート13Bを配置して膜周縁部において接着(あるいは溶着)し、濾板13Aの内部に形成した透過水流路13C、および濾板13Aと濾過膜シート13Bとの間に連通する透過水取出口13Dを濾板13Aに設けている。濾過膜シート13Bは、支持体である不織布などにポリオレフィン系樹脂等を塗布(コーティング)して一体に成形したものである。
【0013】
各膜ケース12の内側面には、膜カートリッジ13の周縁部を挿入するスリット12Aを形成しており、散気ケース17には処理対象液の流通開口17Aを形成している。上段の膜ケース12および間隔ケース15にはそれぞれ、膜カートリッジ13の透過水取出口13Dにチューブ18を介して連通する集水管19,20を設けている。集水管20は間隔ケース15と一体をなし、チューブ18のための接続ノズルはケース内部で開口している。各膜ケース12内に配列された膜カートリッジ13の上端には、その浮上を防止する膜押え21,22が当接している。
【0014】
集水管19,20にはそれぞれ透過水導出管23,24が連通している。各透過水導出管23,24はポンプ装置25,26を介装し、その他端は槽外の処理水槽(図示せず)で開口している。ポンプ装置25,26は、制御装置27によって吸引圧を制御可能である。
28はブロワやコンプレッサなどの給気源、29は給気源28と散気装置16との間に配設した給気管、30は給気管29に弁装置31を介して連通する給水手段である。
【0015】
上記した構成における作用を説明する。
生物処理を行う処理槽32の活性汚泥混合液33中に膜分離装置11を浸漬設置し、原水34を連続的に導入する状態において、給気源28より散気装置16を通じて散気するとともに、制御装置27によりポンプ装置25,26の吸引圧を制御し、透過水導出管23,24を通じて上下各段の膜カートリッジ13に適当な膜差圧を生起する。原水34の水質によっては、酸素不足にならないように別途の散気装置(図示せず)でも散気する。また、散気装置16の散気孔の閉塞が生じないように、定期的に弁装置31によって流路を所定時間だけ切り替え、給水手段30より給気管29を通じて散気装置16に洗浄水を供給する。
【0016】
このようにすることにより、散気装置16より散気ケース17内に均一に噴出する散気空気のエアリフト作用によって活性汚泥混合液33の上昇流が生じ、この気液混合上昇流によって、流通開口17Aを通じた装置内外にわたる循環流が発生するため、槽内の活性汚泥混合液33が十分に攪拌混合され、活性汚泥・酸素・汚濁物質の接触機会が上昇して効率よい活性汚泥処理が行われる。
【0017】
また、この気液混合上昇流が、2段に配置された膜ケースユニット14(すなわち膜ケース12)に順次に流入して膜カートリッジ13間の間隙を通過する間に、各膜カートリッジ13の膜面において活性汚泥混合液33がクロスフロー濾過され、濾過膜シート13Bを透過して透過水流路13Cに流入した透過水が透過水取出口13D、チューブ18、集水管19,20、透過水導出管23,24を通じて処理水槽へ導かれるが、気液混合上昇流によって濃度分極が防止されるとともに、散気空気の気泡によって膜カートリッジ13の膜面が洗浄されるため、濾過効率は高い。
【0018】
その際に、膜ケースユニット14を上下に多段(ここでは2段)に配置したことで、装置下部の散気装置16によって上記したような複数の膜ケースユニット14にわたる気液混合上昇流を惹起できるため、膜カートリッジ13の1枚当たりの散気量を低減できる。また膜カートリッジ13の1枚当たりの装置設置面積を低減できるため、装置周囲に十分な間隙をとって偏流を防止することができ、ケーキ層の局所堆積およびそれによる膜間閉塞を防止できる。
【0019】
さらに、膜ケース12間に間隔ケース15が介在するため、気液混合上昇流を構成する気泡流はその開放空間で一旦拡散してから、上方の膜カートリッジ13間の間隙に均等に流入することになり、これによってもケーキ層の局所堆積およびそれによる膜間閉塞を防止できる。
しかるにこのとき、間隔ケース15によって気泡流が分散することで、上段の膜ケース12内での膜面洗浄効果が下段よりも高くなるので、上記したように制御装置27によってポンプ装置25,26の吸引圧を制御するに際して、上段の膜カートリッジ13ほど透過流束を大きくなるように、たとえば上段0.8(m3/m2・日)、下段0.6(m3/m2・日)になるように、各段の膜カートリッジ13に生起する膜差圧を調整する。各段において適切な透過流束の大きさは気液混合上昇流の速さなどによって異なるが、通常は上段の膜カートリッジ13の透過流束が下段の膜カートリッジ13の透過流束の130〜200%、好ましくは150%以上となるようにする。
【0020】
運転を続ける間に、上記したような膜面洗浄によっても次第に膜汚染物質が堆積してくるので、目詰まりを解消するために定期的に薬液逆洗を実施する。つまり、透過水導出管27を通じて膜カートリッジ13の透過液流路に、膜汚染物質の種類に応じた次亜塩素酸ソーダ、シュウ酸などの薬液を送り込む。
そして、薬液逆洗によっても解消できないケーキ層が生じた時に、膜カートリッジ13を膜ケース12ごと槽外へ取り出して物理的洗浄などの別途の洗浄方法を実施する。それに際し、上記したように上下各段の膜カートリッジ13の透過流束に差をつけているので、上段の膜カートリッジ13にケーキ層がより速く堆積することになり、上段の膜カートリッジ13を槽外で洗浄する頻度は、下段の膜カートリッジ13の洗浄頻度より高くなる。上記したような透過流束比では、上下各段での気泡による膜面洗浄効果の相違にもよるが、膜ケース12の脱着が容易な上段の膜カートリッジ13を2〜3回洗浄する間に、膜ケース12の脱着が困難な下段の膜カートリッジ13を1回洗浄する程度になる。したがって、上下各段の膜カートリッジ13を濾過性能に支障がない範囲で長く使用しながらも、膜カートリッジ13の脱着作業の容易化を図ることができる。ただし万が一、下段の膜カートリッジ13間の間隙が閉塞するほどのケーキ層が堆積したら、気泡流に偏りが生じ、結果的に上段の膜カートリッジ13でも膜間閉塞を来たすので、そのような事態を招かないように下段の膜カートリッジ13の槽外洗浄頻度を設定する。
【0021】
なお、上下各段の膜カートリッジ13の透過流束に差をつけることは、下段の膜カートリッジ13の膜寿命、つまり濾過膜シート13Bの破断などの恐れなく使用できる期間を上段のものより延ばすことになり、新しい膜カートリッジと交換する手間の点でも有利である。
図3においては、透過水導出管23にポンプ装置25を介装するとともに、この透過水導出管23に、流量調整弁35,36を介して透過水導出管24を連通させており、流量調整弁35,36によって透過水導出管23,24を通じて導出する透過水流量を調整することで、上段の膜カートリッジ13の透過流束を下段の膜カートリッジ13より大きくしている。流量調整弁35,36に代えてダンパを配置することも可能である。
【0022】
図4は、透過水導出管23,24の他端を大気圧下に開放して、開口端23a,24aに相応する位置での水頭を利用して重力濾過を行うようにした装置構成を示しており、開口端23a,24aの上下方向の位置を調整することで、上段の膜カートリッジ13の透過流束を下段の膜カートリッジ13より大きくしている。
【0023】
さらには、同じ膜差圧条件で透過流束が相違する別途の膜カートリッジを上段と下段とに配置することによっても、上下段の膜カートリッジの透過流束に差をつけることは可能である。
【0024】
【発明の効果】
以上のように本発明によれば、複数の膜カートリッジを配列した膜ケースユニットを上下に多段に配置してなる多段積み浸漬型膜分離装置を運転するに際し、上段の膜カートリッジほど透過流束を大きくすることで、上段の膜カートリッジの膜汚染が下段の膜カートリッジより先に進行するようにした。このことにより、膜カートリッジを槽外へ取り出して洗浄する作業を、脱着の容易な上段の膜カートリッジ複数回に対して、脱着の困難な下段の膜カートリッジ1回に設定することができ、各膜カートリッジを濾過性能の支障のない限り長く使用しながらも、作業の簡素化を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における運転方法が適用される多段積み浸漬型膜分離装置を示した説明図である。
【図2】同多段積み浸漬型膜分離装置に配列された膜カートリッジの構成を示した説明図である。
【図3】本発明の第2実施形態における運転方法が適用される多段積み浸漬型膜分離装置を示した説明図である。
【図4】本発明の第3実施形態における運転方法が適用される多段積み浸漬型膜分離装置を示した説明図である。
【図5】従来の膜分離装置の斜視図である。
【図6】同膜分離装置を処理槽の内部に浸漬設置した状態を示す説明図である。
【符号の説明】
12 膜ケース
13 膜カートリッジ
14 膜ケースユニット
15 間隔ケース
16 散気装置
17 散気ケース
23,24 透過水導出管
23A,24A 開口端(膜差圧生起手段)
25,26 ポンプ装置(膜差圧生起手段)
35,36 流量調整弁(膜差圧生起手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a multi-stage submerged membrane separator used for sewage treatment, sludge concentration, and the like.
[0002]
[Prior art]
As a solid-liquid separator used for sewage wastewater treatment, sludge concentration, etc., there is a submerged membrane separator 1 as shown in FIGS. This membrane separation device 1 has a plate-like membrane cartridge 3 arranged in the upper part of a casing 2 and an air diffuser 4 provided in the lower part thereof. The number of units in the treatment tank 5 according to the amount of treated water. In a state where the raw water 6 is continuously introduced and diffused from the diffuser 4, the treatment target liquid 7 in the tank is filtered by the membrane cartridge 3, and the permeated water that has passed through the membrane surface is passed through the tube 8, The water is extracted to the outside of the tank through the water collecting pipe 9 and the permeated water outlet pipe 10. In order to facilitate transport and maintenance management, the casing 2 is often divided into a membrane case 2a for housing the membrane cartridge 3 and an air diffuser case 2b for housing the air diffuser 4.
[0003]
This membrane separation device 1 is capable of cross-flow filtration and membrane surface cleaning by raising a gas-liquid mixed flow generated by bubbles from the air diffuser 4 between the membrane cartridges 3 and is stable. In addition to exhibiting filtration performance, the membrane area per unit installation area (corresponding to the number of installed membrane cartridges 3) can be increased, so the capacity of the treatment tank 5 can be reduced compared to the case of using other types of membrane separation devices. It is widely accepted that it is easy to operate and maintain.
[0004]
[Problems to be solved by the invention]
However, since a plurality of membrane separation apparatuses 1 are conventionally installed in parallel at intervals, that is, in a plane, the number of membrane cartridges 3 is not necessarily large from the viewpoint of the filling efficiency in the tank, and the processing tank capacity is reduced. The advantage of being able to reduce was not fully utilized.
[0005]
For this reason, the present inventors have proposed in Japanese Patent Application No. 10-334835 that a plurality of membrane cases are stacked in multiple stages via a spacing case. Since the bubbles are more dispersed depending on the case, the film surface cleaning effect is different between the lower film case and the upper film case, and the upper film can obtain a higher cleaning effect. Since the effective membrane area is kept larger in the upper membrane cartridge having a higher cleaning effect, if the permeation flux in the upper and lower membrane cartridges is set to be the same, the substantial permeation flux limited to the effective membrane area is The lower membrane cartridge is higher, and as a result, the lower membrane cartridge may be clogged first.
[0006]
In order to eliminate the deterioration of filtration performance due to clogging, usually chemical liquid backwashing is performed periodically to send the chemical liquid to the permeate flow path of the membrane cartridge, but there is a cake layer that cannot be resolved even by chemical liquid backwashing. For example, the membrane cartridge needs to be taken out of the tank together with the membrane case and subjected to another cleaning method such as physical cleaning. At that time, since the lower membrane case can be taken out only after the upper membrane case is taken out, the upper membrane cartridge that does not impair the filtration performance must be taken out of the tank. When the cake layer is formed, it is necessary to take it out again, so it is bothersome. In order to avoid the complexity of the work, it is conceivable that the upper membrane cartridge that does not impair the filtration performance is also washed outside the tank at the same time as the lower membrane cartridge.
[0007]
An object of the present invention is to solve the above-described problems and to facilitate and efficiently perform the detachment of the membrane cartridge when the membrane surface is clogged.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention arranges a plurality of rigid plate-like membrane cartridges in a membrane case having an opening at the top and bottom, with the membrane surfaces in the vertical direction, and with a certain gap between the membrane surfaces. Thus, a plurality of membrane case units are arranged in multiple stages via an interval case that forms an open space between the membrane cases, and an air diffuser is placed below the lowermost membrane case unit. When operating a multi-stage submerged membrane separator with a diffused case provided and a permeate outlet tube connected to one end on the permeate side of each arrayed membrane cartridge for each membrane case unit, By controlling the membrane differential pressure generating means for generating the membrane differential pressure through the tube, the upper membrane cartridge is operated with a larger permeation flux.
[0009]
In order to control the membrane pressure generating means, for example, when performing suction filtration with a permeated water outlet pipe interposed with a pump device, each permeated water outlet pipe is provided with a pump device to adjust the suction pressure, Alternatively, if the flow control means provided in each permeate outlet pipe is shared by sharing the pump device, and the other end of the permeate outlet pipe is opened under atmospheric pressure and gravity filtration is performed using the water head, the open end Adjust the vertical position of.
[0010]
According to the above configuration, considering the difference in the membrane surface cleaning effect due to bubbles at the upper and lower stages, the permeation flux is increased in the upper stage membrane cartridge, thereby preventing the membrane contamination of the upper stage membrane cartridge from progressing. This can be preceded by a membrane cartridge.
Therefore, by making an appropriate difference in the permeation flux of the upper and lower membrane cartridges, the frequency of removing membrane contamination that cannot be eliminated in the tank by washing outside the tank can be reduced by multiple times of the upper membrane cartridge that can be easily detached. On the other hand, it is possible to set the lower membrane cartridge which is difficult to be detached, and to simplify the removal / removal operation of the membrane cartridge while using each membrane cartridge for a long time without impairing the filtration performance. Can do.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In the membrane separation apparatus 11 shown in FIG. 1, a plurality of rigid plate-like membrane cartridges 13 (thickness: about 6 mm) are placed in a membrane case 12 having an opening at the top and bottom, with the membrane surface set in the vertical direction, The membrane case unit 14 is configured by arranging them at regular intervals (usually 6 to 10 mm), and the membrane case units 14 are arranged in two stages in the vertical direction and an open space is formed between the membrane cases 12. An interval case 15 is provided, and an air diffuser case 17 provided with an air diffuser 16 is provided below the lower membrane case unit 14.
[0012]
The membrane cartridge 13 is as shown in FIGS. 2 (a) and 2 (b), and a filtration membrane sheet 13B is disposed on both surfaces of a rigid filter plate 13A made of ABS resin or the like at the periphery of the membrane. The filter plate 13A is provided with a permeate flow path 13C that is bonded (or welded) and formed in the filter plate 13A, and a permeate outlet 13D that communicates between the filter plate 13A and the filter membrane sheet 13B. The filtration membrane sheet 13B is formed integrally by applying (coating) a polyolefin resin or the like to a nonwoven fabric or the like as a support.
[0013]
A slit 12A for inserting the peripheral edge of the membrane cartridge 13 is formed on the inner surface of each membrane case 12, and a circulation opening 17A for the liquid to be treated is formed in the diffuser case 17. The upper membrane case 12 and the spacing case 15 are provided with water collecting pipes 19 and 20 that communicate with the permeate outlet 13D of the membrane cartridge 13 via the tube 18, respectively. The water collecting pipe 20 is integrated with the spacing case 15, and the connection nozzle for the tube 18 is opened inside the case. Membrane retainers 21 and 22 that prevent the membrane cartridges 13 from rising are in contact with the upper ends of the membrane cartridges 13 arranged in each membrane case 12.
[0014]
Permeate discharge pipes 23 and 24 communicate with the water collection pipes 19 and 20, respectively. Each permeated water outlet pipe 23, 24 is provided with a pump device 25, 26, and the other end is opened by a treated water tank (not shown) outside the tank. The pump devices 25 and 26 can control the suction pressure by the control device 27.
28 is an air supply source such as a blower or a compressor, 29 is an air supply pipe disposed between the air supply source 28 and the diffuser 16, and 30 is a water supply means communicating with the air supply pipe 29 via a valve device 31. .
[0015]
The operation of the above configuration will be described.
In the state where the membrane separation device 11 is immersed and installed in the activated sludge mixed solution 33 of the treatment tank 32 for performing biological treatment and the raw water 34 is continuously introduced, the air supply source 28 diffuses air through the air diffuser 16, The control device 27 controls the suction pressures of the pump devices 25 and 26, and generates appropriate membrane differential pressures in the upper and lower membrane cartridges 13 through the permeate outlet tubes 23 and 24. Depending on the quality of the raw water 34, a separate air diffuser (not shown) is also diffused so as not to run out of oxygen. Further, in order to prevent the air holes of the air diffuser 16 from being blocked, the flow path is periodically switched by the valve device 31 for a predetermined time, and the cleaning water is supplied from the water supply means 30 to the air diffuser 16 through the air supply pipe 29. .
[0016]
By doing so, an upward flow of the activated sludge mixed liquid 33 is generated by the air lift action of the diffused air uniformly ejected from the diffuser 16 into the diffuser case 17, and this gas-liquid mixed upward flow causes a flow opening. Since a circulating flow occurs inside and outside the apparatus through 17A, the activated sludge mixed liquid 33 in the tank is sufficiently stirred and mixed, and the contact opportunity of activated sludge / oxygen / polluted substances is increased, so that the activated sludge treatment is performed efficiently. .
[0017]
Further, while this gas-liquid mixed upward flow sequentially flows into the membrane case unit 14 (that is, the membrane case 12) arranged in two stages and passes through the gap between the membrane cartridges 13, the membrane of each membrane cartridge 13 The activated sludge mixed liquid 33 is cross-flow filtered at the surface, and the permeated water that has permeated through the filtration membrane sheet 13B and flowed into the permeated water flow path 13C is the permeated water outlet 13D, the tube 18, the water collecting pipes 19, 20, and the permeated water outlet pipe. Although it guide | induces to a treated water tank through 23 and 24, since concentration polarization is prevented by a gas-liquid mixing upward flow, and the film | membrane surface of the film | membrane cartridge 13 is wash | cleaned by the bubble of diffused air, the filtration efficiency is high.
[0018]
At that time, the membrane case unit 14 is arranged in a plurality of stages (in this case, two stages) up and down, thereby causing the gas-liquid mixed upward flow across the plurality of membrane case units 14 as described above by the diffuser 16 at the lower part of the apparatus. Therefore, the amount of diffused air per membrane cartridge 13 can be reduced. Moreover, since the apparatus installation area per sheet cartridge 13 can be reduced, a sufficient gap can be taken around the apparatus to prevent uneven flow, and local deposition of the cake layer and blockage between the films can be prevented.
[0019]
Further, since the spacing case 15 is interposed between the membrane cases 12, the bubble flow constituting the gas-liquid mixed upward flow once diffuses in the open space and then uniformly flows into the gap between the upper membrane cartridges 13. This can also prevent local deposition of the cake layer and thereby blockage between the films.
However, at this time, since the bubble flow is dispersed by the spacing case 15, the membrane surface cleaning effect in the upper membrane case 12 is higher than that in the lower membrane, so that the controller 27 controls the pump devices 25 and 26 as described above. When controlling the suction pressure, for example, the upper stage 0.8 (m 3 / m 2 · day) and the lower stage 0.6 (m 3 / m 2 · day) so that the permeation flux becomes larger as the upper membrane cartridge 13 increases. The membrane differential pressure generated in each stage of the membrane cartridge 13 is adjusted so that The appropriate permeation flux size at each stage varies depending on the speed of the gas-liquid mixed upflow, but usually the permeation flux of the upper membrane cartridge 13 is 130 to 200 of the permeation flux of the lower membrane cartridge 13. %, Preferably 150% or more.
[0020]
While the operation is continued, film contaminants are gradually deposited by the above-described film surface cleaning. Therefore, chemical solution back-washing is periodically performed to eliminate clogging. That is, a chemical solution such as sodium hypochlorite or oxalic acid corresponding to the type of membrane contaminant is fed into the permeate flow path of the membrane cartridge 13 through the permeate outlet tube 27.
When a cake layer that cannot be eliminated even by back washing with the chemical solution is generated, the membrane cartridge 13 is taken out of the tank together with the membrane case 12, and another washing method such as physical washing is performed. At that time, as described above, since the permeation fluxes of the upper and lower membrane cartridges 13 are different, the cake layer is deposited faster on the upper membrane cartridge 13, and the upper membrane cartridge 13 is placed in the tank. The frequency of cleaning outside is higher than the frequency of cleaning the lower membrane cartridge 13. With the permeation flux ratio as described above, although depending on the difference in the membrane surface cleaning effect due to bubbles at the upper and lower stages, the upper membrane cartridge 13 in which the membrane case 12 can be easily detached is washed two to three times. In this case, the lower membrane cartridge 13 in which the membrane case 12 is difficult to be detached is washed once. Therefore, the membrane cartridge 13 can be easily attached and detached while using the membrane cartridges 13 at the upper and lower stages for a long time as long as the filtration performance is not hindered. However, if a cake layer is deposited so that the gap between the lower membrane cartridges 13 is blocked, the bubble flow is biased, and as a result, the upper membrane cartridge 13 is blocked between the membranes. The out-of-tank cleaning frequency of the lower membrane cartridge 13 is set so as not to invite.
[0021]
Note that the difference in the permeation flux of the upper and lower membrane cartridges 13 extends the membrane life of the lower membrane cartridge 13, that is, the usable period without fear of the filtration membrane sheet 13B being broken, from the upper one. Therefore, it is advantageous in terms of time and effort to replace with a new membrane cartridge.
In FIG. 3, the permeated water outlet pipe 23 is provided with a pump device 25, and the permeated water outlet pipe 23 is communicated with the permeated water outlet pipe 23 via the flow rate adjusting valves 35, 36 to adjust the flow rate. By adjusting the flow rate of the permeated water led out through the permeated water outlet pipes 23 and 24 by the valves 35 and 36, the permeate flux of the upper membrane cartridge 13 is made larger than that of the lower membrane cartridge 13. A damper may be arranged in place of the flow rate adjusting valves 35 and 36.
[0022]
FIG. 4 shows an apparatus configuration in which the other ends of the permeate outlet pipes 23 and 24 are opened under atmospheric pressure, and gravity filtration is performed using a water head at a position corresponding to the open ends 23a and 24a. The permeation flux of the upper membrane cartridge 13 is made larger than that of the lower membrane cartridge 13 by adjusting the vertical positions of the open ends 23a and 24a.
[0023]
Furthermore, it is possible to make a difference between the permeation fluxes of the upper and lower membrane cartridges by arranging separate membrane cartridges having different permeation fluxes under the same membrane differential pressure condition in the upper and lower stages.
[0024]
【The invention's effect】
As described above, according to the present invention, when operating a multi-stage submerged membrane separation apparatus in which a plurality of membrane case units in which a plurality of membrane cartridges are arranged are arranged in multiple stages, the permeation flux is increased as the upper membrane cartridge is operated. By increasing the size, the membrane contamination of the upper membrane cartridge proceeds before the lower membrane cartridge. As a result, the operation of taking the membrane cartridge out of the tank and cleaning it can be set to one time for the lower membrane cartridge, which is difficult to be detached, with respect to the upper membrane cartridge, which is easy to be detached. It is possible to simplify the operation while using the cartridge for a long time as long as the filtration performance is not hindered.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a multi-stage stacked immersion type membrane separation apparatus to which an operation method according to a first embodiment of the present invention is applied.
FIG. 2 is an explanatory view showing a configuration of a membrane cartridge arranged in the multi-stage submerged membrane separation apparatus.
FIG. 3 is an explanatory view showing a multi-stage stacked immersion type membrane separation apparatus to which an operation method according to a second embodiment of the present invention is applied.
FIG. 4 is an explanatory view showing a multi-stage stacked immersion type membrane separation apparatus to which an operation method according to a third embodiment of the present invention is applied.
FIG. 5 is a perspective view of a conventional membrane separation apparatus.
FIG. 6 is an explanatory view showing a state in which the membrane separation apparatus is immersed in the treatment tank.
[Explanation of symbols]
12 Membrane case
13 Membrane cartridge
14 Membrane case unit
15 spacing case
16 Air diffuser
17 Aeration case
23,24 Permeate outlet pipe
23A, 24A Open end (Membrane pressure generation means)
25,26 Pump device (Measuring means for differential pressure)
35,36 Flow control valve (Means for generating differential pressure)

Claims (1)

上下が開口した膜ケースの内部に、剛性を有する複数の平板状膜カートリッジを膜面を鉛直方向にして、膜面間に一定間隙をおいて配列することにより膜ケースユニットを構成し、複数の膜ケースユニットを、膜ケース間に開放空間を形成する間隔ケースを介して多段に配置し、最下段の膜ケースユニットの下方に、散気装置を内設した散気ケースを設け、膜ケースユニットごとに、配列した各膜カートリッジの透過側に一端において連通する透過水導出管を設けた多段積み浸漬型膜分離装置を運転するに際し、各透過水導出管を通して膜差圧を生起する膜差圧生起手段を制御することにより、上段の膜カートリッジほど透過流束を大きくして運転することを特徴とする多段積み浸漬型膜分離装置の運転方法。A membrane case unit is configured by arranging a plurality of rigid plate-like membrane cartridges with a fixed gap between the membrane surfaces in a vertical direction inside the membrane case having upper and lower openings. Membrane case units are arranged in multiple stages through gap cases that form an open space between the membrane cases, and a diffuser case with a diffuser is provided below the lowermost membrane case unit. When operating a multi-stage submerged membrane separation apparatus provided with a permeate outlet pipe communicating at one end on the permeate side of each membrane cartridge arranged, a membrane differential pressure that causes a membrane differential pressure through each permeate outlet pipe An operation method of a multi-stage stacked immersion type membrane separation apparatus, wherein the upper membrane cartridge is operated with a larger permeation flux by controlling the generating means.
JP07873499A 1999-03-24 1999-03-24 Operation method of multi-stage submerged membrane separator Expired - Lifetime JP3659833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07873499A JP3659833B2 (en) 1999-03-24 1999-03-24 Operation method of multi-stage submerged membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07873499A JP3659833B2 (en) 1999-03-24 1999-03-24 Operation method of multi-stage submerged membrane separator

Publications (2)

Publication Number Publication Date
JP2000271409A JP2000271409A (en) 2000-10-03
JP3659833B2 true JP3659833B2 (en) 2005-06-15

Family

ID=13670124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07873499A Expired - Lifetime JP3659833B2 (en) 1999-03-24 1999-03-24 Operation method of multi-stage submerged membrane separator

Country Status (1)

Country Link
JP (1) JP3659833B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104135A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Multi-stage immersion-type membrane separation device and membrane separation method
WO2014148628A1 (en) * 2013-03-21 2014-09-25 東レ株式会社 Multi-stage immersion membrane separation device and membrane separation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614188B2 (en) * 2007-05-15 2011-01-19 株式会社日立プラントテクノロジー Immersion flat membrane filtration device
KR101256704B1 (en) 2008-12-22 2013-04-19 코오롱인더스트리 주식회사 System and Method for Filtering
JP5984135B2 (en) * 2012-07-04 2016-09-06 株式会社日立製作所 Membrane separator
JP6917153B2 (en) * 2017-02-09 2021-08-11 株式会社クボタ Membrane cartridge and membrane separator
JP7391769B2 (en) * 2020-06-01 2023-12-05 株式会社クボタ How to manage water treatment equipment, how to replace water treatment components, and how to estimate the remaining life of water treatment components
CN113800668A (en) * 2021-10-29 2021-12-17 安徽理工大学 Multiple sewage purification device based on complementary energy storage of scene water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661808B2 (en) * 1991-04-25 1997-10-08 株式会社クボタ Layered structure of membrane module
JPH06106167A (en) * 1992-09-28 1994-04-19 Kubota Corp Method and apparatus for solid-liquid separation of waste water
JPH06343834A (en) * 1993-06-03 1994-12-20 Kubota Corp Solid liquid separator
JP3333086B2 (en) * 1996-05-22 2002-10-07 株式会社クボタ Water treatment equipment
JP3536610B2 (en) * 1997-08-25 2004-06-14 栗田工業株式会社 Immersion type membrane filtration device
JP3667131B2 (en) * 1998-12-28 2005-07-06 株式会社クボタ Immersion membrane separator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104135A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Multi-stage immersion-type membrane separation device and membrane separation method
JP6024754B2 (en) * 2012-12-26 2016-11-16 東レ株式会社 Multi-stage immersion membrane separation apparatus and membrane separation method
US20180362376A1 (en) * 2012-12-26 2018-12-20 Toray Industries, Inc. Multi-stage immersion-type membrane separation device and membrane separation method
WO2014148628A1 (en) * 2013-03-21 2014-09-25 東レ株式会社 Multi-stage immersion membrane separation device and membrane separation method
CN105073651A (en) * 2013-03-21 2015-11-18 东丽株式会社 Multi-stage immersion membrane separation device and membrane separation method
US20160263528A1 (en) * 2013-03-21 2016-09-15 Toray Industries, Inc. Multi-stage immersion membrane separation device and membrane separation method
JP6056855B2 (en) * 2013-03-21 2017-01-11 東レ株式会社 Multi-stage immersion membrane separation apparatus and membrane separation method
CN105073651B (en) * 2013-03-21 2017-06-27 东丽株式会社 Multisection type dipped type film separating device and membrane separating method

Also Published As

Publication number Publication date
JP2000271409A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6627082B2 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
JPH09117647A (en) Operation of air diffusion device
AU2009310485A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JPH1015574A (en) Sewage treatment apparatus
JP3667131B2 (en) Immersion membrane separator
JPH09308882A (en) Water treatment apparatus
JP4046445B2 (en) Wastewater treatment method
JP2000084554A (en) Method for operating water treating apparatus having membrane separator
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JP4107819B2 (en) Multi-stage submerged membrane separator
JP2001170674A (en) Treating device for high-concentration sewage
JP3160609B2 (en) Membrane equipment and membrane treatment equipment
JPH11244893A (en) Operation method of organic sewage treating device
JP5550205B2 (en) Flat membrane filtration device and flat membrane filtration method
JP2000176255A (en) Membrane separator and separation of water
JPH06343834A (en) Solid liquid separator
US20080121593A1 (en) Filter System for Water and Waste Water
JPH11300168A (en) Membrane treatment and membrane treating apparatus
JP3117607B2 (en) Wastewater treatment method
JPH10249339A (en) Immersion-type membrane filtration method and device therefor
JP4242480B2 (en) Membrane treatment method and membrane treatment apparatus
JP2005349285A (en) Solid-liquid separator and operating method
JP2001062481A (en) Treatment of concentrated sewage
JPH11128929A (en) Solid-liquid separator for sludge mixed liquid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term