[go: up one dir, main page]

JP3656938B2 - Method and apparatus for detecting fixed point position of automatic guided vehicle - Google Patents

Method and apparatus for detecting fixed point position of automatic guided vehicle Download PDF

Info

Publication number
JP3656938B2
JP3656938B2 JP02249298A JP2249298A JP3656938B2 JP 3656938 B2 JP3656938 B2 JP 3656938B2 JP 02249298 A JP02249298 A JP 02249298A JP 2249298 A JP2249298 A JP 2249298A JP 3656938 B2 JP3656938 B2 JP 3656938B2
Authority
JP
Japan
Prior art keywords
magnetic
point position
fixed point
fixed
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02249298A
Other languages
Japanese (ja)
Other versions
JPH11219216A (en
Inventor
弘幸 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02249298A priority Critical patent/JP3656938B2/en
Publication of JPH11219216A publication Critical patent/JPH11219216A/en
Application granted granted Critical
Publication of JP3656938B2 publication Critical patent/JP3656938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工場内外の走路床面に固定(例えば、埋設されたり、或いは床面に張り付けられたりして固定)された台車誘導用磁性体を台車本体の磁気センサで検知しながら無人誘導され、かつ、停止位置等の定点位置識別も同様に走路床面に固定された定点位置識別用磁性体を台車本体の別の磁気センサで検知するようにした、重量物積載搬送用無人搬送台車の定点位置検出方法及び装置に関するものである。
【0002】
【従来の技術】
例えば、製鉄所や製紙工場等の生産ライン、ストックヤード等において、鋼板コイルや製紙コイル等の円筒状搬送物を載置・搬送するための無人搬送台車が知られている。この無人搬送台車は、図10に示すように、車体20の上面に搬送物22を載置する谷状の載置台23を有し、下部に走行車輪21を備え、走行路に敷設された誘導用磁性体10に沿って自動走行する。そして、無人搬送台車は必要に応じて定点位置識別用磁性体を検知して停止したりする。
【0003】
従来、この定点位置識別用磁性体1は、図5に示す通り、磁力影響のないコンクリート面2やアスファルト面に設置されており、本来の磁性特性(S極磁性体ではS極の磁力)を磁性体1の表面に5ガウス以上の磁力(図においてはS極検知範囲3として示している)をもって発生させている。走行中の無人搬送台車に組み込まれた定点位置識別用磁気センサ11は、当該磁性体上の4〜5ガウス以上の磁力を検知することでこの定点位置を識別し、搬送台車の減速位置や停止位置等の定点識別を行ってきた。
【0004】
しかし、工場によっては当該磁性体を常に磁力影響のないコンクリート面等に固定することができない場合も想定される。例えば、磁性体を鉄板上に固定せざるを得ないことも十分考えられるが、このような場合には図6に示す如く、磁場に変化が生じて、本体の磁力3(S極検知範囲)が強くなるとともに、反対の極性の磁場4(N極検知範囲)が生じてしまい、磁気センサ11の誤動作や誤検知(N,S極共に検知)の事態を招くため、鉄板部5に対して直接固定していないのが実情である。やむをえず固定しなければならない場合には、図7に示すように、固定箇所の鉄板部5を磁気の影響のない範囲まで切り欠き、そこに樹脂6やコンクリート等を充填して養生し、定点位置識別用磁気センサ11の誤動作や誤検知を防止してきた。
【0005】
また、無人搬送台車に組み込まれた定点位置識別用磁気センサの極性には、誘導線の極性とは反対の極性を検知するのが一般的であり、これによって誘導線との誤検知を防止するのが目的である。しかし、鉄板部5上に誘導線用磁性体10を直接固定する場合、図8に示す如く、本来の磁力4が強くなるとともに反対の極性の磁場3が生じてしまい、定点位置識別用磁気センサ11が誤検知する可能性があるため、図9のように、誘導線用磁性体10も、固定すべき箇所の鉄板部5を磁気の影響のない範囲まで切り欠き、樹脂6等で養生し、定点位置識別用磁気センサ11の誤動作や誤検知を防止してきた。
【0006】
【発明が解決しようとする課題】
本発明では、無人搬送台車の定点位置識別用磁性体の検知において、鉄板部等の磁場を乱す材料でつくった床面に定点位置識別用磁性体や誘導線用磁性体を直接固定したい場合であって、床面の構造上の問題から床面の切り欠きが困難な場合の対策として、床面に、直に定点位置識別用磁性体や誘導線用磁性体を固定しても、確実に所定の磁気特性を検知し、外乱の反対極の影響を全く受けない無人搬送台車の定点位置検出方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る本発明の無人搬送台車の定点位置検出方法は、走路床面に固定された誘導用磁性体を台車本体の磁気センサで検知しながら無人誘導され、かつ、定点位置も同様に走路床面に固定された定点位置識別用磁性体を台車本体の別の磁気センサで検知する無人搬送台車の定点位置検出方法において、磁場を乱す材質で形成された走路床面に磁気誘導線の磁気で発生する反対極の磁極検知長さより長い磁極検知長さをもつ定点位置識別用磁性体を固定し、誘導線に沿って定速速度で走行する無人搬送台車の磁気検知センサが定点位置識別用磁性体を検知し、この検知した前記定点位置識別用磁性体の磁極検知長さを台車本体に設置した測定装置で測定し、測定によって得られた磁極検知長さの実測値を演算処理装置に入力し、該実測値と既に入力されている磁極検知長さの設定値と比較して、実測値が設定値以下のときは定点位置は未検知とし、該実測値が設定値を超えたときは定点位置識別用磁性体を検出したことにすることを特徴とする。
【0008】
また、上記方法を実施するための請求項2に係る本発明の無人搬送台車の定点位置検出装置は、磁気誘導線で発生する誘導用磁性体に対する反対極の磁極検知長さより長い検知長さをもち、磁場を乱す材質で形成された走路床面に固定された該定点位置識別用磁性体と、台車本体に設置したN極又はS極検出用磁気センサと、台車の移動距離を測定するため車体本体に設けた距離測定装置と、台車本体に設置した定点位置識別用磁性体の磁極検知長さを測定する測定装置にて測定したそれぞれの極性をもつ定点位置識別用磁性体の磁極検知長さの実測値が入力され、該実績値と既に入力されている磁極検知長さの設定値と比較され、実測値が設定値以下のときは定点位置は未検知とし、実測値が設定値を超えたときは定点位置識別用磁性体を検出したと認識判定する演算装置とにより構成される。
【0009】
なお、本発明において、磁場を乱す材質で形成された走路床面とは、通常は一般構造用鋼材で製作した床材(単にこれを鉄板という)を指すが、表面はコンクリート床面でも例えば鉄板との積層構造であったり、或いは内部に鉄筋を配設した場合にはこれに該当する。また、定点位置識別用或いは誘導用磁性体を走路床面に固定することは、床面内に埋設したり、床面上に適宜の止め手段を用いて張り付けたり、若しくは接着剤等で貼り付けたりすることを意味する。
【0010】
【発明の実施の形態】
以下、本発明による無人搬送台車の定点位置検出方法及びその装置の実施形態を図面に基づいて説明する。
図1は、無人搬送台車7における一般的な走行レイアウトと磁気誘導線10,10′(仮にN極とする)と定点位置識別用磁性体8,9(仮にS極とする)の配置を平面的に、また、図2は図1の横断面から見た配置と無人搬送台車7の速度パターンを示したものである。
【0011】
一般的な無人搬送台車の走行方法は、図1に示す通り無人搬送台車7は左方から走行し、減速位置識別用マーカー(磁性体)8から生じるS極の磁力を、車体本体に設置した定点位置識別用検知センサ11が検知することで、無人搬送台車7は走行速度12から速度13まで減速を開始する。しかる後に交差する磁気誘導線10′上を検知センサ11が通過すると、停止位置識別用マーカー(磁性体)9を検知することで無人搬送台車7は走行を停止14する。その後は、停止位置で交差した誘導線10′側へスピンターンして進行するか、或いはそのまま誘導線10を直進するかを選択すればよい。なお、誘導線10,10′を検知して台車の走行を誘導するための誘導用磁気センサ11′は、車体本体の各車輪位置に配設されている。
【0012】
このとき、定点位置識別用磁性体8,9及び磁気誘導線10,10′が鉄板部の如き磁場を乱す材料の上に固定されている場合、これら磁性体及び誘導線には、本来の極性の他に反対の極性が前述の図6及び図8の通り発生する。このような磁場の状況下で、無人搬送台車に組み込まれた定点位置識別用検知センサ11は、同一箇所でN極とS極を同時に検知するため、従来は識別不可とし誤信号と判断していた。
【0013】
そこで、本発明では、本来検知しなければならないS極のみを検知することとし、N極を無視する。しかしながら、S極のみを検知することとしたときは、本来検知すべき定点位置識別用磁性体8,9の他にも、無人搬送台車を誘導させるために鉄板部に埋設されている磁気誘導線10,10′のS極を検知センサ11が定点位置識別用磁性体と誤って検知するおそれがある。図8に示す通り、磁気誘導線10は、N極の強磁性体で通常10〜15ガウスのN極の磁性を発生させており、鉄板部5に埋設することで、周囲に反対極性のS極を発生させている。本発明の定点位置識別用磁性体8,9を検知する磁気検知センサ11は、図2に示す通り、この無人搬送台車7を誘導するための磁気誘導線10′を必ず横断することになる。
【0014】
本発明は、この磁気誘導線10,10′の本来の磁気がN極の場合、発生する反対極のS極の検知長さ16より長い検知長さ15をもつ定点位置識別用磁性体8,9(S極)を鉄板部に固定すると共に、磁気検知センサ11は、S極検知長さ15が磁気誘導線10,10′から発生するS極分布長さ16以下の場合は、定点位置識別用磁性体8,9を未検知とし、S極検知長さ15が磁気誘導線10,10′から発生するS極分布長さ16以上の場合は、定点位置識別用磁性体8,9と判定するようにした。これによって確実に磁気誘導線10,10′のS極による誤検知を防止すると共に、定点位置識別用磁性体を確実に検知するものである。
【0015】
また、本発明に係る磁性体検出装置は、図3に示す通り、無人搬送台車7の車体20に設けられた定点位置識別用磁気検知センサ11と、台車の移動距離を測定するため走行車輪21の走行用モータ19に設けられた回転数測定装置17と、前記定点位置識別用磁気検知センサ11及び測定装置17により得られるS極検知長さと設定した長さとを対比して演算し判定信号を出力する演算装置18とから構成される。
【0016】
図4に本発明装置による定点位置識別用磁性体の検出過程の制御ブロック図の一例を示す。誘導線に沿って定速速度で走行する無人搬送台車の磁気検知センサが、定点位置識別用マーカーを検知すると、測定装置がONとなりマーカーの磁極検知長さの測定を開始する。次に、演算処理装置においては、前記の測定装置にて測定した検知長さの実測値が入力され、これと既に入力されている検知長さの設定値と比較され、実測値が設定値以下のときは定点位置は未検知とされ、そのまま通常の走行状態を継続する定速速度指令が出され、また、実測値が設定値を超えたときは定点位置識別用マーカーを検出したことになり、減速指令が出され、所定の速度に減速される。
【0017】
なお、無人搬送台車が減速状態になるのは、次の停止位置にて停止するための準備過程の場合と、カーブ等の定速では安定走行の困難な箇所に進入する前の段階とが考えられるが、いずれの場所であるかを区別するためには、次の二つの手段のいずれかを採用すればよい。
【0018】
一つは、簡単な走行路の場合に無人搬送台車内の演算装置に各種マーカー配置も含めた走行路情報を記憶させておき、停止前の減速マーカーかカーブのための減速マーカーなのかを、無人搬送台車内の演算装置で判断する方法であり、二つめは、走行路が複雑な場合に外部信号からの走行指示情報の中に停止前の減速マーカーかカーブのための減速マーカーなのかの情報を受けとることで識別を可能とする方法が考えられる。
【0019】
図1の状態で無人搬送台車を誘導線10,10′の交差する位置で停止させたい場合を想定すると、マーカー8の検知では検知長さが設定値を超えるため減速状態となり、次のマーカー(誘導線10′)の検知では検知長さが設定値以下であるためマーカー10′は未検知として通過し、さらにマーカー9の検知では検知長さが設定値を超えるため停止する。誘導線10′方向へ台車を進入させたいときには、停止位置で台車を90°スピンターンさせて台車を始動させれば、台車は誘導線10′を検知センサ11′が検出して走行する。
【0020】
【発明の効果】
以上説明したように、鉄板部等に直に定点位置識別用磁性体を固定すると、従来では無人搬送台車に組み込まれている磁気検知センサでは磁性体を確実に検知できなかったが、本発明の方法及び装置によれば、これを確実にかつ精度良く検知し得るようになった。その結果、直接、鉄板の如き磁場を乱すおそれのある材質の床面に定点位置識別用磁性体及び誘導線を固定することができ、工事費用の削減及び正確な無人搬送台車の走行・停止を行うことが可能となる。
【図面の簡単な説明】
【図1】無人搬送台車における一般的な走行レイアウトと、磁気誘導線(N極)と定点位置識別用磁性体(S極)の配置を示す平面図。
【図2】図1の横断面図と無人搬送台車の速度パターンを示す。
【図3】本発明の検出装置を備えた無人搬送台車の平面略図。
【図4】本発明方法を実施するための制御ブロックの一例を示す図。
【図5】コンクリート面上に定点位置識別用磁性体を固定した断面図と磁気検知センサで検知した磁力分布を示す。
【図6】鉄板上に直に定点位置識別用磁性体を固定した断面図と磁気検知センサで検知した磁力分布を示す。
【図7】鉄板上に、鉄板の磁気影響を回避するための対策を施して定点位置識別用磁性体を固定したときの断面図と磁気検知センサで検知した磁力分布を示す。
【図8】鉄板上に直に無人搬送台車誘導用誘導線を固定した断面図と磁気検知センサで検知した磁力分布を示す。
【図9】鉄板上に、鉄板の磁気影響を回避するための対策を施して無人搬送台車誘導用誘導線を固定したときの断面図と磁気検知センサで検知した磁力分布を示す。
【図10】搬送物(コイル)を載置した状態の無人搬送台車の斜視図を示す。
【符号の説明】
1 定点位置識別用磁性体
2 コンクリート面
3 S極磁気範囲(検知範囲)
4 N極磁気範囲(検知範囲)
5 鉄板部
6 樹脂又はコンクリート面
7 無人搬送台車
8 減速位置識別用マーカー(磁性体)
9 停止位置識別用マーカー(磁性体)
10,10′ 無人搬送台車誘導線
11 定点位置識別用磁気検知センサ
11′ 誘導線識別用磁気検知センサ
12 走行速度
13 減速速度
14 走行停止
15 定点位置識別用磁性体S極検知長さ
16 誘導線用磁性体S極検知長さ
17 回転数測定装置
18 演算装置
19 走行用モータ
20 車体
21 走行車輪
22 搬送物(コイル)
23 載置台
[0001]
BACKGROUND OF THE INVENTION
The present invention is guided unattended while detecting a bogie guiding magnetic body fixed (for example, embedded or fixed on a floor surface) with a magnetic sensor of the bogie main body inside or outside the factory. In addition, for the fixed point position identification such as the stop position, the fixed point position identification magnetic body fixed to the road floor is detected by another magnetic sensor of the bogie main body. The present invention relates to a fixed point position detection method and apparatus.
[0002]
[Prior art]
For example, unmanned transport carts for loading and transporting cylindrical transported objects such as steel sheet coils and papermaking coils in production lines such as steelworks and paper mills, stock yards, and the like are known. As shown in FIG. 10, this automatic guided vehicle has a trough-shaped mounting table 23 on which an object 22 is mounted on the upper surface of a vehicle body 20, is provided with traveling wheels 21 at the lower part, and is guided on a traveling path. It automatically travels along the magnetic body 10 for use. Then, the automatic guided vehicle detects and stops the fixed point position identifying magnetic body as necessary.
[0003]
Conventionally, as shown in FIG. 5, this fixed point position identifying magnetic body 1 is installed on a concrete surface 2 or an asphalt surface that is not affected by a magnetic force, and has an original magnetic characteristic (the magnetic force of the S pole in the S pole magnetic body). It is generated on the surface of the magnetic body 1 with a magnetic force of 5 gauss or more (shown as the S pole detection range 3 in the figure). The fixed-point position identifying magnetic sensor 11 incorporated in the traveling automatic guided vehicle identifies the fixed point position by detecting a magnetic force of 4 to 5 gauss or more on the magnetic body, and decelerates or stops the transport cart. Fixed point identification such as position has been performed.
[0004]
However, depending on the factory, there may be a case where the magnetic body cannot always be fixed to a concrete surface or the like that has no magnetic influence. For example, it is conceivable that the magnetic material must be fixed on the iron plate. In such a case, as shown in FIG. 6, the magnetic field changes, and the magnetic force 3 of the main body (S pole detection range). And the magnetic field 4 (N pole detection range) of the opposite polarity is generated, resulting in a malfunction of the magnetic sensor 11 and erroneous detection (detection of both N and S poles). The situation is not fixed directly. If it must be fixed, as shown in FIG. 7, the steel plate part 5 at the fixing part is cut out to the extent not affected by magnetism, filled with resin 6 or concrete, etc. The malfunction and detection of the position identification magnetic sensor 11 have been prevented.
[0005]
Moreover, it is common to detect the polarity opposite to the polarity of the guide wire as the polarity of the fixed point position identifying magnetic sensor incorporated in the automatic guided vehicle, thereby preventing erroneous detection of the guide wire. The purpose is. However, when the guide wire magnetic body 10 is directly fixed on the iron plate part 5, as shown in FIG. 8, the original magnetic force 4 is strengthened and the magnetic field 3 of the opposite polarity is generated, and the fixed point position identifying magnetic sensor. 11, there is a possibility of erroneous detection . As shown in FIG. 9 , the guide wire magnetic body 10 is also cut out to a range where there is no magnetic influence and cured with a resin 6 or the like. The malfunction and detection of the fixed point position identifying magnetic sensor 11 have been prevented.
[0006]
[Problems to be solved by the invention]
In the present invention, in the detection of the fixed point position identifying magnetic body of the automatic guided vehicle, when it is desired to directly fix the fixed point position identifying magnetic body or the guide wire magnetic body to the floor surface made of a material that disturbs the magnetic field such as the iron plate portion. Therefore, as a countermeasure when the floor surface is difficult to cut out due to structural problems of the floor surface, even if the fixed-point position identification magnetic body or the induction wire magnetic body is directly fixed to the floor surface, It is an object of the present invention to provide a fixed point position detection method and apparatus for an automatic guided vehicle that detects predetermined magnetic characteristics and is not affected by the opposite poles of disturbance.
[0007]
[Means for Solving the Problems]
The fixed point position detecting method of the automatic guided vehicle of the present invention according to claim 1 is guided unattended while detecting the guiding magnetic body fixed on the road surface with the magnetic sensor of the cart body, and the fixed point position is also the same. In a fixed-point position detection method for an automatic guided vehicle that detects a fixed-point position identifying magnetic body fixed to the track floor with another magnetic sensor of the cart body, a magnetic induction line is formed on the track floor formed of a material that disturbs the magnetic field. Fixed point position identification magnetic material with a magnetic pole detection length longer than the magnetic pole detection length of the opposite pole generated by magnetism is fixed, and the magnetic detection sensor of the automatic guided vehicle traveling at a constant speed along the guide wire is the fixed point position The magnetic material for identification is detected, the magnetic pole detection length of the detected magnetic material for fixed point position identification is measured with a measuring device installed in the main body of the carriage, and the actual value of the magnetic pole detection length obtained by the measurement is processed. Input to the device and the measured value Already compared with the set value of the magnetic pole sensing length being input, fixed point position when the measured value is below the set value and not detected, the fixed point position identification magnetic body when the measured value exceeds the set value It is characterized by having detected.
[0008]
According to a second aspect of the present invention for carrying out the above method, the fixed point position detecting device for the automatic guided vehicle of the present invention has a detection length longer than the magnetic pole detection length of the opposite pole with respect to the magnetic material for induction generated by the magnetic induction wire And measuring the moving distance of the carriage, the fixed point position identifying magnetic body fixed on the road surface formed of a material disturbing the magnetic field, the N pole or S pole detection magnetic sensor installed on the carriage body, and the carriage. a distance measuring device provided on the vehicle body for the pole detecting fixed-point position identification magnetic material having a respective polarity as measured by the measuring device for measuring the magnetic pole sensing length of fixed-point position identification magnetic material installed in the carriage body The actual measured value of the length is input, and the actual value is compared with the already set magnetic pole detection length setting value. When the actual measurement value is less than the set value, the fixed point position is not detected and the actual measurement value is the set value. If the value exceeds Out was the recognition determining arithmetic unit by constructed.
[0009]
In the present invention, the runway floor surface formed of a material that disturbs the magnetic field usually refers to a floor material made of a general structural steel material (simply referred to as an iron plate). This is the case when the reinforcing structure is disposed inside or a reinforcing bar is disposed inside. In addition, fixing the fixed point position identifying or guiding magnetic body to the road surface is embedded in the floor surface, pasted on the floor surface using an appropriate stopping means, or pasted with an adhesive or the like. It means to do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method for detecting a fixed point of an automatic guided vehicle and an apparatus therefor according to the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view showing a general traveling layout and an arrangement of magnetic induction wires 10 and 10 '(assuming N pole) and fixed-point position identifying magnetic bodies 8 and 9 (assuming S pole) in the automatic guided carriage 7. FIG. 2 shows an arrangement viewed from the cross section of FIG. 1 and the speed pattern of the automatic guided vehicle 7.
[0011]
As shown in FIG. 1, the general automatic guided vehicle travel method is that the automatic guided vehicle 7 travels from the left side, and the magnetic force of the S pole generated from the deceleration position identification marker (magnetic body) 8 is installed in the vehicle body. The automatic guided vehicle 7 starts decelerating from the traveling speed 12 to the speed 13 by the detection by the fixed point position detection sensor 11. Thereafter, when the detection sensor 11 passes over the magnetic induction wires 10 ′ intersecting each other, the automatic guided vehicle 7 stops traveling 14 by detecting the stop position identifying marker (magnetic body) 9. After that, it is only necessary to select whether to proceed by spin-turning to the guiding line 10 'crossing at the stop position, or to proceed straight through the guiding line 10 as it is. A guidance magnetic sensor 11 ′ for detecting the guide wires 10 and 10 ′ to guide the traveling of the carriage is disposed at each wheel position of the vehicle body.
[0012]
At this time, when the fixed-point-position identifying magnetic bodies 8 and 9 and the magnetic induction wires 10 and 10 'are fixed on a material that disturbs the magnetic field such as an iron plate portion, the magnetic body and the induction wires have their original polarities. In addition, the opposite polarity occurs as shown in FIGS. Under such a magnetic field, the fixed-point position identification detection sensor 11 incorporated in the automatic guided vehicle simultaneously detects the N pole and the S pole at the same location, so that it is conventionally determined that the identification is impossible and an erroneous signal. It was.
[0013]
Therefore, in the present invention, only the S pole that should be detected is detected, and the N pole is ignored. However, when only the S pole is to be detected, in addition to the fixed point position identifying magnetic bodies 8 and 9 that should be detected originally, the magnetic induction wire embedded in the iron plate portion to guide the automatic guided vehicle There is a possibility that the detection sensor 11 erroneously detects the S pole of 10, 10 ′ as a fixed point position identifying magnetic body. As shown in FIG. 8, the magnetic induction wire 10 is an N-pole ferromagnet and normally generates 10 to 15 Gauss N-pole magnetism. The pole is generated. The magnetic detection sensor 11 for detecting the fixed-point position identifying magnetic bodies 8 and 9 according to the present invention always crosses the magnetic guide wire 10 ′ for guiding the automatic guided carriage 7 as shown in FIG. 2.
[0014]
In the present invention, when the original magnetism of the magnetic induction wires 10 and 10 'is the N pole, the fixed point position identifying magnetic body 8 having a detection length 15 longer than the detection length 16 of the opposite S pole generated. 9 (S pole) is fixed to the iron plate portion, and the magnetic detection sensor 11 determines the fixed point position when the S pole detection length 15 is less than or equal to the S pole distribution length 16 generated from the magnetic induction wires 10 and 10 '. When the magnetic bodies 8 and 9 are not detected and the S pole detection length 15 is equal to or longer than the S pole distribution length 16 generated from the magnetic induction wires 10 and 10 ', it is determined that the magnetic bodies 8 and 9 are for fixed point position identification. I tried to do it. This reliably prevents erroneous detection by the south pole of the magnetic induction wires 10 and 10 'and reliably detects the fixed point position identifying magnetic body.
[0015]
Further, as shown in FIG. 3, the magnetic body detection device according to the present invention includes a fixed point position identifying magnetic detection sensor 11 provided on the vehicle body 20 of the automatic guided carriage 7 and a traveling wheel 21 for measuring the movement distance of the carriage. The rotation number measuring device 17 provided in the traveling motor 19 of the traveling motor 19 and the S pole detection length obtained by the fixed point position identifying magnetic detection sensor 11 and the measuring device 17 are compared with the set length to calculate and output a determination signal. And an arithmetic unit 18 for outputting.
[0016]
FIG. 4 shows an example of a control block diagram of the detection process of the fixed point position identifying magnetic material by the apparatus of the present invention. When the magnetic detection sensor of the automatic guided vehicle traveling at a constant speed along the guide line detects the fixed point position identification marker, the measuring device is turned on and measurement of the magnetic pole detection length of the marker is started. Next, in the arithmetic processing unit, the actual measurement value of the detection length measured by the measurement device is input and compared with the set value of the detection length already input, and the actual measurement value is equal to or less than the set value. In this case, the fixed point position is not detected, a constant speed command is issued to continue the normal running state as it is, and when the measured value exceeds the set value, the fixed point position identification marker is detected. A deceleration command is issued, and the vehicle is decelerated to a predetermined speed.
[0017]
In addition, it is considered that the automatic guided vehicle is in a deceleration state in the preparation process for stopping at the next stop position and in the stage before entering a place where stable driving is difficult at a constant speed such as a curve. However, in order to distinguish the location, either of the following two means may be adopted.
[0018]
One is to store travel path information including various marker arrangements in the arithmetic unit in the automatic guided vehicle in the case of a simple travel path, and determine whether it is a deceleration marker before a stop or a deceleration marker for a curve. The second method is to make a judgment using an arithmetic unit in the automated guided vehicle. The second method is whether the travel direction information from an external signal is a deceleration marker before stopping or a deceleration marker for a curve when the travel path is complicated. A method that enables identification by receiving information can be considered.
[0019]
Assuming that the automatic guided vehicle is to be stopped at the position where the guide lines 10 and 10 ′ intersect in the state of FIG. 1, the detection length of the marker 8 exceeds the set value and the vehicle is decelerated, and the next marker ( In the detection of the guide wire 10 '), since the detection length is equal to or less than the set value, the marker 10' passes as undetected, and further, the detection of the marker 9 stops because the detection length exceeds the set value. When it is desired to enter the carriage in the direction of the guide line 10 ', if the carriage is rotated by 90 ° at the stop position and the carriage is started, the carriage travels with the detection sensor 11' detecting the guide line 10 '.
[0020]
【The invention's effect】
As described above, when the fixed point position identifying magnetic body is directly fixed to the iron plate portion or the like, the magnetic detection sensor conventionally incorporated in the automatic guided vehicle could not reliably detect the magnetic body. According to the method and apparatus, this can be detected reliably and accurately. As a result, it is possible to fix the fixed point position identification magnetic body and the guide wire directly to the floor surface of a material that may disturb the magnetic field such as an iron plate, thereby reducing the construction cost and accurately running and stopping the automatic guided vehicle. Can be done.
[Brief description of the drawings]
FIG. 1 is a plan view showing a general traveling layout and an arrangement of magnetic induction wires (N poles) and fixed point position identifying magnetic bodies (S poles) in an automatic guided vehicle.
FIG. 2 shows a cross-sectional view of FIG. 1 and a speed pattern of the automatic guided vehicle.
FIG. 3 is a schematic plan view of an automatic guided vehicle provided with the detection device of the present invention.
FIG. 4 is a diagram showing an example of a control block for carrying out the method of the present invention.
FIG. 5 shows a cross-sectional view in which a fixed point position identifying magnetic body is fixed on a concrete surface and a magnetic force distribution detected by a magnetic detection sensor.
FIG. 6 shows a cross-sectional view in which a fixed point position identifying magnetic body is fixed directly on an iron plate and a magnetic force distribution detected by a magnetic detection sensor.
FIG. 7 shows a sectional view and a magnetic force distribution detected by a magnetic detection sensor when a fixed point position identifying magnetic body is fixed on an iron plate by taking measures for avoiding the magnetic influence of the iron plate.
FIG. 8 shows a cross-sectional view in which a guide line for guiding an automatic guided vehicle is directly fixed on an iron plate and a magnetic force distribution detected by a magnetic detection sensor.
FIG. 9 shows a sectional view and a magnetic force distribution detected by a magnetic detection sensor when a guide line for guiding an automatic guided vehicle is fixed on an iron plate by taking measures for avoiding the magnetic influence of the iron plate.
FIG. 10 is a perspective view of an automatic guided vehicle with a transported object (coil) placed thereon.
[Explanation of symbols]
1 Magnetic material for position identification 2 Concrete surface 3 S pole magnetic range (detection range)
4 N pole magnetic range (detection range)
5 Iron plate 6 Resin or concrete surface 7 Unmanned transport cart 8 Deceleration position identification marker (magnetic material)
9 Stop position identification marker (magnetic material)
10, 10 'unmanned transport carriage guide line 11 fixed point position identifying magnetic detection sensor 11' guide line identifying magnetic detection sensor 12 traveling speed 13 deceleration speed 14 traveling stop 15 fixed point position identifying magnetic body S pole detection length 16 guiding line Magnetic material S pole detection length 17 Rotational speed measuring device 18 Arithmetic device 19 Traveling motor 20 Car body 21 Traveling wheel 22 Conveyed matter (coil)
23 Mounting table

Claims (2)

走路床面に固定された誘導用磁性体を台車本体の磁気センサで検知しながら無人誘導され、かつ、定点位置も同様に走路床面に固定された定点位置識別用磁性体を台車本体の別の磁気センサで検知する無人搬送台車の定点位置検出方法において、磁場を乱す材質で形成された走路床面に磁気誘導線の磁気で発生する反対極の磁極検知長さより長い磁極検知長さをもつ定点位置識別用磁性体を鉄板部に固定し、誘導線に沿って定速速度で走行する無人搬送台車の磁気検知センサが定点位置識別用磁性体を検知し、この検知した前記定点位置識別用磁性体の磁極検知長さを台車本体に設置した測定装置で測定し、測定によって得られた磁極検知長さの実測値を演算処理装置に入力し、該実測値と既に入力されている磁極検知長さの設定値と比較して、実測値が設定値以下のときは定点位置は未検知とし、該実測値が設定値を超えたときは定点位置識別用磁性体を検出したことにすることを特徴とする無人搬送台車の定点位置検出方法。While detecting the magnetic material for guidance fixed to the track floor with the magnetic sensor of the cart body, the fixed point position identifying magnetic material fixed to the track floor is also separated from the cart body. of the fixed-point position detecting method of the automatic guided trolley for detecting the magnetic sensor, the opposite pole sensing length longer than the magnetic pole sensing the length of the pole to be generated in the magnetism of the magnetic induction lines runway floor surface formed of a material disturbing the magnetic field the fixed point position identification magnetic material having fixed to iron plate portion, a magnetic sensor of the unmanned conveyance carriage traveling at a constant speed speed detects the fixed-point position identification magnetic body along the guide line, the fixed point location identification this has been detected The magnetic pole detection length of the magnetic material is measured with a measuring device installed in the cart body, and the actual value of the magnetic pole detection length obtained by the measurement is input to the arithmetic processing unit. Compare with the set value of detection length. , Fixed point position when the measured value is below the set value and not detected, the fixed point of the unmanned conveyance carriage when said measured value exceeds the set value, characterized in that to detecting a fixed point position identification magnetic Position detection method. 請求項1記載の無人搬送台車の定点位置検出方法を実施するための検出装置であって、磁気誘導線で発生する誘導用磁性体に対する反対極の検知長さより長い検知長さをもち、磁場を乱す材質で形成された走路床面に固定された該定点位置識別用磁性体と、台車本体に設置したN極又はS極検出用磁気センサと、台車の移動距離を測定するため車体本体に設けた距離測定装置と、台車本体に設置した定点位置識別用磁性体の磁極検知長さを測定する測定装置にて測定したそれぞれの極性をもつ定点位置識別用磁性体の磁極検知長さの実測値が入力され、該実績値と既に入力されている磁極検知長さの設定値と比較され、実測値が設定値以下のときは定点位置は未検知とし、実測値が設定値を超えたときは定点位置識別用磁性体を検出したと認識判定する演算装置とにより構成された、無人搬送台車の定点位置検出装置。A detection device for carrying out the fixed point position detection method for an automatic guided vehicle according to claim 1, wherein the detection device has a detection length longer than a detection length of an opposite pole with respect to a magnetic material for induction generated by a magnetic induction wire, and a magnetic field is detected. Provided in the vehicle body to measure the moving distance of the carriage, the fixed point position identification magnetic body fixed on the track floor made of disturbing material, the N pole or S pole detection magnetic sensor installed in the carriage body Measured value of the magnetic pole detection length of the fixed point position identification magnetic material having the respective polarities measured by the distance measuring device and the measurement device measuring the magnetic pole detection length of the magnetic material for fixed point position identification installed on the cart body Is compared with the set value of the magnetic pole detection length that has already been input, and when the measured value is less than the set value, the fixed point position is not detected, and when the measured value exceeds the set value, Acknowledged that a magnetic material for fixed point position detection was detected Determining arithmetic unit and is constituted by, for unmanned conveyance carriage fixed point position detecting device.
JP02249298A 1998-02-04 1998-02-04 Method and apparatus for detecting fixed point position of automatic guided vehicle Expired - Fee Related JP3656938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02249298A JP3656938B2 (en) 1998-02-04 1998-02-04 Method and apparatus for detecting fixed point position of automatic guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02249298A JP3656938B2 (en) 1998-02-04 1998-02-04 Method and apparatus for detecting fixed point position of automatic guided vehicle

Publications (2)

Publication Number Publication Date
JPH11219216A JPH11219216A (en) 1999-08-10
JP3656938B2 true JP3656938B2 (en) 2005-06-08

Family

ID=12084241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02249298A Expired - Fee Related JP3656938B2 (en) 1998-02-04 1998-02-04 Method and apparatus for detecting fixed point position of automatic guided vehicle

Country Status (1)

Country Link
JP (1) JP3656938B2 (en)

Also Published As

Publication number Publication date
JPH11219216A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP5182236B2 (en) Travel controller for automated guided vehicle
KR100817826B1 (en) Transport carriage system
US20110153135A1 (en) Travel control device for unmanned conveyance vehicle
JP2014137710A (en) Control method of automatic guided vehicle
JP4375565B2 (en) Traveling cart system
JP3656938B2 (en) Method and apparatus for detecting fixed point position of automatic guided vehicle
KR101112607B1 (en) Vehicle Position Detection System Using Array Magnetic Sensor
JP4513673B2 (en) Mobile system
JP2799656B2 (en) Coil position detection device
WO2022057062A1 (en) Loading/unloading transport system
JPS59172016A (en) Stop controller for guided unmanned truck
JP2024136900A (en) Magnetic marker detection method and magnetic detection system
JP3351453B2 (en) Current traveling position detection device of transport train
JP2814713B2 (en) How to stop unmanned vehicles
JPH07306716A (en) Method for controlling travel of moving body and device therefor
NL1008587C2 (en) Determining the lateral position of a bus in relation to a road
JP2841736B2 (en) How to control unmanned vehicles
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPH0423285B2 (en)
JPH02236707A (en) Travel controller for unmanned vehicle
JP2020013344A (en) Position recognition mechanism of carrier track
JPH10283030A (en) Travel equipment for automated guided vehicles
JP2597563B2 (en) Aircraft detector
JP2922965B2 (en) Vehicle speed measuring method and device therefor
JPH01287711A (en) Derailment detector for unmanned carrier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees