JP3655321B2 - Method for producing Fe-based soft magnetic alloy powder - Google Patents
Method for producing Fe-based soft magnetic alloy powder Download PDFInfo
- Publication number
- JP3655321B2 JP3655321B2 JP13919592A JP13919592A JP3655321B2 JP 3655321 B2 JP3655321 B2 JP 3655321B2 JP 13919592 A JP13919592 A JP 13919592A JP 13919592 A JP13919592 A JP 13919592A JP 3655321 B2 JP3655321 B2 JP 3655321B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- alloy
- soft magnetic
- alloy powder
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 78
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 52
- 239000000956 alloy Substances 0.000 claims description 51
- 229910045601 alloy Inorganic materials 0.000 claims description 50
- 238000010438 heat treatment Methods 0.000 claims description 40
- 238000002425 crystallisation Methods 0.000 claims description 31
- 230000008025 crystallization Effects 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 23
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 61
- 239000013078 crystal Substances 0.000 description 34
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000005389 magnetism Effects 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000011162 core material Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 229910002796 Si–Al Inorganic materials 0.000 description 2
- 229910008423 Si—B Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、特に良好な軟磁気特性を有するFe基軟磁性合金粉末およびその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来から、軟磁気特性に優れた合金粉末としては、Fe−Ni合金粉末、Fe−Si−Al合金粉末、Fe−Si合金粉末が知られており、これら粉末を用いた圧粉磁心が使用されている。また最近ではFe系やCo系の非晶質合金粉末も作製されており、これについても、圧粉磁心やシールド材等の応用が検討されている。
【0003】
しかしながら、Fe−Ni合金粉末は軟磁気特性には優れるものの飽和磁束密度が低い問題点があり、Fe−Si−Al合金粉末、Fe−Si合金粉末については飽和磁束密度はFe−Ni合金粉末よりは高いものの、軟磁気特性は十分ではない。Fe系非晶質合金粉末は飽和磁束密度は高いが磁歪が大きいため、軟磁気特性は良好ではない。Co系非晶質合金粉末は磁歪が小さいため軟磁気特性はFe系と比較して良好であるが、飽和磁束密度が低く高価であるという問題点がある。
【0004】
これに対し、近年液体急冷法によって作成されたFe基非晶質合金を熱処理してその金属組織を100オングストローム程度の微結晶とすることにより、従来のFe基非晶質合金より優れた軟磁気特性が得られることが報告された(特開昭64−79342号公報、特開平1−156452号公報、U.S.P.4,881,989等)。このFe基軟磁性合金は、FeSiBを基準組成とし、これにCuとNb等の高融点金属等を加えたもので組織が100オングストローム程度の微結晶よりなり、飽和磁歪が小さくなっているため、軟磁気特性が改善されている。この合金より作製した粉末も、良好な軟磁気特性を示す(特開昭64−28301号公報)。しかしながら、Cuを添加した場合には、Cu同士が寄り集って組成ずれを引き起こす可能性がある。
【0005】
本願発明は、このような従来の軟磁性合金粉末に代わる粉末軟磁性材料であって、しかも飽和磁歪が極めて小さく、軟磁気特性に優れ、かつ十分な飽和磁束密度をもつ新規なFe基軟磁性合金粉末を提供することを目的とする。
更に、本発明は比較的低融点の金属メタロイド系合金であって、従来の超急冷装置および粉末製造装置等を利用して製造することのできるFe基軟磁性合金粉末を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような目的を達成するため本発明者は、Fe基軟磁性合金について鋭意研究の結果、Fe−Si−B系Fe基軟磁性合金にAlを添加した場合、優れた軟磁気特性を示し、例えば極めて飽和磁歪が低いこと、またこのようなFe−Si−B−Al系Fe基軟磁性合金に下記M'で示される他の特定の元素(金属)、特にNbを添加した場合に極めて優れた軟磁気特性を示すことを見い出し、かつこの合金粉末を製造する方法を見い出し、本発明に至ったものである。
【0007】
即ち、本発明のFe基軟磁性合金粉末は、一般式(Fe1-XMX)100-a-b-c-dSiaAlbBcM'd(式中、MはCo及び/又はNi、M'はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.15、0≦a≦24、2<b≦15、4≦c≦20、0≦d≦10を満たすものとする)により表わされるものであり、特にその組織の少なくとも30%以上が結晶質(微細な結晶粒)で生成されていることが好ましく、更に結晶質は鉄を主体としたbcc固溶体から成るものである。また、M'としてはNbが好適である。
【0008】
本発明のFe基軟磁性合金粉末において磁性特性の面から銅(Cu)は0.5原子%以下、好適には0.1原子%以下であり、最も好ましくはCuが全く混入しないほうがよい。
本発明のFe基軟磁性合金粉末において、Feは原子比xが0から0.15の範囲でCo及び/又はNiで置換することができる。Co及びNiは、Feと負の相互作用パラメータを示すので、本発明のFe基合金粉末を熱処理する際に生成するFeを主体としたbcc固溶体に固溶し、bcc構造格子に置換されるものと考えられる。これにより、bcc固溶体が持つ、磁歪定数、結晶磁気異方性定数を低減できると考えられる。本発明の合金粉末においてxが0≦x<0.02、特にx=0、即ちNi(及び/又はCo)を全く含まない場合には高透磁率が得られるため、高透磁率が要求される用途、電磁シールド等の用途(の磁心材料)に好適である。
【0009】
一方、Ni(及び又はCo)の含有量xが0.02≦x≦0.15を満たすときは、高透磁率が得られるだけでなく上述した磁歪定数、結晶磁気異方性定数の低減という効果及び磁場熱処理により誘導異方性の付与が大きいという効果が得られる。なお、Ni(及び又はCo)の含有量xは好ましくは0.02≦x≦0.15、更に好ましくは0.03≦x≦0.1である。
【0010】
Alは本発明の合金の必須元素であり、Alを特定量(2原子%を超え15原子%以下)添加することにより、結晶磁気異方性の小さい軟磁性を示す結晶(Fe基bcc固溶体)の結晶化温度(TX1)と軟磁性を阻害する結晶(例えばFe−B系結晶)の結晶化温度(TX2)との温度差(△T)を大きくすることができ、熱処理時のFe−B系結晶等の生成を抑制すると共に、比較的低い温度の熱処理で軟磁気特性を導出することができる。図1にFeSiB系合金粉末にAlを添加した場合の結晶化温度とAl量(原子%)との関係を示した。図1より、Al量を増加するとTX1は単調に減少するが、一方TX2はほぼ一定値をとり、TX1とTX2との温度差(△T)が増加することがわかる。
【0011】
本発明においてAlの含有量bは、2原子%を超え15原子%以下、好ましくは2.5〜15原子%、更に好ましくは3〜12原子%である。3〜12原子%の範囲において、特に透磁率が高く、鉄損の小さい合金粉末を得ることができる。なお、本発明の合金粉末においてxが0≦x<0.02、特にx=0の場合には、Alの含有量bは好ましくは6〜12原子%、更に好ましくは6〜10原子%、最も好ましくは7〜10原子%とする。
【0012】
AlはNi(Co)と同様にFeとの相互パラメータが負であるため、Alを添加することによりFeを主体とした固溶体中に固溶され、即ちα−Fe結晶構造のFe原子の位置に置換される形で固溶されbcc結晶を安定化するため、熱処置に結晶化されやすい環境を作るものと推定される。従って、上述のようにAl添加によって結晶磁気異方性の小さい結晶粒が選択的に作成されるので、これによって優れた軟磁気特性が発現すると思われる。
【0013】
Si、Bは本発明のFe基軟磁性合金を初期状態(熱処理前)で非晶質化させる元素である。Siの含有量aは0〜24原子%、好ましくは6〜18原子%、更に好ましくは10〜16原子%である。Siの含有量をこの範囲とすることにより、初期状態(熱処理前)における非晶質形成能を高めることができるので好ましい。
【0014】
Bの含有量cは4〜20原子%、好ましくは6〜15原子%、更に好ましくは10〜14原子%である。この範囲であれば充分な結晶化温度の温度差が得られ、かつ非晶質化させやすいので好ましい。なお、Bの含有量9原子%を境にしてアモルファス形成能が異なり、Bが9.5〜15原子%、特に10〜14原子%の範囲ではAlを入れた場合の上記組成のアモルファス合金のアモルファス形成能に優れ、熱処理後均一な結晶粒が得られる。
【0015】
本発明のFe基軟磁性合金の基本的組成は上述のFe(M)、B、Si、Alであるが、更に耐食性、磁気特性を向上させるために他の元素M'を加えることができる。M'としては、Nb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種以上が挙げられる。さらにM'の添加は、基本組成のFe−Si−Al−B合金の非晶質形成能を向上させる働きがある。
【0016】
Nb、W、Ta、Zr、Hf及びMoは特に軟磁気特性を阻害するFe−B系結晶の析出を抑制し、又はFe−B系結晶の析出温度を高い温度に移動させる効果があり、合金粉末の軟磁気特性を改善する。また上記元素(金属)の添加は結晶粒の微細化に寄与する。V、Cr、Mn、Y及びRuは特に合金の耐腐食性を改善するのに効果的である。C、Ge、P及びGaは特にアモルファスを形成するのに効果がある。上記元素の1以上を添加することができる。これら元素のうち特にNb、Ta、W、Mn、Mo、Vが好ましい。このうち、Nbを加えた場合には軟磁気特性、特に抗磁力、透磁率、鉄損が著しく改善される。これらの元素の添加量dは、1〜10原子%、好ましくは1〜8原子%、更に好ましくは1〜6原子%である。この範囲とすることにより、非晶質形成能および磁気特性が劣化することを防止することができる。
【0017】
また、本発明においてはN、S、Oなどの不可避的不純物を、目的とする特性が劣化しない程度に含有している合金も本発明に含むものである。
本発明のFe基軟磁性合金粉末は組織全体の少なくとも30%以上(30%〜100%)が結晶質(微細な結晶粒)から成り、合金組成の結晶粒以外の部分は主に非晶質である。本発明では、結晶粒の割合が上記範囲にあるとき優れた(軟)磁気特性を示す。なお、本発明では微細結晶粒の割合が実質的に100%であっても優れた(軟)磁気特性を示す。本発明のFe基軟磁性合金粉末においては磁気特性の面から、組織全体の少なくとも60%以上が微細な結晶粒から成ることが特に好ましく、80%以上が微細な結晶粒から成ることが最も好ましい。
【0018】
また本発明の合金粉末の結晶粒はbcc構造を有しており、Feを主体としてSi、B、Al(場合により更にNi及び/又はCo)が固溶していると考えられる。この結晶粒は1000オングストローム以下、好ましくは500オングストローム以下、更に好ましくは50〜300オングストロームの平均粒径を有している。本発明では平均粒径が1000オングストローム以下であることにより、優れた磁気特性が得られるものである。
【0019】
なお、本発明において結晶粒の全体に占める割合は、実験的にX線回折法等により評価することができる。即ち、完全に結晶化した状態(X線回折強度が飽和した状態)のX線回折強度を基準とし、これに対する測定すべき磁性合金材料のX線回折強度の割合をもって実験的に評価することができる。また、結晶化に伴い小受るX線回折線のX線回折強度と、結晶化に伴い減少する非晶質特有のハローによるX線回折強度との比から評価することもできる。また、本発明において平均粒径はX線回折図形のbccピーク反射(110)を用い、シェラーの式 (t=0.9λ/βcosθ)によって導出したものである(カリティ著、新版X線回折要論(Element of X-ray Diffraction (Second Edition)、B.D. Cullity)、 91〜94頁)。
【0020】
本発明のFe基軟磁性合金粉末は通常、以下の方法によって製造することができる。
【0021】
第一の方法は前記組成の合金溶湯を超急冷し非晶質合金粉末を製造する工程と、これを加熱し組織の少なくとも30%以上を結晶質とする熱処理工程からなる製造方法である。非晶質合金粉末の製造方法としては、水アトマイズ法やガスアトマイズ法、スプレー法、キャビテーション法、スパークエロージョン法、回転液中射出法等がある。非晶質合金粉末は完全な非晶質状態が望ましいが結晶質を含んでいてもよい。熱処理は組織の少なくとも30%以上を結晶質とする目的で行なわれ、結晶化温度より高い温度に加熱される。
【0022】
第二の方法は前記組成の合金溶湯を超急冷し非晶質合金薄帯あるいは非晶質合金フレークあるいは非晶質合金線等の非晶質合金を得る工程と、この非晶質合金をその結晶化温度より低い温度で脆化させるのに十分な時間加熱し、脆化した非晶質合金を粉砕する工程と、脆化した非晶質合金粉末をその結晶化温度より高い温度に加熱し、組織の少なくとも30%以上を結晶質とする熱処理工程からなる製造方法である。非晶質合金薄帯、非晶質合金フレークあるいは非晶質合金線を得る方法として、単ロール法、双ロール法、遠心急冷法、回転液中紡糸法等がある。
【0023】
第三の方法は前記組成の合金溶湯を超急冷し非晶質合金薄帯あるいは非晶質合金フレークあるいは非晶質合金線等の非晶質合金を得る工程と、この非晶質合金をその結晶化温度より低い温度で脆化させるのに十分な時間水素を導入し、次いでこの脆化した非晶質合金を粉砕する工程と、このようにして得た非晶質合金粉末をその結晶化温度より高い温度に加熱し、組織の少なくとも30%以上を結晶質とする熱処理工程からなる製造方法である。水素を導入する方法として加圧下で非晶質合金を水素雰囲気にさらすことや、あるいは水素製造電解浴におけるカソードとして用いることにより電解的に導入する方法がある。
【0024】
第四の方法は前記組成の合金溶湯を超急冷し非晶質合金薄帯あるいは非晶質合金フレークあるいは非晶質合金線等の非晶質合金を得る工程と、この非晶質合金をその結晶化温度より高い温度に加熱し、組織の少なくとも30%以上を結晶質とする熱処理工程と、得られた合金を粉砕する工程からなる製造方法である。結晶化温度より高い温度に加熱した合金は脆化し、容易にボールミル、振動ミル等により粉砕できる。
【0025】
本発明の合金粉末は前記組成の非晶質合金を結晶化温度以上に加熱して熱処理し、少なくとも一部、好ましくは試料全体の30%以上を結晶化することにより得られる。このための熱処理は真空中あるいはアルゴンガスもしくは窒素ガスなど不活性ガス、H2等の還元性ガスもしくは空気等の酸化性ガス雰囲気中で行なう。熱処理温度は約200〜800℃程度、好ましくは400〜700℃程度、更に好ましくは520〜680℃程度とする。熱処理時間は0.1〜10時間程度、好ましくは1〜5時間程度とすることが好ましい。また、熱処理は無磁場中でも、また磁場を印加して行なってもよい。本発明では上記の温度範囲で且つ上記範囲の熱処理時間で上記組成の非晶質合金を熱処理することにより本発明の特性に優れた軟磁性合金粉末を得ることができる。
【0026】
以下、実施例を挙げて更に説明する。
【0027】
【実施例】
実施例1〜9
単ロール法を用いて、Fe、Si、Al、B、(Nb)を含有する溶湯からアルゴンガス1気圧雰囲気中で幅1.0〜5mm程度、板厚約14〜20μmの急冷薄帯を作成し、得られた薄帯を結晶化温度以下において窒素ガスの存在下で、約1時間熱処理した。熱処理された非晶質薄帯をボールミルを用いて粉砕し粉末とした後、さらに結晶化温度以上で同様に窒素ガスの存在下で、約1時間熱処理した。
【0028】
表1に上記の方法でFe、Si、Al、B、Nbの組成を変えて作成した合金粉末について、抗磁力Hc(mOe)および飽和磁化Ms(emu/g)を示した。磁化測定は振動試料型磁力計を用いて最大印加磁場18kOeの範囲で行なった。なお組成はICP分析によって決定した。
【0029】
また比較例としてFe78Si9B13合金粉末(比較例1、市販品)及びFeCuSiBNb合金粉末(比較例2、特開昭64−28301号公報に記載されるCu含有するFe基軟磁性合金粉末)の抗磁力、飽和磁化、を併せて表1に示した。
【0030】
【表1】
【0031】
表1からも明らかなように、抗磁力についてはM’としてNbを含有する実施例7ではFeSiB系に比べかなり低い値を示した。この値は、比較例2の抗磁力(18 mOe)とほぼ同等の値を示している。また実施例3、4では、飽和磁化を除いてFeSiB系アモルファス合金と同等あるいはそれ以上の磁気特性を示した。
【0032】
図2は上記の方法で得たFeSiAlB合金粉末の抗磁力Hcの組成依存性を示す図であるが、線で囲んだ組成範囲において、抗磁力100 mOe 以下の良好な軟磁気特性を示した。又、図3は、FeSiAlB合金粉末の飽和磁化Msの組成依存性を示す図であるが、抗磁力Hcが100 mOe 以下の組成範囲内で高い飽和磁化165 emu/g を示す試料(Fe73Si8Al10B9)が得られた。
【0033】
このうち、抗磁力が従来のFeSiB系非晶質合金(比較例1)より小さい実施例4(Fe69Al8Si14B9)及び実施例7(Fe68Al8Si14B9Nb1)について、結晶定数a(オングストローム)、結晶粒径D(オングストローム)、第1結晶化温度TX1(℃)及び第2結晶化温度TX2(℃)を測定した。その結果を表2に示す。
【0034】
【表2】
【0035】
表2の数値は実施例4及び実施例7のΔT値は比較例2に比べ有意に大きいことを示している。また表2からも明らかなように、本発明合金粉末は、熱処理により結晶化することで鉄を主体とした300オングストローム程度のbcc固溶体の結晶粒が形成されていることが確認された。
また第1結晶化温度TX1はこれらのFe基軟磁性合金粉末が従来の熱処理装置を利用して製造可能な温度であり、更に第2結晶化温度TX2との差も実施例4で95℃、実施例7で125℃、「比較例2で30℃」であり、熱処理温度を適当に選ぶことにより軟磁性を阻害する結晶の生成を充分抑制できることが示された。
【0036】
抗磁力において特に優れた特性を示す実施例9の合金(Fe66Si14Al8Nb3B9)について更に詳細な検討を行なった結果について、以下説明する。
まず片ロール法によって幅2.8mm、厚17μmの薄帯を製造し、液体急冷後、450℃で窒素ガス雰囲気中で1時間熱処理した後、ボールミルを用いて粉砕した粉末、およびこの粉末を580℃で窒素ガス雰囲気中で1時間熱処理した後のX線回折像を得た。これらX線回折図形を図4に示す。図中、(a)は450℃で熱処理した後、ボールミルを用いて粉砕した粉末の場合で、非晶質合金に典型的なハローパターンが見られる。また(b)は580℃で熱処理後の場合で、典型的なbcc結晶の回折ピークを示しており、低角度領域にはDO3構造の規則格子反射を示すピークが認められる。
【0037】
同じく実施例9の合金(Fe66Si14Al8Nb3B9)粉末の抗磁力Hc(mOe)の熱処理温度依存性を図5に示した。図から明らかなように抗磁力Hcは580℃で12mOeの最小値をとった後、熱処理温度の上昇とともに増加する。
【0038】
同じく実施例9の合金粉末のbcc結晶の(110)回折強度ピークの半値幅からシェラーの式を用いて導出した結晶粒径D110(オングストローム)及びbcc結晶の(110)回折ピークから求めた格子定数a(オングストローム)の熱処理温度依存性を図6に示した。図6から明らかなように、結晶粒径は熱処理温度の上昇によらずほぼ140オングストローム程度となった。一方、格子定数は熱処理温度の上昇に伴い、徐々に減少することがわかった。
【0039】
実施例10〜25
単ロール法を用いて、Fe、Si、Al、B、Nbを含有する溶湯からアルゴンガス1気圧雰囲気中で幅1.3mm、厚さ18μmの非晶質薄帯を作成し、得られた薄帯を結晶化温度以下において窒素ガスの存在下で、約1時間熱処理した。熱処理した薄帯をボールミルを用いて粉砕し粉末とした後、さらに結晶化温度以上で同様に窒素ガスの存在下で、約1時間熱処理した。得られた粉末の抗磁力Hc(mOe)の結果を表3に示す。
【0040】
【表3】
【0041】
表3からも明らかなように、Niを含まない実施例10〜25の合金粉末は50mOe以下の小さい抗磁力を示した。
実施例26〜45比較例3
【0042】
【表4】
【0043】
表4からも明らかなようにBの含有量が9原子%を超えた合金粉末は、抗磁力が小さくなった。
表4からもわかるようにM’としてNb以外の元素を用いた非晶質合金(実施例25〜45)においても、またNbとそれ以外の元素を併用した場合にもいずれも優れた磁気特性を示した。
【0044】
【発明の効果】
以上の実施例からも明らかなように、本発明のFe基軟磁性合金粉末によれば、Fe−Si−B系合金にAlを添加することにより、軟磁性特性の優れた新規なFe基軟磁性合金粉末を得ることができる。また本発明のFe基軟磁性合金粉末は良好な軟磁性を示す結晶の結晶化温度と軟磁性を阻害する結晶の結晶化温度との温度差が大きいので、従来の非晶質合金粉末の熱処理温度範囲に比べて充分大きな熱処理温度範囲が得られる。
【0045】
また本発明のFe基軟磁性合金粉末によれば、Alを加えるとともにFeの一部をNi(Co)で置換することにより、良好な軟磁気特性を得ることができる。
更に本発明によれば、Fe−Si−Al−B系合金粉末にNb等の元素を添加することにより、優れた軟磁性特性、特に極めて低抗磁力を有する新規なFe基軟磁性合金粉末を得ることができる。
【0046】
本発明の合金粉末は上記のように優れた軟磁性特性を有するため、例えば圧粉磁心、シールド材等の用途(の磁心材料)に好適に用いられる。
【図面の簡単な説明】
【図1】Fe基軟磁性合金粉末の結晶化温度とAl量との関係を示す図。
【図2】Fe基軟磁性合金粉末の抗磁力(Hc)と組成との相関を示す図。
【図3】Fe基軟磁性合金粉末の飽和磁気(Ms)と組成との相関を示す図。
【図4】本発明によるFe基軟磁性合金の非晶質合金粉末及び結晶合金粉末の各X線回折図形を示す図。
【図5】本発明によるFe基軟磁性合金粉末の抗磁力の温度依存性を示す図。
【図6】本発明によるFe基軟磁性合金粉末のbcc結晶の結晶粒径及び格子定数の温度依存性を示す図。[0001]
[Industrial application fields]
The present invention relates to an Fe-based soft magnetic alloy powder having particularly good soft magnetic properties and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, Fe-Ni alloy powder, Fe-Si-Al alloy powder, and Fe-Si alloy powder are known as alloy powders with excellent soft magnetic properties, and dust cores using these powders are used. ing. Recently, Fe-based and Co-based amorphous alloy powders have also been produced, and application of dust cores, shield materials, and the like has also been studied.
[0003]
However, although the Fe-Ni alloy powder is excellent in soft magnetic properties, there is a problem that the saturation magnetic flux density is low. For the Fe-Si-Al alloy powder and the Fe-Si alloy powder, the saturation magnetic flux density is higher than that of the Fe-Ni alloy powder. However, soft magnetic properties are not sufficient. The Fe-based amorphous alloy powder has a high saturation magnetic flux density but a large magnetostriction, so that the soft magnetic properties are not good. Since the Co-based amorphous alloy powder has small magnetostriction, the soft magnetic properties are better than those of the Fe-based powder, but there is a problem that the saturation magnetic flux density is low and expensive.
[0004]
On the other hand, soft magnetic properties superior to conventional Fe-based amorphous alloys are achieved by heat-treating Fe-based amorphous alloys recently prepared by the liquid quenching method to make the microstructure of microcrystals of about 100 angstroms. It has been reported that characteristics can be obtained (Japanese Patent Laid-Open No. 64-79342, Japanese Patent Laid-Open No. 1-156452, US Pat. No. 4,881,989, etc.). This Fe-based soft magnetic alloy has FeSiB as a reference composition, and is added with a high melting point metal such as Cu and Nb, and the structure is made of microcrystals of about 100 Å, and the saturation magnetostriction is small. Soft magnetic properties are improved. Powders made from this alloy also show good soft magnetic properties (Japanese Patent Laid-Open No. 64-28301). However, when Cu is added, Cu may gather together and cause a composition shift.
[0005]
The present invention is a powder soft magnetic material that replaces such conventional soft magnetic alloy powder, and has a very low saturation magnetostriction, excellent soft magnetic properties, and a sufficient saturation magnetic flux density. An object is to provide an alloy powder.
Another object of the present invention is to provide a Fe-based soft magnetic alloy powder which is a metal metalloid alloy having a relatively low melting point and can be manufactured using a conventional ultra-quenching apparatus and a powder manufacturing apparatus. To do.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, as a result of intensive studies on the Fe-based soft magnetic alloy, the present inventor showed excellent soft magnetic characteristics when Al was added to the Fe-Si-B-based Fe-based soft magnetic alloy, For example, the saturation magnetostriction is extremely low, and it is extremely excellent when such a Fe-Si-B-Al-based Fe-based soft magnetic alloy is added with another specific element (metal) represented by M 'below, particularly Nb. The present inventors have found that the present invention exhibits a soft magnetic property and has found a method for producing the alloy powder, thereby achieving the present invention.
[0007]
That is, the Fe-based soft magnetic alloy powder of the present invention has a general formula (Fe 1-X M X) 100-abcd Si a Al b B c M ′ d (where M is Co and / or Ni, and M ′ is One or more elements selected from Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, and P. x represents an atomic ratio, “a”, “b”, “c”, and “d” represent atomic% and satisfy 0 ≦ x ≦ 0.15, 0 ≦ a ≦ 24, 2 <b ≦ 15, 4 ≦ c ≦ 20, and 0 ≦ d ≦ 10, respectively. In particular, it is preferable that at least 30% or more of the structure is produced in crystalline form (fine crystal grains), and the crystalline substance is composed of a bcc solid solution mainly composed of iron. . Moreover, Nb is suitable as M ′.
[0008]
In the Fe-based soft magnetic alloy powder of the present invention, copper (Cu) is 0.5 atomic% or less, preferably 0.1 atomic% or less from the viewpoint of magnetic properties, and most preferably Cu is not mixed at all.
In the Fe-based soft magnetic alloy powder of the present invention, Fe can be substituted with Co and / or Ni when the atomic ratio x is in the range of 0 to 0.15. Co and Ni exhibit negative interaction parameters with Fe. Therefore, the Fe-based alloy powder of the present invention is dissolved in a bcc solid solution mainly composed of Fe and is replaced with a bcc structure lattice. it is conceivable that. Thereby, it is considered that the magnetostriction constant and the magnetocrystalline anisotropy constant of the bcc solid solution can be reduced. In the alloy powder of the present invention, when x is 0 ≦ x <0.02, especially x = 0, that is, when Ni (and / or Co) is not included at all, high permeability is obtained, and thus high permeability is required. It is suitable for applications (magnetic core materials) such as electromagnetic shields.
[0009]
On the other hand, when the content x of Ni (and Co) satisfies 0.02 ≦ x ≦ 0.15, not only high permeability can be obtained, but also the reduction of the magnetostriction constant and magnetocrystalline anisotropy constant described above. The effect that the induction anisotropy is imparted greatly is obtained by the effect and the magnetic field heat treatment. The content x of Ni (and / or Co) is preferably 0.02 ≦ x ≦ 0.15, more preferably 0.03 ≦ x ≦ 0.1.
[0010]
Al is an essential element of the alloy of the present invention, and by adding a specific amount of Al (more than 2 atomic% to 15 atomic% or less), crystals exhibiting soft magnetism with small magnetocrystalline anisotropy (Fe-based bcc solid solution) The temperature difference (ΔT) between the crystallization temperature (TX 1 ) and the crystallization temperature (TX 2 ) of a crystal that inhibits soft magnetism (for example, Fe-B crystal) can be increased. In addition to suppressing the formation of -B based crystals and the like, soft magnetic properties can be derived by heat treatment at a relatively low temperature. FIG. 1 shows the relationship between the crystallization temperature and the Al content (atomic%) when Al is added to the FeSiB alloy powder. As can be seen from FIG. 1, when the Al content is increased, TX 1 decreases monotonously, whereas TX 2 takes a substantially constant value, and the temperature difference (ΔT) between TX 1 and TX 2 increases.
[0011]
In the present invention, the Al content b is more than 2 atom% and 15 atom% or less, preferably 2.5 to 15 atom%, more preferably 3 to 12 atom%. In the range of 3 to 12 atomic%, an alloy powder having particularly high magnetic permeability and small iron loss can be obtained. In the alloy powder of the present invention, when x is 0 ≦ x <0.02, particularly x = 0, the Al content b is preferably 6 to 12 atomic%, more preferably 6 to 10 atomic%, Most preferably, it is 7 to 10 atomic%.
[0012]
Since Al has a negative mutual parameter with Fe like Ni (Co), it is dissolved in a solid solution mainly composed of Fe by adding Al, that is, at the position of Fe atoms in the α-Fe crystal structure. In order to stabilize the bcc crystal by being dissolved in a substituted form, it is presumed that an environment that is easily crystallized by heat treatment is created. Therefore, as described above, crystal grains having small magnetocrystalline anisotropy are selectively produced by adding Al, and it is considered that excellent soft magnetic characteristics are exhibited.
[0013]
Si and B are elements that make the Fe-based soft magnetic alloy of the present invention amorphous in the initial state (before heat treatment). The Si content a is 0 to 24 atomic%, preferably 6 to 18 atomic%, more preferably 10 to 16 atomic%. By setting the Si content in this range, it is preferable because the amorphous forming ability in the initial state (before heat treatment) can be enhanced.
[0014]
The content c of B is 4 to 20 atomic%, preferably 6 to 15 atomic%, more preferably 10 to 14 atomic%. Within this range, a sufficient temperature difference of the crystallization temperature can be obtained and it is easy to make it amorphous. The amorphous forming ability differs with the B content of 9 atomic% as a boundary, and the amorphous alloy having the above composition when Al is added when B is in the range of 9.5 to 15 atomic%, particularly 10 to 14 atomic%. Excellent amorphous forming ability, and uniform crystal grains can be obtained after heat treatment.
[0015]
The basic composition of the Fe-based soft magnetic alloy of the present invention is the above-mentioned Fe (M), B, Si, Al, but other elements M ′ can be added to further improve the corrosion resistance and magnetic properties. Examples of M ′ include one or more selected from Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, and P. Furthermore, the addition of M ′ serves to improve the amorphous forming ability of the Fe—Si—Al—B alloy having the basic composition.
[0016]
Nb, W, Ta, Zr, Hf, and Mo have an effect of suppressing the precipitation of Fe—B based crystals that particularly impair soft magnetic properties, or moving the precipitation temperature of Fe—B based crystals to a high temperature. Improve the soft magnetic properties of the powder. The addition of the element (metal) contributes to the refinement of crystal grains. V, Cr, Mn, Y and Ru are particularly effective in improving the corrosion resistance of the alloy. C, Ge, P and Ga are particularly effective in forming an amorphous state. One or more of the above elements can be added. Of these elements, Nb, Ta, W, Mn, Mo, and V are particularly preferable. Among these, when Nb is added, soft magnetic properties, particularly coercive force, magnetic permeability, and iron loss are remarkably improved. The addition amount d of these elements is 1 to 10 atomic%, preferably 1 to 8 atomic%, more preferably 1 to 6 atomic%. By setting this range, it is possible to prevent the amorphous forming ability and the magnetic characteristics from deteriorating.
[0017]
In the present invention, an alloy containing inevitable impurities such as N, S, and O to such an extent that the intended characteristics are not deteriorated is also included in the present invention.
In the Fe-based soft magnetic alloy powder of the present invention, at least 30% (30% to 100%) of the entire structure is composed of crystalline (fine crystal grains), and the portion other than the crystal grains of the alloy composition is mainly amorphous. It is. In the present invention, excellent (soft) magnetic properties are exhibited when the proportion of crystal grains is in the above range. In the present invention, excellent (soft) magnetic properties are exhibited even when the proportion of fine crystal grains is substantially 100%. In the Fe-based soft magnetic alloy powder of the present invention, from the viewpoint of magnetic properties, it is particularly preferable that at least 60% or more of the entire structure is composed of fine crystal grains, and most preferably 80% or more is composed of fine crystal grains. .
[0018]
Further, the crystal grains of the alloy powder of the present invention have a bcc structure, and it is considered that Si, B, and Al (or Ni and / or Co in some cases) are mainly dissolved in Fe as a main component. The crystal grains have an average grain size of 1000 angstroms or less, preferably 500 angstroms or less, more preferably 50 to 300 angstroms. In the present invention, excellent magnetic properties can be obtained when the average particle size is 1000 angstroms or less.
[0019]
In the present invention, the ratio of the crystal grains to the whole can be experimentally evaluated by the X-ray diffraction method or the like. That is, it is possible to experimentally evaluate the ratio of the X-ray diffraction intensity of the magnetic alloy material to be measured with respect to the X-ray diffraction intensity in a completely crystallized state (a state where the X-ray diffraction intensity is saturated). it can. It can also be evaluated from the ratio between the X-ray diffraction intensity of the X-ray diffraction line received with crystallization and the X-ray diffraction intensity due to the amorphous halo that decreases with crystallization. In the present invention, the average particle diameter is derived from Scherrer's equation (t = 0.9λ / βcosθ) using the bcc peak reflection (110) of the X-ray diffraction pattern (Kariti, new edition X-ray diffraction required). (Element of X-ray Diffraction (Second Edition), BD Cullity), pages 91-94).
[0020]
The Fe-based soft magnetic alloy powder of the present invention can usually be produced by the following method.
[0021]
The first method is a production method comprising a step of super-cooling a molten alloy having the above composition to produce an amorphous alloy powder, and a heat treatment step of heating this to make at least 30% of the structure crystalline. As a method for producing the amorphous alloy powder, there are a water atomizing method, a gas atomizing method, a spray method, a cavitation method, a spark erosion method, a rotating liquid injection method, and the like. The amorphous alloy powder is preferably in a completely amorphous state, but may contain a crystalline material. The heat treatment is performed for the purpose of making at least 30% of the structure crystalline, and is heated to a temperature higher than the crystallization temperature.
[0022]
In the second method, a molten alloy having the above composition is rapidly quenched to obtain an amorphous alloy such as an amorphous alloy ribbon, amorphous alloy flake, or amorphous alloy wire, Heating for a time sufficient to cause embrittlement at a temperature lower than the crystallization temperature, crushing the embrittled amorphous alloy, and heating the embrittled amorphous alloy powder to a temperature higher than the crystallization temperature. A manufacturing method comprising a heat treatment step in which at least 30% of the structure is crystalline. Examples of methods for obtaining amorphous alloy ribbons, amorphous alloy flakes, or amorphous alloy wires include a single roll method, a twin roll method, a centrifugal quenching method, and a spinning method in a rotating liquid.
[0023]
In the third method, the molten alloy having the above composition is rapidly quenched to obtain an amorphous alloy such as an amorphous alloy ribbon, an amorphous alloy flake, or an amorphous alloy wire; Introducing hydrogen for a time sufficient to cause embrittlement at a temperature lower than the crystallization temperature, and then crushing the embrittled amorphous alloy; and crystallization of the amorphous alloy powder thus obtained. It is a manufacturing method comprising a heat treatment step of heating to a temperature higher than the temperature and making at least 30% of the structure crystalline. As a method for introducing hydrogen, there are a method in which an amorphous alloy is exposed to a hydrogen atmosphere under pressure, or electrolytically introduced by using it as a cathode in a hydrogen production electrolytic bath.
[0024]
In the fourth method, the molten alloy having the above composition is rapidly quenched to obtain an amorphous alloy such as an amorphous alloy ribbon, an amorphous alloy flake, or an amorphous alloy wire, It is a manufacturing method comprising a heat treatment step of heating to a temperature higher than the crystallization temperature to make at least 30% of the structure crystalline, and a step of pulverizing the obtained alloy. An alloy heated to a temperature higher than the crystallization temperature becomes brittle and can be easily pulverized by a ball mill, a vibration mill or the like.
[0025]
The alloy powder of the present invention can be obtained by heating an amorphous alloy having the above composition to a temperature equal to or higher than the crystallization temperature, and crystallizing at least a part, preferably 30% or more of the entire sample. The heat treatment for this is performed in a vacuum or in an inert gas atmosphere such as argon gas or nitrogen gas, a reducing gas such as H2, or an oxidizing gas atmosphere such as air. The heat treatment temperature is about 200 to 800 ° C, preferably about 400 to 700 ° C, more preferably about 520 to 680 ° C. The heat treatment time is about 0.1 to 10 hours, preferably about 1 to 5 hours. Further, the heat treatment may be performed in the absence of a magnetic field or by applying a magnetic field. In the present invention, a soft magnetic alloy powder excellent in the characteristics of the present invention can be obtained by heat-treating an amorphous alloy having the above composition within the above-mentioned temperature range and the above-mentioned heat treatment time.
[0026]
Hereinafter, an example is given and it demonstrates further.
[0027]
【Example】
Examples 1-9
Using a single roll method, a quenched ribbon with a width of about 1.0 to 5 mm and a plate thickness of about 14 to 20 μm is created from a molten metal containing Fe, Si, Al, B, (Nb) in an atmosphere of argon gas at 1 atmosphere. Then, the obtained ribbon was heat-treated for about 1 hour in the presence of nitrogen gas below the crystallization temperature. The heat-treated amorphous ribbon was pulverized using a ball mill to form a powder, and further heat-treated in the presence of nitrogen gas at a temperature equal to or higher than the crystallization temperature for about 1 hour.
[0028]
Table 1 shows the coercive force Hc (mOe) and the saturation magnetization Ms (emu / g) of the alloy powder prepared by changing the composition of Fe, Si, Al, B, and Nb by the above method. Magnetization was measured using a vibrating sample magnetometer in the range of a maximum applied magnetic field of 18 kOe. The composition was determined by ICP analysis.
[0029]
As comparative examples, Fe 78 Si 9 B 13 alloy powder (Comparative Example 1, commercially available) and FeCuSiBNb alloy powder (Comparative Example 2, Fe-based soft magnetic alloy powder described in JP-A No. 64-28301) Table 1 shows the coercive force and saturation magnetization.
[0030]
[Table 1]
[0031]
As is clear from Table 1, the coercive force of Example 7 containing Nb as M ′ was considerably lower than that of the FeSiB system. This value is almost equal to the coercive force (18 mOe) of Comparative Example 2. In Examples 3 and 4, the magnetic characteristics were equal to or higher than those of the FeSiB amorphous alloy except for the saturation magnetization.
[0032]
FIG. 2 is a diagram showing the composition dependence of the coercive force Hc of the FeSiAlB alloy powder obtained by the above method. In the composition range surrounded by the line, the soft magnetic property having a coercive force of 100 mOe or less was shown. FIG. 3 is a graph showing the composition dependence of the saturation magnetization Ms of the FeSiAlB alloy powder. A sample (Fe 73 Si) having a high saturation magnetization of 165 emu / g within a composition range where the coercive force Hc is 100 mOe or less. 8 Al 10 B 9 ) was obtained.
[0033]
Among them, Example 4 (Fe 69 Al 8 Si 14 B 9 ) and Example 7 (Fe 68 Al 8 Si 14 B 9 Nb 1 ) whose coercive force is smaller than the conventional FeSiB-based amorphous alloy (Comparative Example 1 ). The crystal constant a (angstrom), the crystal grain size D (angstrom), the first crystallization temperature TX 1 (° C.) and the second crystallization temperature TX 2 (° C.) were measured. The results are shown in Table 2.
[0034]
[Table 2]
[0035]
The numerical values in Table 2 indicate that the ΔT values of Example 4 and Example 7 are significantly larger than those of Comparative Example 2. Further, as is apparent from Table 2, it was confirmed that the alloy powder of the present invention formed crystal grains of bcc solid solution of about 300 angstrom mainly composed of iron by crystallization by heat treatment.
The first crystallization temperature TX 1 is a temperature at which these Fe-based soft magnetic alloy powders can be produced using a conventional heat treatment apparatus, and the difference from the second crystallization temperature TX 2 is 95 in Example 4. C., 125 ° C. in Example 7, and “30 ° C. in Comparative Example 2”. It was shown that the formation of crystals that inhibit soft magnetism can be sufficiently suppressed by appropriately selecting the heat treatment temperature.
[0036]
The results of further detailed investigations on the alloy of Example 9 (Fe 66 Si 14 Al 8 Nb 3 B 9 ) exhibiting particularly excellent coercive force characteristics will be described below.
First, a thin strip having a width of 2.8 mm and a thickness of 17 μm is manufactured by a single roll method, liquid-quenched, heat-treated in a nitrogen gas atmosphere at 450 ° C. for 1 hour, and then pulverized using a ball mill, and 580 An X-ray diffraction image was obtained after heat treatment in a nitrogen gas atmosphere at 1 ° C. for 1 hour. These X-ray diffraction patterns are shown in FIG. In the figure, (a) is the case of a powder that is heat-treated at 450 ° C. and then pulverized using a ball mill, and a halo pattern typical of an amorphous alloy is seen. Further, (b) shows a case of a typical bcc crystal diffraction peak after heat treatment at 580 ° C., and a peak exhibiting regular lattice reflection of DO3 structure is observed in a low angle region.
[0037]
Similarly, FIG. 5 shows the heat treatment temperature dependence of the coercive force Hc (mOe) of the alloy (Fe 66 Si 14 Al 8 Nb 3 B 9 ) powder of Example 9. As is apparent from the figure, the coercive force Hc increases with increasing heat treatment temperature after taking a minimum value of 12 mOe at 580 ° C.
[0038]
Similarly, the lattice constant determined from the grain size D110 (angstrom) derived from the half width of the (110) diffraction intensity peak of the bcc crystal of the alloy powder of Example 9 and the (110) diffraction peak of the bcc crystal from the half-width of the Scherrer equation. FIG. 6 shows the heat treatment temperature dependence of a (angstrom). As is apparent from FIG. 6, the crystal grain size was approximately 140 Å regardless of the increase in the heat treatment temperature. On the other hand, it was found that the lattice constant gradually decreased as the heat treatment temperature increased.
[0039]
Examples 10-25
Using a single roll method, an amorphous ribbon having a width of 1.3 mm and a thickness of 18 μm was prepared from a molten metal containing Fe, Si, Al, B, and Nb in an atmosphere of argon gas at 1 atm. The band was heat treated for about 1 hour in the presence of nitrogen gas below the crystallization temperature. The heat-treated ribbon was pulverized into a powder using a ball mill, and further heat-treated in the presence of nitrogen gas at a temperature equal to or higher than the crystallization temperature for about 1 hour. Table 3 shows the results of the coercive force Hc (mOe) of the obtained powder.
[0040]
[Table 3]
[0041]
As is apparent from Table 3, the alloy powders of Examples 10 to 25 containing no Ni exhibited a small coercive force of 50 mOe or less.
Examples 26-45 Comparative Example 3
[0042]
[Table 4]
[0043]
As apparent from Table 4, the coercive force of the alloy powder with the B content exceeding 9 atomic% was small.
As can be seen from Table 4, both the amorphous alloys using elements other than Nb as M ′ (Examples 25 to 45) and excellent magnetic properties when Nb and other elements are used in combination. showed that.
[0044]
【The invention's effect】
As is clear from the above examples, according to the Fe-based soft magnetic alloy powder of the present invention, by adding Al to the Fe-Si-B-based alloy, a novel Fe-based soft magnetic material having excellent soft magnetic properties can be obtained. Magnetic alloy powder can be obtained. In addition, since the Fe-based soft magnetic alloy powder of the present invention has a large temperature difference between the crystallization temperature of crystals exhibiting good soft magnetism and the crystallization temperature of crystals that inhibit soft magnetism, heat treatment of conventional amorphous alloy powders A sufficiently large heat treatment temperature range can be obtained compared to the temperature range.
[0045]
Further, according to the Fe-based soft magnetic alloy powder of the present invention, good soft magnetic characteristics can be obtained by adding Al and replacing part of Fe with Ni (Co).
Furthermore, according to the present invention, by adding an element such as Nb to the Fe-Si-Al-B alloy powder, a novel Fe-based soft magnetic alloy powder having excellent soft magnetic properties, particularly extremely low coercive force, can be obtained. Can be obtained.
[0046]
Since the alloy powder of the present invention has excellent soft magnetic properties as described above, it is suitably used for applications (magnetic core materials) such as dust cores and shield materials.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the crystallization temperature of Fe-based soft magnetic alloy powder and the amount of Al.
FIG. 2 is a graph showing the correlation between coercive force (Hc) and composition of Fe-based soft magnetic alloy powder.
FIG. 3 is a diagram showing the correlation between the saturation magnetism (Ms) and the composition of Fe-based soft magnetic alloy powder.
FIG. 4 is a diagram showing X-ray diffraction patterns of an amorphous alloy powder and a crystal alloy powder of an Fe-based soft magnetic alloy according to the present invention.
FIG. 5 is a graph showing the temperature dependence of the coercive force of the Fe-based soft magnetic alloy powder according to the present invention.
FIG. 6 is a graph showing the temperature dependence of the crystal grain size and lattice constant of a bcc crystal of Fe-based soft magnetic alloy powder according to the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13919592A JP3655321B2 (en) | 1992-05-29 | 1992-05-29 | Method for producing Fe-based soft magnetic alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13919592A JP3655321B2 (en) | 1992-05-29 | 1992-05-29 | Method for producing Fe-based soft magnetic alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05335129A JPH05335129A (en) | 1993-12-17 |
JP3655321B2 true JP3655321B2 (en) | 2005-06-02 |
Family
ID=15239773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13919592A Expired - Lifetime JP3655321B2 (en) | 1992-05-29 | 1992-05-29 | Method for producing Fe-based soft magnetic alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3655321B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103537677A (en) * | 2013-10-11 | 2014-01-29 | 芜湖市鸿坤汽车零部件有限公司 | Sintered alloy containing chromium and preparation method thereof |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005142547A (en) * | 2003-10-15 | 2005-06-02 | Sumitomo Electric Ind Ltd | Soft magnetic material and dust core |
JP2006332524A (en) * | 2005-05-30 | 2006-12-07 | Mitsubishi Materials Pmg Corp | High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof |
JP2006332525A (en) * | 2005-05-30 | 2006-12-07 | Mitsubishi Materials Pmg Corp | High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof |
JP2011171612A (en) * | 2010-02-22 | 2011-09-01 | Alps Electric Co Ltd | Fe-BASED SOFT MAGNETIC ALLOY POWDER AND METHOD OF PRODUCING THE SAME, AND MAGNETIC SHEET FOR VHF BAND AND MOLDED ARTICLE USING THE Fe-BASED SOFT MAGNETIC ALLOY POWDER, AND MAGNETIC CORE FOR VHF BAND |
JP2016063170A (en) * | 2014-09-22 | 2016-04-25 | 株式会社東芝 | Magnetic member, manufacturing method thereof, and inductor element |
KR102574343B1 (en) * | 2018-03-29 | 2023-09-04 | 신토고교 가부시키가이샤 | Iron-based soft magnetic powder and manufacturing method thereof, article containing iron-based soft magnetic alloy powder, and manufacturing method thereof |
CN112582125B (en) * | 2019-09-27 | 2024-03-19 | Tdk株式会社 | Soft magnetic alloy and electronic component |
CN113053610B (en) * | 2019-12-27 | 2025-01-03 | Tdk株式会社 | Soft magnetic alloy powders, magnetic cores, magnetic components and electronic devices |
JP7283627B2 (en) * | 2020-03-10 | 2023-05-30 | 株式会社プロテリアル | Method for producing Fe-based amorphous alloy powder |
CN115976426B (en) * | 2023-01-29 | 2023-07-04 | 襄阳金耐特机械股份有限公司 | High-strength and high-toughness martensitic heat-resistant steel |
CN117026103B (en) * | 2023-08-08 | 2024-10-29 | 中南大学 | Multi-component soft magnetic alloy with high strength, high resistance and low resistance temperature coefficient, and preparation method and application thereof |
-
1992
- 1992-05-29 JP JP13919592A patent/JP3655321B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103537677A (en) * | 2013-10-11 | 2014-01-29 | 芜湖市鸿坤汽车零部件有限公司 | Sintered alloy containing chromium and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH05335129A (en) | 1993-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3437573B2 (en) | Fe-Ni based soft magnetic alloy having nanocrystalline structure | |
JP5288226B2 (en) | Magnetic alloys, amorphous alloy ribbons, and magnetic parts | |
KR910003977B1 (en) | Fe-base soft magnetic alloy and method of producing same | |
JP5316920B2 (en) | Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components | |
JP5455041B2 (en) | Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon | |
JPH044393B2 (en) | ||
JP3279399B2 (en) | Method for producing Fe-based soft magnetic alloy | |
JP2710938B2 (en) | High saturation magnetic flux density soft magnetic alloy | |
JP3655321B2 (en) | Method for producing Fe-based soft magnetic alloy powder | |
JP3231149B2 (en) | Noise filter | |
JP3623970B2 (en) | Fe-based soft magnetic alloy and manufacturing method | |
JP2667402B2 (en) | Fe-based soft magnetic alloy | |
JPH0711396A (en) | Fe base soft magnetic alloy | |
JPH0448005A (en) | Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same | |
JP3558350B2 (en) | Fe-based soft magnetic alloy and manufacturing method | |
JP3322407B2 (en) | Fe-based soft magnetic alloy | |
JPH0768604B2 (en) | Fe-based magnetic alloy | |
JP4310738B2 (en) | Soft magnetic alloys and magnetic parts | |
JP3850623B2 (en) | Method for producing soft magnetic alloy having fine crystal structure | |
JPH0448004A (en) | Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same | |
JP2000160241A (en) | PRODUCTION OF Fe BASE SOFT MAGNETIC ALLOY | |
JP2835113B2 (en) | Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same | |
JPH04341544A (en) | Fe base soft magnetic alloy | |
JP2877452B2 (en) | Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same | |
JPH0468383B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050303 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |