[go: up one dir, main page]

JP3657389B2 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP3657389B2
JP3657389B2 JP12543497A JP12543497A JP3657389B2 JP 3657389 B2 JP3657389 B2 JP 3657389B2 JP 12543497 A JP12543497 A JP 12543497A JP 12543497 A JP12543497 A JP 12543497A JP 3657389 B2 JP3657389 B2 JP 3657389B2
Authority
JP
Japan
Prior art keywords
polyethylene
rubber
rubber composition
weight
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12543497A
Other languages
Japanese (ja)
Other versions
JPH1067886A (en
Inventor
宇宙 迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP12543497A priority Critical patent/JP3657389B2/en
Publication of JPH1067886A publication Critical patent/JPH1067886A/en
Application granted granted Critical
Publication of JP3657389B2 publication Critical patent/JP3657389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ、防振ゴム等に適したゴム組成物に関する。
【0002】
【従来の技術】
タイヤのトレッドに対する要求特性の一つとして耐カット性がある。この特性は、悪路や建設現場等、外傷を受けやすい路面において使用される際に特に重要である。かかるトレッドの耐カット性を改良する方向としては、ゴムの硬度を上げ、かつ破断時の伸びを大きくすることが良い、とされてきた。前者のゴム硬度の増加のためには、カーボンブラックの高充填、硫黄を増量させること等による架橋密度の向上などの手法が挙げられる。
【0003】
しかしながら、これらの手法に因れば破断時の伸びを低下させ、ゴム片がタイヤから脱離する、チッピングという現象がおこる。これを改良するために、熱可塑性樹脂、熱硬化性樹脂の使用等、種々の検討がなされてきたが、他の特性、特に、耐熱性、発熱性に望ましい結果を得られないことが多く、必ずしも十分な効果が得られていないのが実情であった。例えば、特開昭48-38338号公報に見受けられるように耐カット性、発熱性の両立は可能であったが、耐久性、耐熱性が十分ではなかった。
【0004】
トレッドに限らず、高硬度、耐熱性と低発熱性の両立が重要であるようなタイヤの他の部材においても、その両立は極めて達成困難な課題となっている。
タイヤ以外のゴム製品においても、例えば、防振ゴム、とくにサスペンション用ゴムへの要求特性として、高硬度と低発熱性の両立が挙げられる。
【0005】
また、ポリエチレンを配合した空気タイヤの例として、USP 4,675,349号およびUSP 5,341,863号が挙げられる。前者は、軟化点温度が135℃以上のポリエチレンをその軟化点より低い温度で配合したことを特徴としているが、この場合、配合に際して微細なポリエチレン粒子を添加せざるを得ず、配合時の取り扱いが困難であると同時に、配合物において、ポリエチレン粒子が凝集して配合物の物性を低下させる恐れがある。また後者は、結晶の融点が104℃から115℃の範囲にあるLDPE(低密度ポリエチレン)を使用することを特徴としている。この場合、本発明の本文中にも記載しているように、高温での配合物の物性の変化が著しくゴム組成物として、特にタイヤ用ゴム組成物としては使用が困難と言わざるを得ない。
【0006】
更に、特開平07-266454号公報において、LDPEおよびLLDPE(線状低密度ポリエチレン)を配合した空気入りタイヤが記載されているが、この場合も、高温での配合物の物性の変化が著しく、ゴム組成物として、特にタイヤ用ゴム組成物としては使用が困難と言わざるを得ない。
一般的には、低融点のポリエチレンを使用した場合は、上記の問題の他に、ポリエチレンのクリープに起因する、ゴム組成物のへたりが観られ、これは望ましくない。
【0007】
【発明が解決しようとする課題】
そこで、本発明の目的は、破壊特性を損なうことなく低発熱性、耐熱性、高硬度性、耐へたり特性を両立し得るゴム組成物を提供することである。
【0008】
【課題を解決するための手段】
ゴム組成物において、低発熱性、耐熱性、高硬度性、耐へたり特性を両立させるには、配合物(本発明の場合は、ポリエチレン)に対する以下の4つの必須条件がある。
【0009】
(1)ゴムマトリックスに対する親和性が高いこと。これは、基本的な補強性および発熱性に影響する。
(2)ゴムに比べて弾性率が格段に高いこと。これは、硬度に影響する。
(3)通常の使用温度領域において、相転移、各種の化学反応等を起こしにくいこと。これは、耐熱性に影響する。
(4)微弱な入力に対しては、塑性的な変形を起こさないこと。これは、耐へたり特性に影響する。
【0010】
そこで、本発明者は上記必須条件に注目して各種ポリエチレン樹脂とゴムのブレンドについて鋭意検討を重ねた結果、上記特性に適する組成物を見いだし、本発明を完成するに至ったのである。
即ち、本発明のゴム組成物は、ゴム成分100重量部に対して、高密度ポリエチレンを2〜75重量部(うち架橋可能部分を有する高密度ポリエチレンを20重量%以上含む)配合することを特徴とし、さらにそのゴム組成物を作成する際に、複数のステージに分けて混練する場合、最終ステージより前であって、少なくとも一つのステージにおいて、混練物の最高温度が配合したポリエチレンの融点より、好ましくは10℃以上高温であるように配合したことを特徴とする。
【0011】
高密度ポリエチレン以外のポリエチレンでは、前述のように、タイヤ、防振ゴム等の使用温度で、ポリエチレンの結晶の融解に伴う弾性率の急激な低下と、ヒステリシスロス(tanδ)の大幅な増大を招き、耐熱性の低下を引き起こす。ポリエチレン樹脂の配合量はゴム成分100重量部に対して2〜75重量部とすることが必要である。配合量が2重量部未満では、明確な差が認められず、本発明の効果を達成できない。また、75重量部を超えると、ゴム組成物としての特性が失われ、繰り返し伸張に対する破壊寿命等の疲労特性が特に低下してしまう。
【0012】
配合添加する高密度ポリエチレンの20重量%以上が架橋可能部分を有する高密度ポリエチレンでなければならない。これは、高密度ポリエチレンのみの添加では、耐へたり特性が充分でなく、これを克服するためには、ポリエチレンの非晶部にある程度の架橋を施すことで塑性変形を抑制する必要があるためである。ゴム組成物の物性は、すでに架橋が施された高密度ポリエチレンを使用しても十分向上するが、この場合、分散性を向上させるために、あらかじめ微粒子状態にしたものを配合添加する必要があり、作業上望ましくない。特には、配合においてマトリックスゴム中に充分に分散した後に架橋する特性を有するような高密度ポリエチレンが望ましい。
【0013】
この架橋可能なポリエチレンの比率を20重量%以上、望ましくは35〜70重量%としたのは、20重量%より少ない場合は効果が小さく、35重量%を過ぎる領域より、物性の改良が顕著になるためである。また70重量%を越える領域の使用では、ポリエチレン部の結晶化度の低下によるゴム組成物の弾性率の低下を引き起こし、ゴム組成物全体の物性改良としては、ほぼ飽和してしまうためである。高密度ポリエチレンが架橋可能部分を35〜70重量%含むとき、その効果が最も顕著である。
【0014】
混練りは何ステージかに別れるが、最終ステージより前であって、少なくとも一つのステージにおいて、混練物の最高温度が配合したポリエチレンの融点より高温であることが必要であり、特には10℃以上高温であることが好ましい。この最高温度がポリエチレンの融点よりも低い状態で配合された場合、ポリエチレンの粘度が高く、このためにポリエチレンの分散性およびマトリックスゴムとの親和性が十分でなく、この結果、配合物の破壊特性の低下を招くことがある。
【0015】
本発明に係るゴム組成物のマトリックスゴム成分としては、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)またはスチレン-ブタジエン共重合体(SBR)等のジエン系ゴム単独またはこれらの混合ゴムが用いられる。天然ゴム、または、ポリイソプレンを含む時最も効果が大きい。
尚、本発明に係るゴム組成物には、カーボンブラック、シリカ等の充填剤、アロマ油、スピンドル油等の軟化剤、老化防止剤、加硫剤、加硫促進剤、加硫促進助剤等、通常配合される適当量の配合剤を適宜配合することができるのは勿論のことである。
【0016】
【発明の実施の形態】
以下、実施例及び比較例によってこの発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
表1記載の各種ポリエチレンを使用して、表2、表3に示す配合処方にてゴム組成物を調整し、250mlのラボプラストミル((株)東洋精機製作所製)および3インチロールにより混練配合を行った。配合は2つのステージからなり、第1ステージで加硫剤、加硫促進剤、加硫促進助剤等、高温でゴムマトリックスの架橋に大きな影響をあたえる薬品以外の薬品およびゴム、ポリエチレン、カーボンブラックを添加した。ちなみに、第二ステージでは、第一ステージにおいて添加しなかった薬品等を添加し、第一ステージより低い温度にて混練した。
【0017】
次いで、得られたゴム組成物を加硫し、各種測定を下記の方法に従い行った。加硫条件は145℃、30分である。結果を表4に示す。
(1)ポリエチレンの特性
(a)融点(Tm)の測定
融点(Tm)はセイコー電子工業(株)製の示差熱分析装置(DSC200)を用いて、窒素流量20ml/min.で10℃/min.の昇温速度で20℃〜180℃について測定した。融点は吸熱ピークが収束する温度とした。
(b)メルトフローレートの測定
JIS K6760-1981に準拠した。
(c)曲げこわさ
JIS K6760-1981に準拠し、オルゼンにて測定した。
【0018】
(2)配合物の温度測定
混練の第一ステージにおける配合ゴムの最高温度を測定して、配合物の温度とした。
【0019】
(3)ゴム組成物の各種物性
(a)硬度測定
JIS K6301-1995に準拠して、25℃におけるスプリング式硬さ(A型)を測定した。
(b)引張強さ
JISK6301-1995に準拠し、ダンベル3号のサンプルを用いて測定した。
(c)切断時伸び
JISK6301-1995に準拠し、ダンベル3号のサンプルを用いて測定した。
【0020】
(d)永久歪みの測定方法
ダンベルタイプの加硫ゴムサンプルを、25℃で、引張モードにおいて、毎秒12.5%の歪みスピードで、400%まで変形させた後、負荷を除去し、24時間後のサンプルの長さを測定し、下記の式に従って、永久歪みを測定した。この測定値の逆数を比較例1における値を100として指数表示した。即ち、この指数の値が高いほど、永久歪みが小さいことを示す。
永久歪み(%)=(負荷除去後のサンプル長さ/負荷前のサンプル長さ)x100
【0021】
(e)ヒステリシスロス特性
米国レオメトリックス社製の動的スペクトロメーターを使用し、50℃にて、動的剪断歪み(振幅1.0%、周波数15Hz)を与えてTanδを測定し、これの逆数を比較例1における値を100として指数表示した。従って、数値が大きいほどヒステリシスロスが小さく低発熱であることを示す。
【0022】
【表1】

Figure 0003657389
A:高密度ポリエチレン(三菱化学社製、商品名:HJ560)
B:低密度ポリエチレン(三菱化学社製、商品名:HE30)
C:直鎖型低密度ポリエチレン(三菱化学社製、商品名:UF340)
D:シラン架橋性ポリマー(三菱化学社製、商品名:リンクロンHF-700N)
【0023】
【表2】
Figure 0003657389
*1 IR2200,SBR1500,BR01(日本合成ゴム(株)社製)の単独もしくはブレンド
*2 N-(1、3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン
*3 ジフェニルグアニジン
*4 ジベンゾチアゾリルジサルファイド
【0024】
【表3】
Figure 0003657389
(上記表3中の温度は、混練中の配合物の最高温度である。C/Bはカーボンブラックの略)
【0025】
【表4】
Figure 0003657389
※永久歪みは前記したように400%まで変形させる必要があるが、変形途中で破断したため、測定不能となった。
【0026】
比較例1はポリイソプレンをゴム成分として用い、ポリエチレン樹脂をまったく配合しない例であり、物性評価のコントロールとして用いた。
比較例6を実施例1〜と対比してみると、ポリエチレンの量が少ないとゴム組成物の硬度および切断時伸びが低く比較例1に対する改良効果が得られないことが分かる。又、比較例7を実施例と対比してみると、ポリエチレンの量が75重量%を超えると切断時伸びの低下が著しくなり、物性のバランス(硬度、引張強さ、切断時伸び)がくずれる。また、本願発明の範囲であれば、架橋性ポリエチレンの量を変えても優れた性能が得られることがわかる。比較例12と実施例は、ポリエチレンの量が多い系であるが、ここでも架橋可能部分を有するポリエチレンを配合することにより物性が向上することがわかる。
【0027】
比較例2、3を実施例5、6と対比してみると、ゴム種を変えても同様の傾向があることがわかる。
また、実施例から、カーボンブラックの一部をポリエチレンに置換すると、引張強さと低ヒステリシスロス性(tanδが小さい)の両立という観点において利点があり、実施例から、混練りの温度が樹脂の融点より10度以上高くないと、破壊特性に多少の影響があることがわかる。
【0028】
更に、比較例4、5、8、9は架橋性ポリエチレンを使用していない例であるが、比較例4は永久歪みは悪くないが硬度の改善はなされず、比較例5は硬度の改良はみられるが、この場合永久歪みが悪くなる。そして、比較例8、9は硬度及び永久歪み共に良くない。
【0029】
なお、比較例10、11は架橋性ポリエチレンが配合されているが、低密度ポリエチレンも含まれているため、硬度及び永久歪み共に実施例3、4に劣る。
表4の結果からも明らかなように、本発明の要件を満たした実施例1〜は破壊特性を損なうことなく低発熱性、耐熱性、高硬度性、耐へたり特性を両立し得るゴム組成物であることが判る。
これに対して、比較例1〜12に見られるように本発明の要件を満たしていないゴム組成物の場合、破壊特性、低発熱性、耐熱性、高硬度性の中の少なくとも一つの特性を低下させていることがわかる。
【0030】
【発明の効果】
本発明によれば、ゴム成分100重量部に対して、高密度ポリエチレンを2〜75重量部(うち架橋可能部分を有する高密度ポリエチレンを20重量%以上含む)配合し、配合樹脂の融点より高い温度、好ましくは10℃以上高い温度で混練されたゴム組成物は、高密度ポリエチレンのゴムマトリックスへの分散を向上させ、ポリエチレンとゴムマトリックスとの界面での物理吸着性を高めることによって、破壊物性を低下させることなく低発熱性、耐熱性、高硬度性及び耐へたり特性の両立を可能とする。
【図面の簡単な説明】
【図1】ポリエチレンの曲げこわさと融点の関係を示す。
【図2】ポリエチレンの曲げこわさと密度の関係を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition suitable for tires, vibration-proof rubbers and the like.
[0002]
[Prior art]
One of the required characteristics for tire treads is cut resistance. This characteristic is particularly important when used on road surfaces that are susceptible to trauma, such as bad roads and construction sites. As a direction for improving the cut resistance of such a tread, it has been considered to increase the hardness of the rubber and increase the elongation at break. In order to increase the former rubber hardness, techniques such as high filling of carbon black and improvement of the crosslinking density by increasing the amount of sulfur can be mentioned.
[0003]
However, according to these methods, a phenomenon called chipping occurs in which the elongation at break is reduced and the rubber piece is detached from the tire. In order to improve this, various studies have been made, such as the use of thermoplastic resins and thermosetting resins, but other properties, particularly heat resistance and exotherm, often do not give desirable results. The actual situation is that a sufficient effect is not necessarily obtained. For example, as can be seen in JP-A-48-38338, it was possible to achieve both cut resistance and heat generation, but durability and heat resistance were not sufficient.
[0004]
Not only the tread, but also other members of the tire for which it is important to achieve both high hardness, heat resistance and low heat generation, it is extremely difficult to achieve the compatibility.
In rubber products other than tires, for example, the required characteristics of anti-vibration rubber, particularly suspension rubber, include both high hardness and low heat generation.
[0005]
USP 4,675,349 and USP 5,341,863 are examples of pneumatic tires blended with polyethylene. The former is characterized by blending polyethylene with a softening point temperature of 135 ° C or higher at a temperature lower than its softening point. In this case, fine polyethylene particles must be added during blending, and handling during blending Is difficult, and at the same time, the polyethylene particles in the blend may aggregate to reduce the physical properties of the blend. The latter is characterized by using LDPE (low density polyethylene) having a crystal melting point in the range of 104 ° C to 115 ° C. In this case, as described in the text of the present invention, the change in physical properties of the compound at a high temperature is remarkably difficult to use as a rubber composition, particularly as a tire rubber composition. .
[0006]
Furthermore, in Japanese Patent Application Laid-Open No. 07-266454, a pneumatic tire blended with LDPE and LLDPE (linear low density polyethylene) is described, but also in this case, the change in physical properties of the blend at a high temperature is significant. It must be said that it is difficult to use as a rubber composition, particularly as a rubber composition for tires.
In general, when a low melting point polyethylene is used, in addition to the above problems, a sag of the rubber composition due to the creep of the polyethylene is observed, which is not desirable.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a rubber composition that can achieve both low heat buildup, heat resistance, high hardness and sag resistance without impairing fracture characteristics.
[0008]
[Means for Solving the Problems]
In the rubber composition, in order to achieve both low heat build-up, heat resistance, high hardness, and sag resistance, there are the following four essential conditions for the compound (in the present invention, polyethylene).
[0009]
(1) High affinity for the rubber matrix. This affects basic reinforcement and heat build-up.
(2) The elastic modulus is much higher than rubber. This affects the hardness.
(3) It is difficult to cause phase transition and various chemical reactions in the normal operating temperature range. This affects the heat resistance.
(4) For weak input, do not cause plastic deformation. This affects the sag resistance characteristics.
[0010]
Thus, as a result of intensive investigations on blends of various polyethylene resins and rubbers, the present inventor has found a composition suitable for the above characteristics, and has completed the present invention.
That is, the rubber composition of the present invention contains 2 to 75 parts by weight of high-density polyethylene (including 20% by weight or more of high-density polyethylene having a crosslinkable part) with respect to 100 parts by weight of the rubber component. In addition, when preparing the rubber composition, when kneading in a plurality of stages, before the final stage, in at least one stage, the highest temperature of the kneaded product is from the melting point of the blended polyethylene, Preferably, it is blended so as to be at a high temperature of 10 ° C. or higher.
[0011]
For polyethylenes other than high-density polyethylene, as described above, at the operating temperature of tires, vibration-proof rubber, etc., the elastic modulus suddenly decreases with the melting of polyethylene crystals and the hysteresis loss (tan δ) increases significantly. , Causing a decrease in heat resistance. The blending amount of the polyethylene resin needs to be 2 to 75 parts by weight with respect to 100 parts by weight of the rubber component. When the blending amount is less than 2 parts by weight, no clear difference is observed, and the effects of the present invention cannot be achieved. On the other hand, when it exceeds 75 parts by weight, characteristics as a rubber composition are lost, and fatigue characteristics such as a fracture life against repeated stretching are particularly deteriorated.
[0012]
At least 20% by weight of the high-density polyethylene to be added must be a high-density polyethylene having a crosslinkable portion. This is because the addition of high density polyethylene alone does not provide sufficient sag resistance, and in order to overcome this, it is necessary to suppress plastic deformation by applying a certain degree of crosslinking to the amorphous part of polyethylene. It is. The physical properties of the rubber composition are sufficiently improved even when high-density polyethylene that has already been cross-linked is used, but in this case, in order to improve the dispersibility, it is necessary to compound and add a finely divided state in advance. Undesirable for work. In particular, a high density polyethylene having a property of crosslinking after being sufficiently dispersed in the matrix rubber is desirable.
[0013]
The ratio of the crosslinkable polyethylene of 20% by weight or more, desirably 35 to 70% by weight is less effective when the amount is less than 20% by weight, and the improvement of physical properties is remarkable from the region exceeding 35% by weight. It is to become. Further, if the region exceeds 70% by weight, the elastic modulus of the rubber composition is lowered due to the lowering of the crystallinity of the polyethylene part, and the physical properties of the entire rubber composition are almost saturated. The effect is most noticeable when the high density polyethylene contains 35 to 70% by weight of the crosslinkable portion.
[0014]
Although kneading is divided into several stages, it is necessary that the maximum temperature of the kneaded product is higher than the melting point of the blended polyethylene at least in one stage before the final stage, particularly 10 ° C. or more. High temperature is preferred. When compounded with this maximum temperature below the melting point of polyethylene, the viscosity of the polyethylene is high, so that the dispersibility of the polyethylene and the affinity with the matrix rubber are not sufficient, resulting in the destructive properties of the formulation. May be reduced.
[0015]
As the matrix rubber component of the rubber composition according to the present invention, diene rubber such as natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR) or styrene-butadiene copolymer (SBR) alone or these The mixed rubber is used. Most effective when natural rubber or polyisoprene is included.
The rubber composition according to the present invention includes fillers such as carbon black and silica, softeners such as aroma oil and spindle oil, anti-aging agents, vulcanizing agents, vulcanization accelerators, vulcanization acceleration aids, and the like. Of course, an appropriate amount of a compounding agent that is usually compounded can be appropriately blended.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
Using the various polyethylenes listed in Table 1, the rubber composition was adjusted according to the formulation shown in Tables 2 and 3, and kneaded and blended with 250 ml of Laboplast Mill (manufactured by Toyo Seiki Seisakusho) and 3 inch roll. Went. Compounding consists of two stages. In the first stage, vulcanizing agents, vulcanization accelerators, vulcanization accelerating agents, etc., chemicals other than chemicals that greatly affect the cross-linking of rubber matrix at high temperatures, rubber, polyethylene, carbon black Was added. Incidentally, in the second stage, chemicals and the like that were not added in the first stage were added and kneaded at a temperature lower than that in the first stage.
[0017]
Subsequently, the obtained rubber composition was vulcanized, and various measurements were performed according to the following methods. Vulcanization conditions are 145 ° C and 30 minutes. The results are shown in Table 4.
(1) Properties of polyethylene (a) Measurement of melting point (Tm) The melting point (Tm) is 10 ° C / min using a differential thermal analyzer (DSC200) manufactured by Seiko Denshi Kogyo Co., Ltd. at a nitrogen flow rate of 20 ml / min. Measured at 20 ° C. to 180 ° C. at a temperature rising rate of. The melting point was the temperature at which the endothermic peak converged.
(B) Measurement of melt flow rate Measured according to JIS K6760-1981.
(C) Stiffness of bending Measured by Olsen according to JIS K6760-1981.
[0018]
(2) Temperature measurement of the compound The maximum temperature of the compounded rubber in the first stage of the kneading was measured and used as the temperature of the compound.
[0019]
(3) Various physical properties of rubber composition (a) Hardness measurement Spring hardness (A type) at 25 ° C. was measured according to JIS K6301-1995.
(B) Tensile strength Measured using a sample of dumbbell No. 3 in accordance with JISK6301-1995.
(C) Elongation at break Measured using a sample of dumbbell No. 3 in accordance with JISK6301-1995.
[0020]
(D) Permanent strain measurement method A dumbbell-type vulcanized rubber sample was deformed to 400% at 25 ° C in a tensile mode at a strain rate of 12.5% per second, and then the load was removed for 24 hours. The length of the later sample was measured and permanent set was measured according to the following formula. The reciprocal of this measured value was displayed as an index with the value in Comparative Example 1 being 100. That is, the higher the index value, the smaller the permanent set.
Permanent distortion (%) = (sample length after load removal / sample length before load) × 100
[0021]
(E) Hysteresis loss characteristics Using a dynamic spectrometer manufactured by Rheometrics, USA, Tanδ was measured by applying dynamic shear strain (amplitude 1.0%, frequency 15Hz) at 50 ° C, and the reciprocal of these were compared. The value in Example 1 is shown as an index with the value 100. Therefore, the larger the value, the smaller the hysteresis loss and the lower the heat generation.
[0022]
[Table 1]
Figure 0003657389
A: High density polyethylene (Mitsubishi Chemical Corporation, trade name: HJ560)
B: Low density polyethylene (Mitsubishi Chemical Corporation, trade name: HE30)
C: Linear low density polyethylene (Mitsubishi Chemical Corporation, trade name: UF340)
D: Silane-crosslinkable polymer (Mitsubishi Chemical Corporation, trade name: Linkron HF-700N)
[0023]
[Table 2]
Figure 0003657389
* 1 IR2200, SBR1500, BR01 (Nippon Synthetic Rubber Co., Ltd.) alone or in a blend
* 2 N- (1,3-Dimethylbutyl) -N'-phenyl-p-phenylenediamine
* 3 Diphenylguanidine
* 4 Dibenzothiazolyl disulfide [0024]
[Table 3]
Figure 0003657389
(The temperature in Table 3 above is the maximum temperature of the compound during kneading. C / B is an abbreviation for carbon black)
[0025]
[Table 4]
Figure 0003657389
* Although permanent distortion must be deformed to 400% as described above, measurement was impossible because it broke during deformation.
[0026]
Comparative Example 1 was an example in which polyisoprene was used as a rubber component and no polyethylene resin was blended, and was used as a control for evaluating physical properties.
Comparing Comparative Example 6 with Examples 1 to 4 , it can be seen that when the amount of polyethylene is small, the hardness and elongation at break of the rubber composition are low, and an improvement effect over Comparative Example 1 cannot be obtained. Further, when Comparative Example 7 is compared with Example 9 , when the amount of polyethylene exceeds 75% by weight, the decrease in elongation at the time of cutting becomes significant, and the balance of physical properties (hardness, tensile strength, elongation at cutting) is increased. Messed up. Moreover, if it is the range of this invention, even if it changes the quantity of crosslinkable polyethylene, it turns out that the outstanding performance is obtained. Comparative Example 12 and Example 9 are systems in which the amount of polyethylene is large, but it can be seen that physical properties are improved by blending polyethylene having a crosslinkable portion.
[0027]
When Comparative Examples 2 and 3 are compared with Examples 5 and 6 , it can be seen that the same tendency exists even if the rubber type is changed.
Also, from Example 7, replacing the polyethylene part of the carbon black, there is an advantage in terms of both tensile strength and low hysteresis loss (tan [delta is small), from Example 8, the temperature of the kneaded resin It can be seen that if the melting point is not higher than 10 ° C., the fracture characteristics are somewhat affected.
[0028]
Further, Comparative Examples 4, 5, 8, and 9 are examples in which crosslinkable polyethylene is not used, but Comparative Example 4 is not bad in permanent distortion but does not improve hardness, and Comparative Example 5 does not improve hardness. In this case, the permanent set becomes worse. In Comparative Examples 8 and 9, both hardness and permanent set are not good.
[0029]
In addition, although Comparative Examples 10 and 11 are blended with crosslinkable polyethylene, since low density polyethylene is also included, both hardness and permanent strain are inferior to Examples 3 and 4 .
As is apparent from the results of Table 4, Examples 1 to 9 satisfying the requirements of the present invention are rubbers that can achieve both low heat buildup, heat resistance, high hardness and sag resistance without impairing fracture characteristics. It turns out that it is a composition.
On the other hand, in the case of a rubber composition that does not satisfy the requirements of the present invention as seen in Comparative Examples 1 to 12, at least one characteristic among fracture characteristics, low heat buildup, heat resistance, and high hardness is obtained. It turns out that it is reducing.
[0030]
【The invention's effect】
According to the present invention, 2-75 parts by weight of high-density polyethylene (including 20% by weight or more of high-density polyethylene having a crosslinkable part) is blended with 100 parts by weight of the rubber component, and is higher than the melting point of the blended resin. A rubber composition kneaded at a temperature, preferably 10 ° C. or higher, improves the dispersion of high-density polyethylene in the rubber matrix and increases the physical adsorption at the interface between the polyethylene and the rubber matrix. The low exothermic property, heat resistance, high hardness and sag resistance can be achieved without reducing the heat resistance.
[Brief description of the drawings]
FIG. 1 shows the relationship between the bending stiffness and melting point of polyethylene.
FIG. 2 shows the relationship between bending stiffness and density of polyethylene.

Claims (1)

ゴム成分100重量部に対して、高密度ポリエチレンを2〜75重量部(うち架橋可能部分を有する高密度ポリエチレンが35〜70重量%である。)配合し、配合樹脂の融点より高い温度で混練されたゴム組成物。  2 to 75 parts by weight of high density polyethylene (of which high density polyethylene having a crosslinkable part is 35 to 70% by weight) is blended with 100 parts by weight of the rubber component and kneaded at a temperature higher than the melting point of the compounded resin. Rubber composition.
JP12543497A 1996-05-16 1997-05-15 Rubber composition Expired - Fee Related JP3657389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12543497A JP3657389B2 (en) 1996-05-16 1997-05-15 Rubber composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-121915 1996-05-16
JP12191596 1996-05-16
JP12543497A JP3657389B2 (en) 1996-05-16 1997-05-15 Rubber composition

Publications (2)

Publication Number Publication Date
JPH1067886A JPH1067886A (en) 1998-03-10
JP3657389B2 true JP3657389B2 (en) 2005-06-08

Family

ID=26459164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12543497A Expired - Fee Related JP3657389B2 (en) 1996-05-16 1997-05-15 Rubber composition

Country Status (1)

Country Link
JP (1) JP3657389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558957B1 (en) * 2003-11-25 2006-03-10 금호타이어 주식회사 Rubber compound with improved surface strength

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137236B2 (en) * 1998-07-03 2008-08-20 株式会社ブリヂストン Rubber composition for tire tread and pneumatic tire
WO2011045984A1 (en) 2009-10-13 2011-04-21 ゲイツ・ユニッタ・アジア株式会社 Toothed belt
JP6474265B2 (en) * 2015-02-04 2019-02-27 株式会社ブリヂストン tire
DE112017000461T5 (en) 2016-01-22 2018-10-04 Bando Chemical Industries, Ltd. Friction Transmission Belt and Manufacturing Process
JP6348136B2 (en) * 2016-03-23 2018-06-27 バンドー化学株式会社 Friction transmission belt and manufacturing method thereof
JP6348133B2 (en) * 2016-01-22 2018-06-27 バンドー化学株式会社 Friction transmission belt and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558957B1 (en) * 2003-11-25 2006-03-10 금호타이어 주식회사 Rubber compound with improved surface strength

Also Published As

Publication number Publication date
JPH1067886A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
KR19980024888A (en) Tires with treads made of elastomeric composition
EP0824567B1 (en) Tire tread composition
JPS6248739A (en) High-grip tread rubber composition suitable for high-speed traveling
KR20140050624A (en) Elastomeric compositions comprising reclaimed vulcanized elastomer particles of broad size distribution and chemically modified vulcanized elastomer particles
JPH06199103A (en) Pneumatic tire for heavy duty vehicle
US6070634A (en) Tire with tread made with liquid block copolymer
US6028143A (en) Rubber composition containing cross linkable polyethylene
JP3657389B2 (en) Rubber composition
JP2005298804A (en) Rubber composition and pneumatic tire obtained using the same
JP4102241B2 (en) Rubber composition for sidewall and pneumatic tire using the same
KR100802811B1 (en) Rubber composition for stabilizer bar bush
US7678855B2 (en) Rubber composition
CN108003396B (en) Composition for rubber bushing having vibration isolation and fatigue resistance characteristics
KR102634385B1 (en) Composition of high-fatigue materials of bushes for damper mount
JPH0598078A (en) Rubber composition for tire tread
JPS62143947A (en) Rubber composition for tire tread
JP3552852B2 (en) Pneumatic tire
KR100356591B1 (en) Rubber composition for tier rim flange with good thermal aging and abrasion resistance properties
JPH07233286A (en) Tire tread rubber composition
JPH07268148A (en) Rubber composition for heat-resistant rubber vibration insulator
KR20200025748A (en) Rubber composition for under tread with high hardness and the preparing method thereof
EP0807661B1 (en) Rubber composition
JPH09118783A (en) Rubber composition for tire
CN115702200B (en) Rubber composition and tire
JP2000159934A (en) Rubber composition for tire tread and pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees