[go: up one dir, main page]

JP3658517B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3658517B2
JP3658517B2 JP06786599A JP6786599A JP3658517B2 JP 3658517 B2 JP3658517 B2 JP 3658517B2 JP 06786599 A JP06786599 A JP 06786599A JP 6786599 A JP6786599 A JP 6786599A JP 3658517 B2 JP3658517 B2 JP 3658517B2
Authority
JP
Japan
Prior art keywords
anhydride
negative electrode
secondary battery
carbonate
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06786599A
Other languages
Japanese (ja)
Other versions
JP2000268859A (en
Inventor
仁 鈴木
稔 古田土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP06786599A priority Critical patent/JP3658517B2/en
Publication of JP2000268859A publication Critical patent/JP2000268859A/en
Application granted granted Critical
Publication of JP3658517B2 publication Critical patent/JP3658517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解液二次電池に関する。詳しくは特定の非水系電解液を使用することにより、充放電効率を向上させたサイクル特性が優れた非水液系電解液二次電池に関する。
【0002】
【従来の技術】
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度を持つリチウム二次電池の開発が進められている。また、リチウム二次電池の適用分野の拡大に伴い電池特性の改善も要望されている。
金属リチウムを負極とする二次電池は高容量化を達成できる電池として古くから盛んに研究が行われている。しかし、金属リチウムは充放電の繰り返しによりデンドライト状に成長し、最終的に正極に達して電池内部において短絡が生じてしまうという問題がある。この問題は金属リチウムを負極とする二次電池を実用化する際の最大の技術的な課題となっている。
【0003】
そこで負極に、例えばコークス、人造黒鉛、天然黒鉛等のリチウムイオンを吸蔵および放出することが可能な炭素質材料を用いた非水系電解液二次電池が提案されている。このような非水系電解液二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。特に、人造黒鉛や天然黒鉛等の黒鉛系炭素材料は、単位体積当たりのエネルギー密度を向上させることができる材料として期待される。
【0004】
しかしながら、黒鉛系の種々の電極材を単独で、或いは、リチウムを吸蔵および放出することが可能な他の負極材と混合して負極とした非水系電解液二次電池では、リチウム一次電池で一般に好んで使用されるプロピレンカーボネートを主溶媒とする電解液を用いると、黒鉛電極表面で溶媒の分解反応が激しく進行して黒鉛電極へのスムーズなリチウムの吸蔵および放出が不可能になる。エチレンカーボネートはこのような分解が少ないことから、黒鉛系負極を用いた非水系電解液二次電池の電解液ではエチレンカーボネートが主溶媒として多用されている。しかしながら、エチレンカーボネートを主溶媒としても、充放電過程において電極表面で電解液が分解するために充放電効率の低下やサイクル特性の低下等の問題があった。このため、黒鉛系負極を用いた場合であってもこれらの問題を生じない非水系電解液二次電池を提供することが求められている。黒鉛系負極は特に電解液の種類により性能が大きく異なるために、電解液の組成を最適化することが必要とされるが、満足の行く電解液は現在まで提供されるに至っていない。
【0005】
その電解液の組成について、酸無水物を非水電解液二次電池の非水溶媒中に含有させることが、従来から種々検討されている。例えば、特開平4−355065号公報では、リチウム金属を負極とした非水電解液二次電池の非水溶媒中に酸無水物を含有させることが提案されている。しかしながら、黒鉛系負極を用いた非水系電解液二次電池についての知見は示されていない。特開平5−82168号公報では、リチウム合金やカーボン材料を負極にした非水電解液二次電池の非水溶媒中に酸無水物を添加することが記載されている。しかしながら、添加量は500ppmまたは1000ppmと非常に微量である。さらに、特開平7−122987号公報では、黒鉛を負極に用い、環状カーボネートと鎖状エーテルであるジメトキシエタンの混合溶媒に酸無水物を添加したデータが開示されている。しかしながら、環状カーボネートと鎖状カーボネートを含む混合溶媒での知見は示されていない。
このように、電解液に酸無水物を使用した例は幾つかあるものの、十分な量の酸無水物を環状カーボネートと鎖状カーボネートとの混合溶媒に添加した電解液を黒鉛系負極を有する二次電池に具体的に応用した例はこれまで報告されていない。
【0006】
【発明が解決しようとする課題】
本発明はこれらの従来技術の問題点を解決することを課題とした。すなわち本発明は、黒鉛系負極を用いた非水系電解液二次電池の電解液の分解を最小限に抑え、充放電効率が高くてサイクル特性の優れた高エネルギー密度の非水系電解液二次電池を提供することを解決すべき課題とした。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために種々の検討を重ねた結果、黒鉛系負極を用いた非水系電解液二次電池の電解液として、環状カーボネートと鎖状カーボネートを含む混合非水溶媒にリチウム塩と所定量の環状酸無水物を溶解した電解液を用いれば、充放電効率とサイクル特性を向上させることができることを見いだし、本発明を完成させるに至った。
【0008】
すなわち本発明は、リチウムを吸蔵および放出することが可能な負極材として黒鉛を含む負極、正極、および、環状カーボネートと鎖状カーボネートを合計で全溶媒量の70容量%以上含む混合非水溶媒にリチウム塩および0.5〜10重量%の環状酸無水物を溶解した電解液から少なくとも構成される非水系電解液二次電池を提供するものである。
本発明の非水系電解液二次電池では、特に混合非水溶媒が、アルキレン基の炭素数が2〜4のアルキレンカーボネートからなる群から選ばれる環状カーボネートと、アルキル基の炭素数が1〜4であるジアルキルカーボネートからなる群から選ばれる鎖状カーボネートとをそれぞれ20容量%以上含有し、かつ混合非水溶媒の70容量%以上がこれらのカーボネートであることが好ましい。
【0009】
本発明の非水系電解液二次電池では、負極材が、黒鉛のみからなる負極材、または、リチウムを吸蔵および放出することが可能な非黒鉛系炭素、リチウム、リチウム合金および金属酸化物からなる群から選ばれる1種以上と黒鉛とを混合した負極材であることが好ましい。特に負極材が、X線回折における格子面(002面)のd値が0.335〜0.340nmであり、且つ結晶子サイズ(Lc)が30nm以上の炭素材料を含むことが好ましい。結晶子サイズ(Lc)は、100nm以上であるのがより好ましく、150nm以上であるのが特に好ましい。
【0010】
【発明の実施の形態】
本発明の非水系電解液二次電池は、リチウムを吸蔵および放出することが可能な負極材として黒鉛を含む負極、正極、および、環状カーボネートと鎖状カーボネートを合計で全溶媒量の70容量%以上含む混合非水溶媒にリチウム塩および0.5〜10重量%の環状酸無水物を溶解した電解液から少なくとも構成されることを特徴とする。なお、本明細書において「〜」は、その前後に記載した数値を含む範囲を意味する。
【0011】
電解液の混合非水溶媒は、環状カーボネートと鎖状カーボネートを少なくとも含む。混合非水溶媒として使用する環状カーボネートは、分子内に環状構造とカーボネート基を有しているものであればその種類は制限されない。好ましいものは、カーボネート基が環状構造の一部を構成している環状カーボネートである。より好ましいものは、アルキレンカーボネートであり、特にアルキレン基の炭素数が2〜4のアルキレンカーボネートが好適である。そのようなアルキレンカーボネートの具体例として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートを挙げることができ、中でもエチレンカーボネートとプロピレンカーボネートが好ましい。これらのアルキレン基は本発明の所期の効果を過度に阻害しない範囲内で置換基を有していてもよい。
【0012】
混合非水溶媒として使用する鎖状カーボネートは、環状構造を有しないカーボネートである。鎖状カーボネートはアルキルカーボネートであるのが好ましく、特にアルキル基の炭素数が1〜4であるアルキルカーボネートが好ましい。具体的には、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等を挙げることができ、中でもジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。これらのアルキルカーボネートのアルキル基は、本発明の所期の効果を過度に阻害しない範囲内で置換基を有していてもよい。
【0013】
環状カーボネートと鎖状カーボネートの組み合わせは特に制限されない。好ましい組み合わせは、アルキレン基の炭素数が2〜4のアルキレンカーボネートからなる群から選ばれる環状カーボネートと、アルキル基の炭素数が1〜4であるジアルキルカーボネートからなる群から選ばれる鎖状カーボネートを含む混合非水溶媒である。より好ましい組み合わせは、環状カーボネートとしてエチレンカーボネートおよび/またはプロピレンカーボネート、鎖状カーボネートとしてジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネートから選択される1種以上を含む混合非水溶媒である。
【0014】
混合非水溶媒における環状カーボネートと鎖状カーボネートの割合は、それぞれ20容量%以上であるのが好ましく、それぞれ25容量%以上であるのがより好ましい。また、混合非水溶媒における環状カーボネートと鎖状カーボネートの合計量は70容量%以上であり、80容量%以上であるのが好ましく、90容量%以上であるのが特に好ましい。
【0015】
混合非水溶媒には、カーボネート以外の溶媒が含まれていてもよい。カーボネート以外の溶媒として、例えばγ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;酢酸メチル、プロピオン酸メチル等の鎖状エステル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類;スルフォラン、ジエチルスルホン等の含硫黄有機溶媒等を挙げることができる。これらの溶媒は2種類以上を組み合わせて用いてもよい。
【0016】
これらの溶媒は、カーボネート溶媒の特性を損なわない量で混合非水溶媒に含有させることができる。具体的には、カーボネート以外の溶媒は、混合非水溶媒の30容量%以下にし、20容量%以下にするのが好ましく、10容量%以下にするのが特に好ましい。
【0017】
本発明で使用する電解液には、環状酸無水物を含有させる。本発明で使用する環状酸無水物は、環状構造の一部に酸無水物構造を有する化合物であればとくにその種類は制限されない。また、酸無水物の構造を1分子中に複数個有する化合物であってもよい。本発明で使用しうる環状酸無水物の具体例として、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物等を挙げることができる。中でも好ましいのは、無水コハク酸、無水マレイン酸、無水グルタル酸である。これらの酸無水物は2種以上を混合して用いてもよい。
【0018】
本発明で使用する電解液における環状酸無水物の含有量は、0.5〜10重量%の範囲内である。中でも1〜8重量%であるのが好ましく、2〜7重量%であるのが特に好ましい。
【0019】
本発明で使用する電解液には、溶質としてリチウム塩を用いる。使用し得るリチウム塩は、電解液の溶質として使用し得るものであればその種類は特に制限されない。例えば、LiClO4、LiPF6、LiBF4から選ばれる無機リチウム塩や、LiCF3SO3、LiN(CF3SO22 、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23等の含フッ素有機リチウム塩を挙げることができる。中でも、LiPF6、LiBF4を用いることが好ましい。リチウム塩は2種類以上混合して用いてもよい。
電解液中のリチウム塩のモル濃度は、0.5〜2.0モル/リットルであることが望ましい。0.5モル/リットル未満もしくは2.0モル/リットルを越えると、電解液の電気伝導率が低くなって、電池の性能が低下する傾向にある。
【0020】
いかなる理論にも拘泥するものではないが、環状カーボネートと鎖状カーボネートを含む混合非水溶媒に0.5〜10重量%の環状酸無水物とリチウム塩を溶解した上記電解液を用いて、黒鉛系負極を有する非水系電解液二次電池を構成すれば、充放電過程における過度の電解液の分解が抑制されるものと考えられる。このため、電解液の分解が抑制されることにより充放電効率が向上し、サイクル特性の優れた二次電池を提供することが可能になる。特に、室温で使用する場合のみならず、例えば60℃程度の高温で使用する場合であっても、このような本発明の特性は十分に発揮される。これらの特性については、後述の実施例から明らかである。
なお、本発明で用いる電解液には、環状カーボネート、鎖状カーボネート、環状酸無水物およびリチウム塩以外の成分が、本発明の所期の効果を過度に阻害しない範囲内で含まれていてもよい。
【0021】
本発明の非水系電解液二次電池を構成する負極は、その成分として黒鉛を含む。黒鉛はチリウムを吸蔵および放出することが可能なものであればその物理的性状は特に制限されない。好ましいのは、種々の原料から得た易黒鉛性ピッチを高温熱処理することによって製造された人造黒鉛及び精製天然黒鉛である。これらの黒鉛材料は学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.34nmであるものが好ましく、0.335〜0.337nmであるものがより好ましい。これら黒鉛材料は、灰分が1重量%以下であるのが好ましく、0.5重量%以下であるのがより好ましく、0.1重量%以下であるのが特に好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は30nm以上であるのが好ましく、50nm以上であるのがより好ましく、100nm以上であるのが特に好ましい。
【0022】
また、レーザー回折・散乱法による黒鉛材料のメジアン径は、1〜100μmであるのが好ましく、3〜50μmであるのがより好ましく、5〜40μmであるのがさらに好ましく、7〜30μmであるのが特に好ましい。黒鉛材料のBET法比表面積は、0.5〜25.0m2/gであるのが好ましく、0.7〜20.0m2/gであるのがより好ましく、1.0〜15.0m2/gであるのがさらにより好ましく、1.5〜10.0m2/gであるのが特に好ましい。また、アルゴンイオンレーザー光を用いたラマンスペクトル分析における1580〜1620cm-1の範囲のピークPA(ピーク強度IA)および1350〜1370cm-1の範囲のピークPB(ピーク強度IB)の強度比R=IB/IAが0〜0.5であり、1580〜1620cm-1の範囲のピークの半値幅が26cm-1以下、特に25cm-1以下であるのが好ましい。
【0023】
これらの黒鉛材料にリチウムを吸蔵および放出することが可能な負極材をさらに混合して用いることもできる。黒鉛以外のリチウムを吸蔵および放出することが可能な負極材としては、難黒鉛性炭素や低温焼成炭素等の非黒鉛系炭素材料等のd(002)が0.34nmを越える炭素材料、酸化錫、酸化珪素等の金属酸化物材料、更にはリチウム金属並びに種々のリチウム合金を例示することができる。これらの負極材料は2種類以上混合して用いてもよい。
【0024】
これらの負極材料を用いて負極を製造する方法は特に制限されない。例えば、負極材料に必要に応じて結着材、導電材、溶媒等を加えてスラリー状にし、集電体の基板に塗布して乾燥することによって電極を製造することができる。また、該電極材料をそのままロール成形してシート状に成形したり、圧縮成形等によってペレット状に成形することもできる。
【0025】
電極の製造に使用する結着材は、電極製造時に使用する溶媒や電解液に対して安定な材料であれば特にその種類は制限されない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース等の樹脂系高分子;スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・エチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物;スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子を例示することができる。
【0026】
また、結着材として、特にリチウムイオンなどのアルカリ金属イオン伝導性を有する高分子組成物を使用することもできる。そのようなイオン伝導性を有する高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテルの架橋高分子化合物、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等の高分子化合物に、リチウム塩またはリチウムを主体とするアルカリ金属塩を複合させた系、あるいはこれにプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の高い誘電率を有する有機化合物を配合した系を用いることができる。これらの材料は組み合わせて使用してもよい。
【0027】
負極材料と上記の結着材との混合形式としては、各種の形態をとることができる。即ち、両者の粒子が混合した形態、繊維状の結着材が負極材料の粒子に絡み合う形で混合した形態、または結着材の層が粒子表面に付着した形態などが挙げられる。負極材料の粉体に対する上記結着材の混合割合は、負極材料に対して好ましくは0.1〜30重量%、より好ましくは0.5〜10重量%である。30重量%を超える量の結着材を添加すると電極の内部抵抗が大きくなる傾向にあり、逆に0.1重量%未満の量の結着材では集電体と負極材料の結着性が劣る傾向にある。
【0028】
また、負極材料と結着材との混合に際して、導電材を併せて混合してもよい。使用する導電材の種類は特に制限されないため、金属であっても非金属であってもよい。金属の導電材としては、CuやNiなどの金属元素から構成される材料を挙げることができる。また、非金属の導電材としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの炭素材料を挙げることができる。導電材の平均粒径は1μm以下であるのが好ましい。
【0029】
導電材の混合割合は、負極材料に対して好ましくは0.1〜30重量%、より好ましくは0.5〜15重量%にする。導電材の混合割合を30重量%以下にすることによって単位体積あたりの電極の充放電容量を比較的高くすることができる。また、導電材の混合割合を0.1重量%以上にすることによって導電材同士の導電パスを電極内に十分に形成することができる。
【0030】
少なくとも負極材料と結着材を含む上記混合物は、電極の使用目的に応じて集電体上に適用する。適用する集電体の形状は特に制限されず、負極の使用態様などに応じて適宜決定することができる。例えば、円柱状、板状、コイル状の集電体を使用することができる。集電体の材質は、銅、ニッケル、ステンレス等の金属であるのが好ましく、これらの中では薄膜に加工しやすく安価であることから銅箔を使用するがより好ましい。
【0031】
集電体への適用は、当業者に公知の手段によって行うことができる。混合物がスラリー状である場合は、例えばダイコーターやドクターブレードなどを用いて集電体上に塗布することができる。また、混合物がペースト状である場合は、ローラーコーティングなどによって集電体上に塗布することができる。溶媒を使用している場合は乾燥して溶媒を除去することによって、電極を作製することができる。
【0032】
本発明の非水系電解液二次電池を構成する正極には、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵・放出可能な材料を使用することができる。具体的には、LiFeO2、LiCoO2、LiNiO2、LiMn24およびこれらの非定比化合物、MnO2、TiS2、FeS2、Nb34、Mo34、CoS2、V25、P25、CrO3、V33、TeO2、GeO2等を用いることができる。
正極の製造方法は特に制限されず、上記の負極の製造方法と同様の方法により製造することができる。
【0033】
本発明で用いる正極集電体には、電解液中での陽極酸化によって表面に不動態皮膜を形成する弁金属またはその合金を用いるのが好ましい。弁金属としては、IIIa、IVa、Va族(3B、4B、5B族)に属する金属およびこれらの合金を例示することができる。具体的には、Al、Ti、Zr、Hf、Nb、Taおよびこれらの金属を含む合金などを例示することができ、Al、Ti、Taおよびこれらの金属を含む合金を好ましく使用することができる。特にAlおよびその合金は軽量であるためエネルギー密度が高くて望ましい。
【0034】
本発明の電池に使用するセパレーターの材質や形状は特に制限されない。セパレーターは正極と負極が物理的に接触しないように分離するものであり、イオン透過性が高く、電気抵抗が低いものであるのが好ましい。セパレータは電解液に対して安定で保液性が優れた材料の中から選択するのが好ましい。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布を用いて、上記電解液を含浸させることができる。
【0035】
非水系電解液、負極および正極を少なくとも有する本発明の非水系電解液二次電池を製造する方法は、特に限定されず通常採用されている方法の中から適宜選択することができる。本発明の非水系電解液二次電池には、非水系電解液、負極、正極の他に、必要に応じて、外缶、セパレータ、ガスケット、封口板、セルケースなどを用いることもできる。その製法は、例えば外缶上に負極を乗せ、その上に電解液とセパレータを設け、さらに負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。電池の形状は特に制限されず、シート電極およびセパレータをスパイラル状にしたシリンダータイプ、ペレット電極およびセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極およびセパレータを積層したコインタイプ等にすることができる。
【0036】
【実施例】
以下に実施例および試験例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、割合、操作等は、本発明の精神から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例に制限されるものではない。
【0037】
(実施例1〜3および比較例1〜2)
正極活物質としてLiCoO285重量部にカーボンブラック6重量部、ポリフッ化ビニリデン(呉羽化学社製、商品名KF−1000)9重量部を加え混合し、N−メチル−2−ピロリドンで分散し、スラリー状としたものを正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて正極とした。
【0038】
負極活物質として、X線回折における格子面(002面)のd値が0.336nm、晶子サイズ(Lc)が、100nm以上(264nm)、灰分が0.04重量%、レーザー回折・散乱法によるメジアン径が17μm、BET法比表面積が8.9m2/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm-1の範囲のピークPA(ピーク強度IA)および1350〜1370cm-1の範囲のピークPB(ピーク強度IB)の強度比R=IB/IAが0.15、1580〜1620cm-1の範囲のピークの半値幅が22.2cm-1である人造黒鉛粉末(ティムカル社製、商品名KS−44)94重量部にポリフッ化ビニリデン6重量部を混合し、N−メチル−2−ピロリドンで分散させスラリー状としたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて負極とした。
【0039】
電解液用の溶媒として、プロピレンカーボネートとジエチルカーボネートの混合物(容量比1:1)に、表1に記載される酸無水物を表1に記載される割合で溶解した溶媒を使用した。この溶媒に、乾燥アルゴン雰囲気下で十分に乾燥を行った六フッ化リン酸リチウム(LiPF6)を1モル/リットルの割合で溶解して電解液を調製した。
これらの正極、負極、電解液を用いて、正極導電体を兼ねるステンレス鋼製の缶体に正極を収容し、その上に電解液を含浸させたセパレーターを介して負極を裁置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型電池を作製した。
【0040】
製造した各電池を25℃において、0.5mAの定電流で充電終止電圧4.2V、放電終止電圧2.5Vで充放電試験を行った。それぞれの電池における1サイクル目と10サイクル目の充放電効率(%)と負極重量当たりの放電容量を表1に示す。なお、ここでいう充放電効率は以下の式で計算される。
【数1】
充放電効率(%)=〔(放電容量)/(充電容量)〕×100
【0041】
【表1】

Figure 0003658517
【0042】
(実施例4および比較例3)
電解液用の溶媒として、エチレンカーボネートとジエチルカーボネートの混合物(容量比1:1)に、表2に記載される酸無水物を表2に記載される割合で溶解した溶媒を使用した。この溶媒に、乾燥アルゴン雰囲気下で十分に乾燥を行ったLiPF6を1モル/リットルの割合で溶解して電解液を調製した。この電解液を用いたこと以外は、上と同じ方法でコイン型電池を作製し、充放電試験を行った。結果は表2に示すとおりであった。
【0043】
【表2】
Figure 0003658517
【0044】
表1および表2の結果は、酸無水物を含まない電解液や、酸無水物の含有量が0.5重量%未満の電解液を用いた二次電池は、電池として機能しなかったり、放電容量や充放電効率が低いといった問題があることを示している。これに対して、環状カーボネート、鎖状カーボネートおよび0.5〜10重量%の環状の酸無水物を含有する電解液を用いた本発明の二次電池は、放電容量と充放電効率が改善されており、二次電池として好ましいことが確認される。
【0045】
【発明の効果】
黒鉛系負極を用いた非水系電解液二次電池の電解液溶媒として、環状カーボネート、鎖状カーボネートおよび0.5〜10重量%の環状の酸無水物を含む溶媒を用いれば、放電容量および充放電効率を向上させることができる。また、本発明によれば、電解液の分解を有効に抑制することができるため、プロピレンカーボネートを含む電解液のように分解しやすい電解液の用途を拡大し、その機能を有効に活用することができる。したがって本発明によれば、サイクル特性の優れた電池を作製することが可能であり、非水系電解液二次電池の小型化と高性能化に寄与することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous liquid electrolyte secondary battery having excellent cycle characteristics with improved charge / discharge efficiency by using a specific non-aqueous electrolyte.
[0002]
[Prior art]
With the recent reduction in weight and size of electrical products, development of lithium secondary batteries having high energy density is in progress. In addition, with the expansion of the application field of lithium secondary batteries, improvement of battery characteristics is also demanded.
Secondary batteries that use metallic lithium as a negative electrode have been actively studied since long ago as batteries that can achieve higher capacities. However, there is a problem that metallic lithium grows in a dendrite shape by repeated charging and discharging, eventually reaches the positive electrode, and causes a short circuit inside the battery. This problem is the biggest technical problem when a secondary battery using metallic lithium as a negative electrode is put into practical use.
[0003]
Therefore, a nonaqueous electrolyte secondary battery using a carbonaceous material capable of inserting and extracting lithium ions such as coke, artificial graphite, and natural graphite has been proposed for the negative electrode. In such a non-aqueous electrolyte secondary battery, since lithium does not exist in a metal state, formation of dendrites is suppressed, and battery life and safety can be improved. In particular, graphite-based carbon materials such as artificial graphite and natural graphite are expected as materials capable of improving the energy density per unit volume.
[0004]
However, in non-aqueous electrolyte secondary batteries in which various graphite-based electrode materials are used alone or mixed with other negative electrode materials capable of occluding and releasing lithium to form negative electrodes, lithium primary batteries are generally used. When an electrolyte containing propylene carbonate, which is preferably used, is used as the main solvent, the decomposition reaction of the solvent proceeds vigorously on the surface of the graphite electrode, making it impossible to smoothly occlude and release lithium into the graphite electrode. Since ethylene carbonate has little such decomposition, ethylene carbonate is frequently used as a main solvent in the electrolyte solution of a non-aqueous electrolyte secondary battery using a graphite-based negative electrode. However, even when ethylene carbonate is used as the main solvent, the electrolyte solution decomposes on the surface of the electrode during the charge / discharge process, which causes problems such as a decrease in charge / discharge efficiency and a decrease in cycle characteristics. For this reason, even if it is a case where a graphite type negative electrode is used, providing the nonaqueous electrolyte solution secondary battery which does not produce these problems is calculated | required. Since the performance of graphite-based negative electrodes varies greatly depending on the type of electrolytic solution, it is necessary to optimize the composition of the electrolytic solution, but no satisfactory electrolytic solution has been provided so far.
[0005]
Regarding the composition of the electrolytic solution, various studies have been conventionally made to include an acid anhydride in a non-aqueous solvent of a non-aqueous electrolyte secondary battery. For example, JP-A-4-355065 proposes that an acid anhydride is contained in a non-aqueous solvent of a non-aqueous electrolyte secondary battery using lithium metal as a negative electrode. However, knowledge about a non-aqueous electrolyte secondary battery using a graphite-based negative electrode is not shown. Japanese Patent Application Laid-Open No. 5-82168 describes that an acid anhydride is added to a nonaqueous solvent of a nonaqueous electrolyte secondary battery using a lithium alloy or a carbon material as a negative electrode. However, the amount added is very small, 500 ppm or 1000 ppm. Furthermore, JP-A-7-122987 discloses data in which graphite is used for the negative electrode and an acid anhydride is added to a mixed solvent of cyclic carbonate and dimethoxyethane which is a chain ether. However, knowledge about a mixed solvent containing a cyclic carbonate and a chain carbonate is not shown.
As described above, although there are several examples in which acid anhydride is used in the electrolytic solution, an electrolytic solution in which a sufficient amount of acid anhydride is added to a mixed solvent of cyclic carbonate and chain carbonate is used. No specific application to secondary batteries has been reported so far.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve these problems of the prior art. That is, the present invention minimizes the decomposition of the electrolyte of a non-aqueous electrolyte secondary battery using a graphite-based negative electrode, and has a high energy density and a high energy density with a high charge / discharge efficiency and excellent cycle characteristics. Providing batteries was an issue to be solved.
[0007]
[Means for Solving the Problems]
As a result of repeating various studies to solve the above-mentioned problems, the present inventors have obtained a mixed non-aqueous solution containing a cyclic carbonate and a chain carbonate as an electrolyte solution of a non-aqueous electrolyte secondary battery using a graphite-based negative electrode. It has been found that if an electrolytic solution in which a lithium salt and a predetermined amount of a cyclic acid anhydride are dissolved in a solvent is used, charge / discharge efficiency and cycle characteristics can be improved, and the present invention has been completed.
[0008]
That is, the present invention provides a negative electrode containing graphite as a negative electrode material capable of inserting and extracting lithium, a positive electrode, and a mixed nonaqueous solvent containing 70% by volume or more of the total amount of cyclic carbonate and chain carbonate in total. Provided is a non-aqueous electrolyte secondary battery comprising at least an electrolyte solution in which a lithium salt and 0.5 to 10% by weight of a cyclic acid anhydride are dissolved.
In the non-aqueous electrolyte secondary battery of the present invention, in particular, the mixed non-aqueous solvent is a cyclic carbonate selected from the group consisting of alkylene carbonates having 2 to 4 carbon atoms in the alkylene group, and carbon atoms in the alkyl group having 1 to 4 carbon atoms. It is preferable that each of the chain carbonates selected from the group consisting of dialkyl carbonates is 20% by volume or more, and 70% by volume or more of the mixed nonaqueous solvent is these carbonates.
[0009]
In the non-aqueous electrolyte secondary battery of the present invention, the negative electrode material is made of a negative electrode material made only of graphite, or non-graphite carbon, lithium, lithium alloy and metal oxide capable of occluding and releasing lithium. A negative electrode material in which one or more selected from the group and graphite are mixed is preferable. In particular, the negative electrode material preferably includes a carbon material having a d-value of 0.335 to 0.340 nm on the lattice plane (002 plane) in X-ray diffraction and a crystallite size (Lc) of 30 nm or more. The crystallite size (Lc) is more preferably 100 nm or more, and particularly preferably 150 nm or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode containing graphite as a negative electrode material capable of inserting and extracting lithium, a positive electrode, and 70% by volume of the total amount of solvent of cyclic carbonate and chain carbonate characterized in that it is composed of at least from the electrolyte by dissolving a lithium salt and 0.5 to 10 wt% of the cyclic acid anhydride in a mixed nonaqueous solvent containing more. In the present specification, “to” means a range including numerical values described before and after.
[0011]
The mixed nonaqueous solvent of the electrolytic solution includes at least a cyclic carbonate and a chain carbonate. The type of the cyclic carbonate used as the mixed non-aqueous solvent is not limited as long as it has a cyclic structure and a carbonate group in the molecule. Preference is given to cyclic carbonates in which the carbonate group forms part of the cyclic structure. More preferred is alkylene carbonate, and alkylene carbonate having an alkylene group with 2 to 4 carbon atoms is particularly preferred. Specific examples of such alkylene carbonates include ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate and propylene carbonate are preferable. These alkylene groups may have a substituent as long as the desired effects of the present invention are not excessively inhibited.
[0012]
The chain carbonate used as the mixed non-aqueous solvent is a carbonate having no cyclic structure. The chain carbonate is preferably an alkyl carbonate, particularly an alkyl carbonate having an alkyl group having 1 to 4 carbon atoms. Specifically, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, etc. can be mentioned, among which dimethyl carbonate, diethyl carbonate, ethyl Methyl carbonate is preferred. The alkyl group of these alkyl carbonates may have a substituent within a range that does not excessively inhibit the intended effect of the present invention.
[0013]
The combination of the cyclic carbonate and the chain carbonate is not particularly limited. Preferred combinations include a cyclic carbonate selected from the group consisting of alkylene carbonates having 2 to 4 carbon atoms in the alkylene group and a chain carbonate selected from the group consisting of dialkyl carbonates having 1 to 4 carbon atoms in the alkyl group. Mixed non-aqueous solvent. A more preferable combination is a mixed non-aqueous solvent containing at least one selected from ethylene carbonate and / or propylene carbonate as a cyclic carbonate and dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate as a chain carbonate.
[0014]
The ratio of the cyclic carbonate and the chain carbonate in the mixed non-aqueous solvent is preferably 20% by volume or more, and more preferably 25% by volume or more. The total amount of cyclic carbonate and chain carbonate in the mixed non-aqueous solvent is 70% by volume or more, preferably 80% by volume or more , and particularly preferably 90% by volume or more.
[0015]
The mixed non-aqueous solvent may contain a solvent other than carbonate. Examples of solvents other than carbonate include cyclic esters such as γ-butyrolactone and γ-valerolactone; chain esters such as methyl acetate and methyl propionate; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran; Examples include chain ethers such as ethane and dimethoxymethane; sulfur-containing organic solvents such as sulfolane and diethylsulfone. Two or more of these solvents may be used in combination.
[0016]
These solvents can be contained in the mixed non-aqueous solvent in an amount that does not impair the properties of the carbonate solvent. Specifically, the solvent other than carbonate is 30% by volume or less, preferably 20% by volume or less , and particularly preferably 10% by volume or less of the mixed non-aqueous solvent.
[0017]
The electrolytic solution used in the present invention contains a cyclic acid anhydride. The type of the cyclic acid anhydride used in the present invention is not particularly limited as long as it is a compound having an acid anhydride structure in a part of the cyclic structure. Further, it may be a compound having a plurality of acid anhydride structures in one molecule. Specific examples of cyclic acid anhydrides that can be used in the present invention include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, Cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenyl Succinic anhydride, 2-phenylglutaric anhydride, etc. can be mentioned. Of these, succinic anhydride, maleic anhydride, and glutaric anhydride are preferable. Two or more of these acid anhydrides may be mixed and used.
[0018]
The content of the cyclic acid anhydride in the electrolytic solution used in the present invention is in the range of 0.5 to 10% by weight. Among these, 1 to 8% by weight is preferable, and 2 to 7% by weight is particularly preferable.
[0019]
In the electrolytic solution used in the present invention, a lithium salt is used as a solute. The type of lithium salt that can be used is not particularly limited as long as it can be used as a solute of an electrolytic solution. For example, an inorganic lithium salt selected from LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) Fluorine-containing organic lithium salts such as (C 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 can be mentioned. Among them, it is preferable to use LiPF 6 or LiBF 4 . Two or more types of lithium salts may be mixed and used.
The molar concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2.0 mol / liter. If it is less than 0.5 mol / liter or exceeds 2.0 mol / liter, the electric conductivity of the electrolytic solution tends to be low, and the battery performance tends to deteriorate.
[0020]
Without being bound by any theory, graphite is obtained using the above electrolytic solution in which 0.5 to 10% by weight of cyclic acid anhydride and lithium salt are dissolved in a mixed non-aqueous solvent containing cyclic carbonate and chain carbonate. If a non-aqueous electrolyte secondary battery having a system negative electrode is configured, it is considered that excessive decomposition of the electrolyte during the charge / discharge process is suppressed. For this reason, by suppressing the decomposition of the electrolytic solution, the charge / discharge efficiency is improved, and a secondary battery having excellent cycle characteristics can be provided. In particular, not only when used at room temperature, but also when used at a high temperature of about 60 ° C., such characteristics of the present invention are sufficiently exhibited. These characteristics are apparent from the examples described later.
The electrolytic solution used in the present invention may contain components other than cyclic carbonate, chain carbonate, cyclic acid anhydride, and lithium salt within a range that does not excessively inhibit the intended effect of the present invention. Good.
[0021]
The negative electrode constituting the non-aqueous electrolyte secondary battery of the present invention contains graphite as its component. The physical properties of graphite are not particularly limited as long as it can occlude and release thyllium. Preference is given to artificial graphite and purified natural graphite produced by high-temperature heat treatment of graphitizable pitch obtained from various raw materials. These graphite materials preferably have a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.34 nm determined by X-ray diffraction by the Gakushin method, and 0.335 to 0.337 nm. Some are more preferred. These graphite materials preferably have an ash content of 1% by weight or less, more preferably 0.5% by weight or less, and particularly preferably 0.1% by weight or less. The crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more.
[0022]
Further, the median diameter of the graphite material by the laser diffraction / scattering method is preferably 1 to 100 μm, more preferably 3 to 50 μm, further preferably 5 to 40 μm, and 7 to 30 μm. Is particularly preferred. BET specific surface area of the graphite material is preferably from 0.5~25.0m 2 / g, more preferably from 0.7~20.0m 2 / g, 1.0~15.0m 2 / G is even more preferable, and 1.5 to 10.0 m 2 / g is particularly preferable. Further, the intensity of the peak P A (peak intensity I A ) in the range of 1580 to 1620 cm −1 and the peak P B (peak intensity I B ) in the range of 1350 to 1370 cm −1 in the Raman spectrum analysis using argon ion laser light. the ratio R = I B / I a is 0 to 0.5, the half-value width of the peak in the range of 1580~1620Cm -1 is 26cm -1 or less, and particularly preferably between 25 cm -1 or less.
[0023]
A negative electrode material capable of inserting and extracting lithium can be further mixed with these graphite materials. Examples of the negative electrode material capable of occluding and releasing lithium other than graphite include carbon materials such as non-graphitic carbon materials such as non-graphite carbon and low-temperature calcined carbon, and the like, tin oxide having a d (002) exceeding 0.34 nm, tin oxide Examples thereof include metal oxide materials such as silicon oxide, lithium metal, and various lithium alloys. Two or more kinds of these negative electrode materials may be mixed and used.
[0024]
The method for producing a negative electrode using these negative electrode materials is not particularly limited. For example, the electrode can be manufactured by adding a binder, a conductive material, a solvent, or the like to the negative electrode material as necessary to form a slurry, applying the slurry to the substrate of the current collector, and drying. Further, the electrode material can be roll-formed as it is to be formed into a sheet, or can be formed into a pellet by compression molding or the like.
[0025]
If the binder used for manufacture of an electrode is a material stable with respect to the solvent and electrolyte solution used at the time of electrode manufacture, the kind in particular will not be restrict | limited. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, and cellulose; rubbery polymers such as styrene / butadiene rubber, isoprene rubber, butadiene rubber, and ethylene / propylene rubber; styrene / butadiene / Styrene block copolymer and hydrogenated product thereof, styrene / ethylene / butadiene / styrene block copolymer and hydrogenated product thereof; thermoplastic elastomeric polymer such as styrene / isoprene / styrene block copolymer and hydrogenated product thereof Soft resinous polymers such as syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (2 to 12 carbon atoms) copolymer; polyvinylidene fluoride, polytetrafluoroethylene, Polite It can be exemplified a fluorine-based polymer such as tetrafluoroethylene-ethylene copolymer.
[0026]
As the binder, a polymer composition having alkali metal ion conductivity such as lithium ion can be used. Examples of such an ion-conductive polymer include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, polyether crosslinked polymer compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinyl pyrrolidone, and polyvinylidene. A system in which a high molecular compound such as carbonate or polyacrylonitrile is combined with a lithium salt or an alkali metal salt mainly composed of lithium, or an organic compound having a high dielectric constant such as propylene carbonate, ethylene carbonate, or γ-butyrolactone. A blended system can be used. These materials may be used in combination.
[0027]
Various forms can be taken as a mixed form of the negative electrode material and the binder. That is, a form in which both particles are mixed, a form in which a fibrous binder is entangled with particles of the negative electrode material, or a form in which a binder layer is attached to the particle surface. The mixing ratio of the binder to the negative electrode material powder is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight, based on the negative electrode material. When an amount of binder exceeding 30% by weight is added, the internal resistance of the electrode tends to increase. Conversely, when the amount of binder is less than 0.1% by weight, the binding property between the current collector and the negative electrode material is increased. It tends to be inferior.
[0028]
Further, when the negative electrode material and the binder are mixed, the conductive material may be mixed together. Since the kind of the conductive material to be used is not particularly limited, it may be a metal or a nonmetal. Examples of the metal conductive material include materials composed of metal elements such as Cu and Ni. Examples of the nonmetallic conductive material include carbon materials such as graphite, carbon black, acetylene black, and ketjen black. The average particle size of the conductive material is preferably 1 μm or less.
[0029]
The mixing ratio of the conductive material is preferably 0.1 to 30% by weight, more preferably 0.5 to 15% by weight with respect to the negative electrode material. By making the mixing ratio of the conductive material 30% by weight or less, the charge / discharge capacity of the electrode per unit volume can be made relatively high. Moreover, the conductive path between the conductive materials can be sufficiently formed in the electrode by setting the mixing ratio of the conductive materials to 0.1 wt% or more.
[0030]
The above mixture containing at least the negative electrode material and the binder is applied on the current collector according to the intended use of the electrode. The shape of the current collector to be applied is not particularly limited, and can be appropriately determined according to the usage mode of the negative electrode. For example, a cylindrical, plate-shaped, or coil-shaped current collector can be used. The material of the current collector is preferably a metal such as copper, nickel, and stainless steel. Among these, it is more preferable to use a copper foil because it is easy to process into a thin film and is inexpensive.
[0031]
Application to the current collector can be performed by means known to those skilled in the art. When the mixture is in the form of a slurry, it can be applied onto the current collector using, for example, a die coater or a doctor blade. Moreover, when a mixture is paste-form, it can apply | coat on a collector by roller coating etc. If a solvent is used, the electrode can be produced by drying to remove the solvent.
[0032]
Examples of the positive electrode constituting the nonaqueous electrolyte secondary battery of the present invention include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide; transition metal oxidation such as manganese dioxide Material materials: Materials capable of inserting and extracting lithium, such as carbonaceous materials such as fluorinated graphite, can be used. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and their non-stoichiometric compounds, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , P 2 O 5 , CrO 3 , V 3 O 3 , TeO 2 , GeO 2 and the like can be used.
The manufacturing method in particular of a positive electrode is not restrict | limited, It can manufacture by the method similar to the manufacturing method of said negative electrode.
[0033]
As the positive electrode current collector used in the present invention, it is preferable to use a valve metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution. Examples of the valve metal include metals belonging to IIIa, IVa, Va group (3B, 4B, 5B group) and alloys thereof. Specifically, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals can be preferably used. . In particular, Al and its alloys are desirable because of their light weight and high energy density.
[0034]
The material and shape of the separator used in the battery of the present invention are not particularly limited. The separator is separated so that the positive electrode and the negative electrode are not in physical contact, and preferably has high ion permeability and low electrical resistance. The separator is preferably selected from materials that are stable with respect to the electrolyte and excellent in liquid retention. Specifically, the electrolyte solution can be impregnated using a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
[0035]
The method for producing the non-aqueous electrolyte secondary battery of the present invention having at least a non-aqueous electrolyte, a negative electrode, and a positive electrode is not particularly limited and can be appropriately selected from commonly employed methods. In addition to the non-aqueous electrolyte solution, the negative electrode, and the positive electrode, an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used as necessary for the non-aqueous electrolyte secondary battery of the present invention. For example, a negative electrode can be placed on an outer can, an electrolytic solution and a separator can be provided thereon, and a positive electrode can be placed so as to face the negative electrode, and can be caulked together with a gasket and a sealing plate to form a battery. The shape of the battery is not particularly limited, and can be a cylinder type in which the sheet electrode and the separator are spiral, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a coin type in which the pellet electrode and the separator are stacked, and the like. .
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples. The materials, reagents, ratios, operations, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
[0037]
(Examples 1-3 and Comparative Examples 1-2)
As a positive electrode active material, 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride (made by Kureha Chemical Co., Ltd., trade name KF-1000) are added to 85 parts by weight of LiCoO 2 , mixed, and dispersed with N-methyl-2-pyrrolidone. The slurry was uniformly applied onto a 20 μm thick aluminum foil as a positive electrode current collector, dried, and then punched into a disk shape having a diameter of 12.5 mm to obtain a positive electrode.
[0038]
As the negative electrode active material, the d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 100 nm or more (264 nm), the ash content is 0.04% by weight, by the laser diffraction / scattering method A median diameter of 17 μm, a BET specific surface area of 8.9 m 2 / g, and a peak spectrum P A (peak intensity I A ) in the range of 1580 to 1620 cm −1 and 1350 to 1370 cm − in a Raman spectrum analysis using an argon ion laser beam. artificial graphite intensity ratio R = I B / I a of the first range of peak P B (peak intensity I B) is the half width of the peak in the range of 0.15,1580~1620Cm -1 is 22.2Cm -1 6 parts by weight of polyvinylidene fluoride is mixed with 94 parts by weight of powder (trade name KS-44, manufactured by Timcal), and dispersed with N-methyl-2-pyrrolidone to form a slurry. Was uniformly applied onto a 18 μm thick copper foil as a negative electrode current collector, dried, and then punched into a disk shape having a diameter of 12.5 mm to obtain a negative electrode.
[0039]
As a solvent for the electrolytic solution, a solvent in which an acid anhydride described in Table 1 was dissolved in a ratio described in Table 1 in a mixture of propylene carbonate and diethyl carbonate (volume ratio 1: 1) was used. In this solvent, lithium hexafluorophosphate (LiPF 6 ) sufficiently dried under a dry argon atmosphere was dissolved at a rate of 1 mol / liter to prepare an electrolytic solution.
Using these positive electrode, negative electrode, and electrolytic solution, the positive electrode was accommodated in a stainless steel can that also serves as a positive electrode conductor, and the negative electrode was placed through a separator impregnated with the electrolytic solution thereon. The can body and a sealing plate that also serves as the negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type battery.
[0040]
Each manufactured battery was subjected to a charge / discharge test at a constant current of 0.5 mA and a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V at 25 ° C. Table 1 shows the charge / discharge efficiency (%) and discharge capacity per weight of the negative electrode in the first and tenth cycles of each battery. The charge / discharge efficiency here is calculated by the following equation.
[Expression 1]
Charge / discharge efficiency (%) = [(discharge capacity) / (charge capacity)] × 100
[0041]
[Table 1]
Figure 0003658517
[0042]
(Example 4 and Comparative Example 3)
As a solvent for the electrolytic solution, a solvent in which an acid anhydride described in Table 2 was dissolved in a mixture described in Table 2 in a mixture of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) was used. LiPF 6 sufficiently dried under a dry argon atmosphere was dissolved in this solvent at a rate of 1 mol / liter to prepare an electrolytic solution. A coin-type battery was produced in the same manner as above except that this electrolytic solution was used, and a charge / discharge test was conducted. The results were as shown in Table 2.
[0043]
[Table 2]
Figure 0003658517
[0044]
The results in Table 1 and Table 2 show that the electrolyte solution containing no acid anhydride or the secondary battery using the electrolyte solution having an acid anhydride content of less than 0.5% by weight does not function as a battery. This indicates that there are problems such as low discharge capacity and low charge / discharge efficiency. On the other hand, the secondary battery of the present invention using the electrolytic solution containing cyclic carbonate, chain carbonate and 0.5 to 10% by weight of cyclic acid anhydride has improved discharge capacity and charge / discharge efficiency. It is confirmed that this is preferable as a secondary battery.
[0045]
【The invention's effect】
If a solvent containing a cyclic carbonate, a chain carbonate, and 0.5 to 10% by weight of a cyclic acid anhydride is used as an electrolyte solution solvent for a non-aqueous electrolyte secondary battery using a graphite-based negative electrode, the discharge capacity and charge are reduced. Discharge efficiency can be improved. In addition, according to the present invention, since the decomposition of the electrolytic solution can be effectively suppressed, the application of the electrolytic solution that is easily decomposed like the electrolytic solution containing propylene carbonate is expanded, and the function is effectively utilized. Can do. Therefore, according to the present invention, it is possible to produce a battery having excellent cycle characteristics, which can contribute to the downsizing and high performance of the non-aqueous electrolyte secondary battery.

Claims (6)

リチウムを吸蔵および放出することが可能な負極材として黒鉛を含む負極、正極、および、環状カーボネートと鎖状カーボネートを合計で全溶媒量の70容量%以上含む混合非水溶媒にリチウム塩および0.5〜10重量%の環状酸無水物を溶解した電解液から少なくとも構成される非水系電解液二次電池。A negative electrode containing graphite as a negative electrode material capable of inserting and extracting lithium, a positive electrode, and a mixed non-aqueous solvent containing 70% by volume or more of the total amount of cyclic carbonate and chain carbonate in combination with lithium salt and 0. A non-aqueous electrolyte secondary battery comprising at least an electrolyte solution in which 5 to 10% by weight of a cyclic acid anhydride is dissolved. 前記環状酸無水物が、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、フェニルコハク酸無水物または2−フェニルグルタル酸無水物であるである請求項1に記載の非水系電解液二次電池。The cyclic acid anhydride is glutaric anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2 -Dicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenylsuccinic anhydride or 2-phenylglutaric anhydride. The non-aqueous electrolyte secondary battery according to claim 1. 前記混合非水溶媒が、アルキレン基の炭素数が2〜4のアルキレンカーボネートからなる群から選ばれる環状カーボネートと、アルキル基の炭素数が1〜4であるジアルキルカーボネートからなる群から選ばれる鎖状カーボネートとをそれぞれ20容量%以上含有し、かつ混合非水溶媒の70容量%以上がこれらのカーボネートであることを特徴とする請求項1または2に記載の非水系電解液二次電池。The mixed non-aqueous solvent is a chain selected from the group consisting of a cyclic carbonate selected from the group consisting of alkylene carbonates having 2 to 4 carbon atoms in the alkylene group and a dialkyl carbonate whose alkyl group has 1 to 4 carbon atoms. The nonaqueous electrolyte secondary battery according to claim 1 or 2 , wherein each of the carbonates contains 20% by volume or more, and 70% by volume or more of the mixed nonaqueous solvent is the carbonate. 前記負極材が、黒鉛のみからなる負極材、または、リチウムを吸蔵および放出することが可能な非黒鉛系炭素、リチウム、リチウム合金および金属酸化物からなる群から選ばれる1種以上と黒鉛とを混合した負極材であることを特徴とする請求項1〜3のいずれかに記載の非水系電解液二次電池。  The negative electrode material is a negative electrode material made only of graphite, or graphite and at least one selected from the group consisting of non-graphitic carbon, lithium, lithium alloy and metal oxide capable of inserting and extracting lithium. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a mixed negative electrode material. 前記負極材が、X線回折における格子面(002面)のd値が0.335〜0.340nmであり、且つ結晶子サイズ(Lc)が30nm以上の炭素材料を含むことを特徴とする請求項1〜4のいずれかに記載の非水系電解液二次電池。  The negative electrode material includes a carbon material having a d-value of a lattice plane (002 plane) in an X-ray diffraction of 0.335 to 0.340 nm and a crystallite size (Lc) of 30 nm or more. Item 5. A nonaqueous electrolyte secondary battery according to any one of Items 1 to 4. 前記負極材が、X線回折における格子面(002面)のd値が0.335〜0.337nmであり、且つ結晶子サイズ(Lc)が50nm以上の炭素材料を含むことを特徴とする請求項5に記載の非水系電解液二次電池。  The negative electrode material includes a carbon material having a d-value of a lattice plane (002 plane) in an X-ray diffraction of 0.335 to 0.337 nm and a crystallite size (Lc) of 50 nm or more. Item 6. The nonaqueous electrolyte secondary battery according to Item 5.
JP06786599A 1999-03-15 1999-03-15 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3658517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06786599A JP3658517B2 (en) 1999-03-15 1999-03-15 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06786599A JP3658517B2 (en) 1999-03-15 1999-03-15 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000268859A JP2000268859A (en) 2000-09-29
JP3658517B2 true JP3658517B2 (en) 2005-06-08

Family

ID=13357261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06786599A Expired - Lifetime JP3658517B2 (en) 1999-03-15 1999-03-15 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3658517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101296B2 (en) 2007-02-09 2012-01-24 Sony Corporation Battery having a charge voltage between 4.25 V and 6.00 V
US9755277B2 (en) 2014-03-28 2017-09-05 Daikin Industries, Ltd. Electrolyte, electrochemical device, secondary cell, and module
US9843068B2 (en) 2009-02-27 2017-12-12 Sony Corporation Nonaqueous electrolyte secondary battery
US10256506B2 (en) 2014-03-28 2019-04-09 Daikin Industries, Ltd. Electrolyte, electrochemical device, secondary cell, and module

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030074B2 (en) * 2000-11-20 2012-09-19 三井化学株式会社 Non-aqueous electrolyte and secondary battery using the same
JP2004296103A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4748930B2 (en) 2003-09-09 2011-08-17 三洋電機株式会社 Non-aqueous solvent type secondary battery
KR100709838B1 (en) 2005-07-07 2007-04-23 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP4948025B2 (en) 2006-04-18 2012-06-06 三洋電機株式会社 Non-aqueous secondary battery
JP5241124B2 (en) * 2007-03-28 2013-07-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2010225522A (en) 2009-03-25 2010-10-07 Sony Corp Electrolyte, and secondary battery
CN104995784A (en) 2013-02-27 2015-10-21 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
US10978737B2 (en) 2014-06-23 2021-04-13 Nec Corporation Nonaqueous electrolyte solution and secondary battery
CN119340488A (en) * 2017-08-07 2025-01-21 大金工业株式会社 Electrolytes, electrochemical devices, lithium-ion secondary batteries and components
CN109346772B (en) * 2018-09-26 2021-01-15 东莞市杉杉电池材料有限公司 Lithium ion battery non-aqueous electrolyte and lithium ion battery
JP2024533403A (en) * 2021-10-19 2024-09-12 エルジー エナジー ソリューション リミテッド Lithium secondary battery
WO2024116784A1 (en) * 2022-11-28 2024-06-06 パナソニックエナジー株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122297A (en) * 1993-10-26 1995-05-12 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JPH0896849A (en) * 1994-09-22 1996-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH09219217A (en) * 1996-02-09 1997-08-19 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1126018A (en) * 1997-07-08 1999-01-29 Matsushita Denchi Kogyo Kk Lithium secondary battery
JP3439082B2 (en) * 1997-07-16 2003-08-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101296B2 (en) 2007-02-09 2012-01-24 Sony Corporation Battery having a charge voltage between 4.25 V and 6.00 V
US9843068B2 (en) 2009-02-27 2017-12-12 Sony Corporation Nonaqueous electrolyte secondary battery
US10403926B2 (en) 2009-02-27 2019-09-03 Murata Manufacturing Co., Ltd. Nonaqueous electrolyte secondary battery
US9755277B2 (en) 2014-03-28 2017-09-05 Daikin Industries, Ltd. Electrolyte, electrochemical device, secondary cell, and module
US10256506B2 (en) 2014-03-28 2019-04-09 Daikin Industries, Ltd. Electrolyte, electrochemical device, secondary cell, and module

Also Published As

Publication number Publication date
JP2000268859A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP4407205B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
US6558846B1 (en) Secondary power source
JP5671771B2 (en) Lithium secondary battery
JP5671770B2 (en) Lithium secondary battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2005251456A (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using the same
JP4096438B2 (en) Secondary power supply
KR20150139154A (en) Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20170030518A (en) Cathode for lithium batteries
WO2021246186A1 (en) Positive electrode and power storage element
JP2007287570A (en) Lithium ion secondary battery
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
JP2007165298A (en) Lithium secondary battery
JP2007165299A (en) Lithium secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
EP1096592A1 (en) Secondary battery having nonaqueous electrolyte solution
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
JP4204718B2 (en) Non-aqueous electrolyte secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP2007165301A (en) Lithium secondary battery
JP2000090971A (en) Secondary power source
JP2021190184A (en) Non-aqueous electrolyte power storage element
JP2004327211A (en) Non-aqueous electrolyte lithium secondary battery, and lithium secondary battery
JP4284934B2 (en) Secondary power supply
WO2023189140A1 (en) Positive electrode for power storage element, power storage element, and power storage device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

EXPY Cancellation because of completion of term