JP3654579B2 - Wastewater purification method - Google Patents
Wastewater purification method Download PDFInfo
- Publication number
- JP3654579B2 JP3654579B2 JP2000194614A JP2000194614A JP3654579B2 JP 3654579 B2 JP3654579 B2 JP 3654579B2 JP 2000194614 A JP2000194614 A JP 2000194614A JP 2000194614 A JP2000194614 A JP 2000194614A JP 3654579 B2 JP3654579 B2 JP 3654579B2
- Authority
- JP
- Japan
- Prior art keywords
- dioxins
- wastewater
- membrane
- waste
- incinerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treating Waste Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、焼却設備や溶融設備で発生する排水、例えば排ガスの洗浄排水に含まれるダイオキシン類を除去するための処理方法に関する。
【0002】
【従来の技術】
従来、原子力施設の焼却装置、溶融装置、あるいは産業廃棄物焼却装置などでは、排ガス中のダイオキシン類の存在が重要視され、燃焼技術や排ガス処理技術の顕著な進歩がみられたが、排水中のダイオキシン類については、排ガスの場合のようには研究自体が進んでいないのが現状である。
【0003】
排水中のダイオキシン類の処理方法として、特開平10−286597号公報の排水浄化処理方法が提案されている。この処理方法では、ダイオキシン類を含有する原水を凝集沈殿させた後、精密ろ過膜を通し、そのろ過排水に過酸化水素水を添加、混合し、紫外線を照射して、ろ過排水中のダイオキシン類を分解するというものである。
【0004】
しかし、この処理方法を、原子力施設に適用する場合には、凝集沈殿汚泥の処理が必要になる他、精密ろ過膜を通しているため目詰まりし易く二次廃棄物が発生する。また、紫外線照射ランプの寿命が短く交換頻度が多いうえ、二次廃棄物になるなど、ダイオキシン類に汚染された廃棄汚泥や二次廃棄物の再処理が煩雑であるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、排水中の固形分を汚泥として再処理する必要がなく、ろ過膜の寿命を大幅に延長して二次廃棄物の発生を抑制しながら、排水中のダイオキシン類を効果的に除去できる排水の浄化処理方法を提供する。
【0006】
【課題を解決するための手段】
上記の問題は、焼却装置または溶融装置から発生する排ガスを洗浄して得たダイオキシン類を含む排水を、精密ろ過膜または限外ろ過膜を用いたろ過装置に循環させてクロスフローろ過し、粒子状ダイオキシン類を含む濃縮排水として前記ダイオキシン類を含む排水を減容化した後、前記焼却装置または溶融装置に返送して焼却処理または溶融処理することを特徴とする本発明の排水の浄化処理方法によって解決することができる。
そして、本発明は、前記ろ過装置のろ過水を二酸化マンガン触媒を充填した反応装置にオゾンの存在下に通水させ、溶解性ダイオキシン類を酸化分解させる形態の排水の浄化処理方法として、好ましく具体化することができる。
【0007】
本発明によれば、精密ろ過膜または限外ろ過膜を用いたろ過装置でクロスフローろ過し、排水中に含まれる粒子状ダイオキシン類を含む濃縮排水とし減容化して、これを焼却装置または溶融装置に返送するようにするので、ダイオキシン類に汚染された廃棄汚泥が発生しない。また、クロスフローろ過するので、精密ろ過膜または限外ろ過膜の目詰まりが生じにくく、寿命が延長されるのである。
なお、本発明ではダイオキシン類とは、四塩化ジベンゾダイオキシン(TCDD)を初めとして、塩素数による多数の異性体を含む有機塩素化合物であるポリ塩化ジベンゾダイオキシンを総称する用語として使用している。
【0008】
【発明の実施の形態】
次に、本発明の排水の浄化処理方法に係る実施形態について、図1を参照しながら説明する。
原子力施設の焼却装置、溶融装置、あるいは産業廃棄物焼却装置などから発生する燃焼排ガスは、セラミックフィルタ、バグフィルタ、HEPAフィルタなどのような除塵装置において浮遊固形物が除去され、次いで洗浄装置において洗浄水により溶解性成分や除塵装置を通過した微細な固形分が除去される。このように除塵装置と洗浄装置を経た排ガスはダイオキシン類(DXN)除去装置によって最終的に浄化され、排気される。
この場合、前記洗浄装置の直前の排ガス中に含まれるダイオキシン類は、洗浄時に洗浄水側に移行するものと、排ガス中に残留したまま通過する分とがあり、本発明者の調査によると、移行分は全体の60%前後に達することが分かった。
【0009】
そして、実施形態では、前記焼却装置または溶融装置から発生する排ガスを洗浄して得たダイオキシン類を含む排水を、精密ろ過膜または限外ろ過膜を用いた膜ろ過装置によって、ろ過処理するのであるが、この場合は、前記排水を排水タンクと膜ろ過装置の原液側において循環させてクロスフローろ過するようにしている。かくして、前記ダイオキシン類を含む排水は粒子状ダイオキシン類を含む濃縮排水として減容化される。このように減容化された濃縮排水は、前記焼却装置または溶融装置に返送して焼却処理または溶融処理されるのである。
なお、この減容化の程度は、限定されるものではないが、少なくとも原液の1/100、好ましくは1/1000に減容化するのが、返送される焼却装置などの燃焼状態に影響を与えないので好ましい。
【0010】
さらに、この実施形態では、前記膜ろ過装置のろ過水を二酸化マンガン触媒を充填した触媒充填装置に通水させ、溶解性ダイオキシン類を放流基準を満足させるように酸化分解させるプセスが付加されている。この触媒充填装置には、前記酸化分解反応を促進させるためオゾンが導入され、ろ過水はオゾンの存在下で二酸化マンガン触媒の作用を受け効果的に酸化分解される。
【0011】
この本発明の実施形態によれば、先ず、膜ろ過装置でクロスフローろ過し、排水中に含まれるダイオキシン類の大部分を占める粒子状ダイオキシン類を含む濃縮排水を焼却装置または溶融装置に返送するようにするので、ダイオキシン類に汚染された廃棄汚泥が発生しないという利点が得られる。また、クロスフローろ過するので、膜ろ過装置の目詰まりが生じにくく、寿命が延長されるから、ダイオキシン類に汚染された使用済み廃棄膜なども減少する。さらに、ダイオキシン類を含む洗浄排水中を1/100〜1/1000に濃縮して焼却装置などに返送してさらに処理するので、焼却装置などに負荷をかけないから熱損失が少ない、ダイオキシン類の分解に必要な高温度を維持しやすい、などの利点もある。
さらに、膜ろ過装置を経たろ過水は、二酸化マンガン触媒により最終処理を受け、後記のように放流基準以下に浄化されるのである。
【0012】
次に、本発明の洗浄排水に相当する試験用原水を準備し、以下に示す後処理によるダイオキシン類の除去性能を調査した。その試験結果を表1に示す。
処理システム1は、試験用原水を二酸化マンガン触媒による酸化処理を伴わないMF膜またはUF膜によるろ過により、ダイオキシン等濃度(DXN濃度)の変化を調べたもので、除去率は99.95%であるが、規制値10 Pg-TEQ/L を確実にクリヤするには、他の廃液と合流させて約10倍程度希釈するのが望ましい。
【0013】
なお、この場合、試験用原水にはダイオキシン類(DXN)濃度が25,900 Pg-TEQ/L のものを使用した。これは、予備試験により、排ガスから排水へのダイオキシン類の移行率は、概略60%(重量比)であったことに基づき選択したことによる。ただし、移行率とは、単位時間において測定されるところの前記除塵装置直後の排ガス中のダイオキシン類総量に対する、洗浄排水中のダイオキシン類総量の重量比である。
【0014】
また、処理システム2は、試験用原水に凝集剤ポリ塩化アルミニウムを添加し、膜ろ過効率を高めた方法であり、除去効率は向上しているが、規制値に対して余裕が少ないので他の廃液との合流が必要なのは、処理システム1の場合と同様である。
【0015】
処理システム3は、膜ろ過した処理水をさらに本発明の二酸化マンガン触媒等による酸化処理を行ったもので、規制値の1/10以下の濃度まで除去でき、余裕があるので前記のような他の廃液との合流処理も必要でなくなる。
【0016】
【表1】
注:試験用原水の DXN濃度=25,900 Pg-TEQ/L
膜ろ過 :精密ろ過膜または限外ろ過膜によるろ過。
凝集剤 :ポリ塩化アルミニウム、添加量 30mg/L
酸化処理 :二酸化マンガン触媒とオゾンの併用。
排水規制値:10 Pg-TEQ/L
【0017】
【発明の効果】
本発明の排水の浄化処理方法は、以上に説明したように構成されているので、排水中の固形分を汚泥として再処理する必要がなくなり、焼却装置などに熱損失を与えることが少なく、かつ膜ろ過装置の寿命を大幅に延長して二次廃棄物の発生を抑制できる。そして、排水中のダイオキシン類を効果的に除去でき、排水の大部分は放流可能な低濃度にすることができるという優れた効果がある。よって本発明は従来の問題点を解消した排水の浄化処理方法として、その工業的価値は極めて大なるものがある。
【図面の簡単な説明】
【図1】本発明の排水の浄化処理方法の要部を示すシステムフロー図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treatment method for removing dioxins contained in waste water generated in incineration equipment and melting equipment, for example, waste water for washing exhaust gas.
[0002]
[Prior art]
Conventionally, incineration equipment, melting equipment, or industrial waste incineration equipment at nuclear facilities, the presence of dioxins in exhaust gas has been regarded as important, and remarkable progress has been made in combustion technology and exhaust gas treatment technology. As for dioxins, research is not progressing as in the case of exhaust gas.
[0003]
As a method for treating dioxins in waste water, a waste water purification treatment method disclosed in JP-A-10-286597 has been proposed. In this treatment method, raw water containing dioxins is agglomerated and precipitated, then passed through a microfiltration membrane, hydrogen peroxide water is added to the filtered wastewater, mixed, and irradiated with ultraviolet rays to dioxins in the filtered wastewater. Is to disassemble.
[0004]
However, when this treatment method is applied to a nuclear facility, it is necessary to treat the coagulated sediment sludge, and since it passes through a microfiltration membrane, secondary waste is easily generated. In addition, there are problems that the life of the ultraviolet irradiation lamp is short and the replacement frequency is high, and the waste sludge contaminated with dioxins and the reprocessing of the secondary waste are complicated.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, and it is not necessary to reprocess the solid content in the wastewater as sludge, and the lifetime of the filtration membrane is greatly extended to generate secondary waste. Provided is a waste water purification treatment method that can effectively remove dioxins in waste water while suppressing the above.
[0006]
[Means for Solving the Problems]
The above problem is that wastewater containing dioxins obtained by washing exhaust gas generated from an incinerator or melting device is circulated through a filtration device using a microfiltration membrane or an ultrafiltration membrane and subjected to crossflow filtration. The wastewater containing dioxins is reduced in volume as concentrated wastewater containing gaseous dioxins, and then returned to the incinerator or melting apparatus for incineration or melting treatment, and the wastewater purification method of the present invention is characterized in that Can be solved by.
Further, the present invention is preferably used as a method for purifying wastewater in such a form that the filtered water of the filtering device is passed through a reactor packed with a manganese dioxide catalyst in the presence of ozone to oxidatively decompose soluble dioxins. Can be
[0007]
According to the present invention, crossflow filtration is performed with a filtration device using a microfiltration membrane or an ultrafiltration membrane, and the volume is reduced to a concentrated wastewater containing particulate dioxins contained in the wastewater, which is then incinerated or melted. Since it is returned to the equipment, waste sludge contaminated with dioxins is not generated. Further, since the cross-flow filtration is performed, the microfiltration membrane or the ultrafiltration membrane is hardly clogged, and the life is extended.
In the present invention, dioxins are used as a generic term for polychlorinated dibenzodioxins, which are organochlorine compounds containing a large number of isomers depending on the number of chlorine, including tetrachlorodibenzodioxin (TCDD).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment according to the method for purifying wastewater of the present invention will be described with reference to FIG.
Combustion exhaust gas generated from incinerators, melting devices, or industrial waste incinerators at nuclear facilities is freed of suspended solids by dust removal devices such as ceramic filters, bag filters, HEPA filters, etc., and then cleaned by cleaning devices. Water removes soluble components and fine solids that have passed through the dust remover. The exhaust gas that has passed through the dust removing device and the cleaning device is finally purified and exhausted by a dioxin (DXN) removing device.
In this case, the dioxins contained in the exhaust gas immediately before the cleaning device are transferred to the cleaning water side at the time of cleaning, and the amount that passes while remaining in the exhaust gas, according to the inventor's investigation, It was found that the amount of transition reached around 60% of the total.
[0009]
In the embodiment, the waste water containing dioxins obtained by washing the exhaust gas generated from the incinerator or the melting device is filtered by a membrane filtration device using a microfiltration membrane or an ultrafiltration membrane. However, in this case, the waste water is circulated on the stock solution side of the drain tank and the membrane filtration device so as to be subjected to cross flow filtration. Thus, the waste water containing dioxins is reduced in volume as concentrated waste water containing particulate dioxins. The concentrated waste water whose volume has been reduced in this way is returned to the incinerator or melting apparatus and incinerated or melted.
The degree of volume reduction is not limited, but reducing the volume to at least 1/100, preferably 1/1000 of the stock solution will affect the combustion state of the returned incinerator and the like. Since it does not give, it is preferable.
[0010]
Furthermore, in this embodiment, a process for passing the filtered water of the membrane filtration device through a catalyst filling device filled with a manganese dioxide catalyst and oxidizing and decomposing soluble dioxins so as to satisfy the discharge standard is added. . In this catalyst filling apparatus, ozone is introduced to promote the oxidative decomposition reaction, and the filtered water is effectively oxidatively decomposed by the action of the manganese dioxide catalyst in the presence of ozone.
[0011]
According to this embodiment of the present invention, first, cross flow filtration is performed with a membrane filtration device, and the concentrated wastewater containing particulate dioxins occupying most of the dioxins contained in the wastewater is returned to the incinerator or melting device. As a result, there is an advantage that waste sludge contaminated with dioxins is not generated. Further, since the cross-flow filtration is performed, the membrane filtration device is hardly clogged and the life is extended, so that the used waste membrane contaminated with dioxins is also reduced. Furthermore, since the waste water containing dioxins is concentrated to 1/100 to 1/1000 and returned to an incinerator for further processing, there is little heat loss because it does not place a load on the incinerator. There are also advantages such as easy maintenance of the high temperature required for decomposition.
Furthermore, the filtered water that has passed through the membrane filtration device is subjected to a final treatment with a manganese dioxide catalyst, and is purified to a discharge standard or lower as described later.
[0012]
Next, raw water for testing corresponding to the washing waste water of the present invention was prepared, and the dioxin removal performance by post-treatment shown below was investigated. The test results are shown in Table 1.
In the treatment system 1, the change in the concentration of dioxins (DXN concentration) was examined by filtering the raw water for testing with an MF membrane or UF membrane without oxidation treatment with a manganese dioxide catalyst, and the removal rate was 99.95%. However, in order to clear the regulation value 10 Pg-TEQ / L with certainty, it is desirable to dilute about 10 times by combining with other waste liquid.
[0013]
In this case, dioxins (DXN) concentration of 25,900 Pg-TEQ / L was used as test raw water. This is because the transfer rate of dioxins from exhaust gas to waste water was selected based on a preliminary test based on the fact that it was approximately 60% (weight ratio). However, the migration rate is the weight ratio of the total amount of dioxins in the washing wastewater to the total amount of dioxins in the exhaust gas immediately after the dust removal device, measured in unit time.
[0014]
In addition, the treatment system 2 is a method in which the flocculant polyaluminum chloride is added to the raw water for testing to increase the membrane filtration efficiency, and the removal efficiency is improved. The merging with the waste liquid is necessary as in the case of the processing system 1.
[0015]
The treatment system 3 is obtained by subjecting the treated water subjected to membrane filtration to an oxidation treatment using the manganese dioxide catalyst or the like of the present invention, and can remove the concentration to 1/10 or less of the regulation value. The process of merging with the waste liquid is also unnecessary.
[0016]
[Table 1]
Note: DXN concentration of raw water for test = 25,900 Pg-TEQ / L
Membrane filtration: Filtration using a microfiltration membrane or ultrafiltration membrane.
Flocculant: Polyaluminum chloride, added amount 30mg / L
Oxidation treatment: Combined use of manganese dioxide catalyst and ozone.
Drainage regulation value: 10 Pg-TEQ / L
[0017]
【The invention's effect】
Since the wastewater purification treatment method of the present invention is configured as described above, it is not necessary to reprocess the solid content in the wastewater as sludge, and less heat loss is caused to the incinerator, etc. The lifetime of the membrane filtration device can be greatly extended and the generation of secondary waste can be suppressed. And the dioxins in waste_water | drain can be removed effectively, and there exists the outstanding effect that most of waste_water | drain can be made into the low density | concentration which can be discharged. Therefore, the present invention has an extremely large industrial value as a wastewater purification treatment method that has solved the conventional problems.
[Brief description of the drawings]
FIG. 1 is a system flow diagram showing a main part of a method for purifying wastewater according to the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000194614A JP3654579B2 (en) | 2000-06-28 | 2000-06-28 | Wastewater purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000194614A JP3654579B2 (en) | 2000-06-28 | 2000-06-28 | Wastewater purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002011471A JP2002011471A (en) | 2002-01-15 |
JP3654579B2 true JP3654579B2 (en) | 2005-06-02 |
Family
ID=18693410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000194614A Expired - Fee Related JP3654579B2 (en) | 2000-06-28 | 2000-06-28 | Wastewater purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3654579B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867527A (en) * | 2015-05-26 | 2015-08-26 | 清华大学 | Method for radioactive waste water preprocessing |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4781005B2 (en) * | 2005-05-02 | 2011-09-28 | 太平洋セメント株式会社 | Wet dust collector wastewater treatment method |
CN106915861B (en) * | 2015-12-24 | 2021-03-30 | 中国科学院过程工程研究所 | A biological treatment system for coal chemical wastewater based on ozone catalytic oxidation of sludge and its treatment method |
WO2024009871A1 (en) * | 2022-07-06 | 2024-01-11 | Nok株式会社 | Wastewater treatment system and wastewater treatment method |
-
2000
- 2000-06-28 JP JP2000194614A patent/JP3654579B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867527A (en) * | 2015-05-26 | 2015-08-26 | 清华大学 | Method for radioactive waste water preprocessing |
CN104867527B (en) * | 2015-05-26 | 2017-09-29 | 清华大学 | A kind of method for Spent Radioactive water pretreatment |
Also Published As
Publication number | Publication date |
---|---|
JP2002011471A (en) | 2002-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005070833A1 (en) | Method for treating raw water containing hardly decomposable substance | |
CA2611311A1 (en) | Method for treating water containing hardly decomposable substance | |
JP5874924B2 (en) | Incineration plant wastewater treatment method and treatment equipment | |
CN103386247A (en) | Washing type air purification method | |
CN105461102B (en) | A kind of processing method for washing cigarette waste water | |
JP3654579B2 (en) | Wastewater purification method | |
JP2004267855A (en) | Water treatment apparatus utilizing photocatalyst | |
JP3404013B2 (en) | Smoke washing wastewater treatment method and apparatus | |
JPH1133593A (en) | Treatment of organic waste water | |
JPS6393310A (en) | Oil-water separator provided with regeneration function | |
JP2002228795A (en) | Treating method and treating device for radioactive waste water | |
JPH11165180A (en) | Method for treating scrubber drainage | |
JP2003266090A (en) | Wastewater treatment method | |
JPH11197674A (en) | Treatment of peroxide-containing waste water | |
JP2003103271A (en) | Treatment method for dioxins in wastewater | |
JP2000185289A (en) | Waste water treatment method and apparatus | |
JP3418550B2 (en) | Method and equipment for decomposing and removing dioxins in sewage | |
JP3941293B2 (en) | Method and apparatus for treating harmful substances in sewage | |
JP4422444B2 (en) | Water purifier | |
JP3373138B2 (en) | Organic wastewater treatment method and apparatus | |
JP2005125230A (en) | Sludge treatment apparatus and sludge treatment method | |
JPH01317528A (en) | Treatment of exhaust gas | |
JPH07260997A (en) | Method and apparatus for treating radioactive waste liquid containing organic matter | |
KR100461894B1 (en) | Sewage and waste water disposal plant | |
JP3963533B2 (en) | Water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050225 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3654579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |