[go: up one dir, main page]

JP3652599B2 - Water heater with remembrance - Google Patents

Water heater with remembrance Download PDF

Info

Publication number
JP3652599B2
JP3652599B2 JP2000361622A JP2000361622A JP3652599B2 JP 3652599 B2 JP3652599 B2 JP 3652599B2 JP 2000361622 A JP2000361622 A JP 2000361622A JP 2000361622 A JP2000361622 A JP 2000361622A JP 3652599 B2 JP3652599 B2 JP 3652599B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heating
temperature
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000361622A
Other languages
Japanese (ja)
Other versions
JP2002162100A (en
Inventor
幸弘 鈴木
正和 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2000361622A priority Critical patent/JP3652599B2/en
Publication of JP2002162100A publication Critical patent/JP2002162100A/en
Application granted granted Critical
Publication of JP3652599B2 publication Critical patent/JP3652599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Combustion (AREA)
  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯用の熱交換器と追焚き用の熱交換器の一部が重複した、いわゆる一缶二水路式の追焚き付き給湯器における給湯制御に関する。
【0002】
【従来の技術】
近年、省スペースの目的から、給湯用熱交換器と追焚き用熱交換器の一部を重複させて設置したいわゆる一缶二水路式の追焚き付き給湯器が開発されている。かかる給湯器においては、例えばガスバーナによりこれらの熱交換器が加熱されるが、給湯と追焚きとを同時に実行する場合、ガスバーナによる加熱量は、追焚き用熱交換器と給湯用熱交換器とに分配される。
【0003】
そして、給湯用熱交換器から給湯管路から供給される湯の温度を、使用者により設定された目標温度と一致するようにガスバーナの加熱量を制御する必要があるが、そのためには、ガスバーナによる加熱量のうち、給湯用熱交換器の加熱に使用される熱量の割合を正確に把握する必要がある。
【0004】
そこで、従来は、追焚き管路から追焚き用熱交換器に供給される湯水の温度を検出する往き温度センサと、追焚き用熱交換器から追焚き管路に供給される湯水の温度を検出する戻り温度センサとを設け、両温度センサの検出温度の差と追焚き管路を流れる湯水の流量とから、追焚き用熱交換器の加熱に使用される熱量を求めて、既知のガスバーナの総加熱量から該熱量を減算することによって、給湯用熱交換器の加熱に使用される熱量を算出していた。
【0005】
しかし、この場合には、浴槽内に貯められた湯水の温度をモニタ表示するために通常設けられる往き温度センサの他に戻り温度センサを設ける必要があるため、コストアップが生じるという不都合があった。
【0006】
【発明が解決しようとする課題】
本発明は、上記背景を鑑みてなされたものであり、一缶二水路式の追焚き付き給湯器において、追焚きと給湯とを同時に実行する場合に、給湯用熱交換器側の加熱に使用される加熱量を低コストで精度良く把握することができる追焚き付き給湯器を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するためになされたものであり、風呂を追焚きするために所定流量の湯水が循環される追焚き管路と、水道から供給される水を加熱して湯を供給するための給湯管路と、該追焚き管路を流れる湯水を加熱する追焚き熱交換器と、その一部が該追焚き熱交換器と重複して該給湯管路を流れる水を加熱する給湯熱交換器と、該追焚き熱交換器と該給湯熱交換器とを加熱する加熱手段と、該加熱手段の加熱量を調節する加熱量調節手段と、追焚きと給湯とを同時に実行するときに、該加熱量に対する前記給湯熱交換器の加熱に使用される熱量の割合である給湯熱量分配比を把握する給湯熱量分配比把握手段と、該給湯熱量分配比に応じて前記給湯管路から所定温度の湯を供給するために必要となる前記加熱手段の加熱量を決定し、該加熱量が得られるように前記加熱量調節手段を介して前記加熱手段の加熱量を制御する給湯制御手段とを備えた追焚き付き給湯器の改良に関する。
【0008】
本願発明者らは、上記目的を達成するために各種検討を重ねた結果、前記追焚き付き給湯器において、追焚きと給湯とを同時に実行する場合に、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度と前記給湯熱交換器から前記給湯管路に供給される湯の温度との温度差と、前記加熱手段の加熱量のうち前記給湯熱交換器の加熱に使用される熱量の割合との間に相関関係があることを知見した。
【0009】
そこで、本発明の第1の態様は、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度を検出する追焚き入水温度検出手段と、前記給湯熱交換器から前記給湯管路に供給される湯の温度を検出する給湯温度検出手段と、前記加熱手段の加熱量を所定加熱量に設定して追焚きと給湯とを同時に実行した場合における、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度と前記給湯熱交換器から前記給湯管路に供給される湯の温度との差である第1差分温度と、前記給湯熱量分配比との相関関係を示す相関関係データを記憶した記憶手段とを備え、前記給湯熱量分配比把握手段は、前記追焚き入水温度検出手段の検出温度と前記給湯出湯温度検出手段の検出温度との温度差である第2差分温度を前記第1差分温度として前記相関関係データに適用して、該第2差分温度且つ前記所定加熱量における前記給湯熱量分配比を算出することを特徴とする。
【0010】
かかる本発明によれば、前記記憶手段に、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度と前記給湯熱交換器から前記給湯管路に供給される湯の温度との差である第1差分温度と、前記給湯熱量分配比との相関関係を示す相関関係データが記憶される。そのため、前記給湯熱量分配比把握手段は、前記追焚き入水温度検出手段の検出温度と前記給湯温度検出手段の検出温度との差である前記第2差分温度を前記第1差分温度として前記相関関係データに適用することによって、前記第2差分温度且つ前記所定加熱量における前記給湯熱量分配比を精度良く把握することができる。そして、この場合は、前記給湯熱交換器から前記追焚き管路に供給される湯水を検出する温度検出手段を設ける必要がない。
【0011】
また、本発明の第2の態様は、前記追焚き付き給湯器において、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度を検出する追焚き入水温度検出手段と、前記加熱手段の加熱量を所定加熱量に設定して追焚きと給湯とを同時に実行した場合における、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度と前記給湯熱交換器から前記給湯管路に供給される湯の温度との差である第1差分温度と、前記給湯熱量分配比との相関関係を示す相関関係データを記憶した記憶手段とを備え、前記給湯熱量分配比把握手段は、前記追焚き入水温度検出手段の検出温度と前記所定温度との温度差である第2差分温度を前記第1差分温度として前記相関関係データに適用して、該第2差分温度且つ前記所定加熱量における前記給湯熱量分配比を算出することを特徴とする。
【0012】
かかる本発明によれば、前記第2差分温度を前記追焚き入水温度検出手段の検出温度と前記所定温度との差とすることにより、前記給湯熱交換器から前記給湯管路に供給される湯の温度変化が速すぎて、該湯の実測温度を用いて前記第2差分温度を算出して前記給湯熱量分配比を算出すると、却って前記給湯熱交換器から前記給湯管路に供給される湯の温度が不安定となる場合に、該湯の温度を安定化させることができる。
【0013】
また、前記第1の態様と前記第2の態様とにおいて、前記記憶手段には、複数種類の前記所定加熱量に対して、前記相関関係データが個別に記憶され、前記給湯熱量分配比把握手段は、前記給湯制御手段により決定された前記加熱手段の加熱量に応じて、前記記憶手段に記憶された複数の前記相関関係データの中から、前記第2差分温度を適用する相関関係データを選択することを特徴とする。
【0014】
かかる本発明によれば、前記複数種類の所定加熱量に対して、前記第2差分温度における前記給湯熱量分配比を算出することができる。
【0015】
また、前記給湯分配比把握手段は、前記給湯制御手段により決定された前記加熱手段の加熱量が、前記複数の所定加熱量のいずれとも一致しないときには、該加熱量よりも大きい所定加熱量に応じた前記相関関係データに前記第2差分温度を適用して算出した給湯熱量分配比と、該加熱量よりも小さい所定加熱量に応じた前記相関関係データに前記第2差分温度を適用して算出した給湯熱量分配比とに基づいて、該第2差分温度差且つ該加熱量における前記給湯熱量分配比を算出することを特徴とする。
【0016】
かかる本発明によれば、前記給湯制御手段により決定された前記加熱手段の加熱量が前記複数の所定加熱量のいずれとも一致しない場合であっても、前記給湯分配比把握手段は、前記第2差分温度差且つ該加熱量における前記給湯熱量分配比を算出することができる。
【0017】
また、前記第1の態様及び前記第2の態様において、前記記憶手段に記憶された前記複数の所定加熱量の中には、前記加熱量調節手段により調節可能な前記加熱手段の最大加熱量と最小加熱量とが含まれることを特徴とする。
【0018】
かかる本発明によれば、前記給湯制御手段は、前記加熱手段の能力を十分に発揮させて、前記給湯熱交換器から前記給湯管路に供給される湯の温度を制御することができる。
【0019】
また、前記第1の態様及び前記第2の態様において、前記所定流量を複数種類の流量の中から選択するための循環流量選択手段を備え、前記記憶手段には、前記複数種類の流量に対して、前記相関関係データが個別に記憶され、前記給湯熱量分配比把握手段は、前記循環流量選択手段により選択された流量に応じた前記相関関係データに前記第2差分温度を適用して、該第2差分温度且つ該流量における前記給湯熱量分配比を算出することを特徴とする。
【0020】
かかる本発明によれば、前記追焚き付き給湯器の設置状況により、前記追焚き管路を流れる湯水の流量が、該湯水を循環させるために設けられた循環ポンプの能力や、前記追焚き管路の長さ等によって異なる場合に、前記循環流量選択手段により前記所定流量を該流量により近い流量に設定することによって、前記給湯熱量分配比をより精度良く算出することができる。
【0021】
【発明の実施の形態】
本発明の実施の形態の一例について、図1〜図3を参照して説明する。図1は本発明の追焚き付き給湯器の全体構成図、図2は図1に示した追焚き付き給湯器の制御ブロック図、図3は追焚き付き給湯器において、バーナによる総加熱量に対する給湯管路側の加熱に使用される熱量の割合を求めるための相関関係を示したグラフである。
【0022】
図1を参照して、給湯器1は、給湯管路2により水道管(図示しない)と接続され、追焚き管路3により浴槽4と接続されている。そして、給湯器1は、水道管から給湯管路2により供給される水を加熱して給湯する機能と、浴槽4に貯められた湯水を加熱して追焚きする機能とを有する。
【0023】
給湯器1はコントローラ4により全体の作動が制御され、コントローラ4からの制御信号に応じて作動する第1バーナ5及び該第1バーナよりも加熱能力が低い第2バーナ6、第1バーナ5と第2バーナ6とにより加熱される追焚き熱交換器7と給湯熱交換器8、水道管から給湯管路2に供給された水の一部を給湯熱交換器8をバイパスさせて給湯熱交換器8から出湯される湯に混入させるバイパス管9、コントローラ4からの制御信号によりバイパス管9の開度を調節するバイパスサーボ10、給湯管路2とバイパス管9との合流箇所Xの下流側の湯の温度を検出して検出信号をコントローラ4に出力する給湯サーミスタ11、給湯熱交換器8の出口付近の湯の温度を検出して検出信号をコントローラ4に出力する熱交サーミスタ12(本発明の給湯出湯温度検出手段に相当する)、水道から給湯管路2に供給される水の流量を検出して検出信号をコントローラ4に出力する水量センサ13、及び給湯管路2から供給される湯の流量を調節する湯量サーボ14を備える。
【0024】
さらに、給湯器1は、給湯管路2と追焚き管路3とを接続する湯張り中継管30、コントローラ4からの制御信号により作動して湯張り中継管30を開閉する注湯電磁弁15、追焚き管路3から湯張り中継管30への方向の湯の通過を不能とし湯張り中継管30から追焚き管路3への方向の湯の通過を可能とする逆止弁16、コントローラ4からの制御信号により作動して浴槽4に貯められた湯水を追焚き管路3内に循環させるポンプ17、浴槽4から追焚き管路3に供給される湯水の温度(=浴槽に貯められた湯水の温度)を検出して検出信号をコントローラ4に出力する風呂サーミスタ18(本発明の追焚き入水温度検出手段に相当する)、追焚き管路3内を流れる湯水の有無を検出して検出信号をコントローラ4に出力する風呂水流スイッチ19、給湯管路2から湯張り中継管30と追焚き管路3とを経由して浴槽4に供給される湯の流量を検出して検出信号をコントローラ4に出力する湯量センサ20を備える。
【0025】
また、給湯器1は、第1バーナ5と第2バーナ6の作動を制御するため、コントローラ4からの制御信号に応じて第1バーナ5と第2バーナ6への燃料ガスの供給と遮断とを切替える元ガス電磁弁21、コントローラ4からの制御信号に応じて燃料ガスの供給流量を調節するガス比例弁22、コントローラ4からの制御信号に応じて第1バーナ5への燃料ガスの供給と遮断とを切替える第1ガス電磁弁23、コントローラ4からの制御信号に応じて第2バーナ6への燃料ガスの供給と遮断とを切替える第2ガス電磁弁24、コントローラ4からの制御信号に応じて第1バーナ5と第2バーナ6に燃焼用空気を供給する燃焼ファン25、コントローラ4からの制御信号に応じてイグナイタ26から印加される高電圧により火花放電を生じる点火プラグ27、第2バーナ6の燃焼炎の有無を検出して検出信号をコントローラ4に出力するフレームロッド28、及び給湯熱交換器8内で最も給湯管路2内の温度が高くなる箇所の水の温度を検出して検出信号をコントローラ4に出力する水管サーミスタ29を備える。
【0026】
なお、第1ガス電磁弁23と、第2ガス電磁弁24と、ガス比例弁22とにより、本発明の加熱量調節手段が構成される。また、水管サーミスタ29は、追焚き制御のみを単独で実行したときに、給湯熱交換器8内に滞留した水が加熱されて異常に昇温されることを防止するために設けられ、水管サーミスタ29の検出温度が所定の上限温度を超えたときに、コントローラ4は、第1バーナ5と第2バーナ6の燃焼を停止する。
【0027】
また、コントローラ4は、浴室等に設置されたリモコン40との間で各種信号の送受信を行う。リモコン40には、給湯温度、湯張り温度、追焚き時間等を設定するスイッチ類(図示しない)と、給湯温度、湯張り温度等を表示するディスプレイ部(図示しない)とが備えられている。
【0028】
次に、図2を参照して、コントローラ4は、給湯管路2から目標給湯温度の湯を供給する給湯制御を実行する給湯制御手段50、浴槽4に貯められた湯を目標追焚き温度まで昇温させる追焚き制御を実行する追焚き制御手段51、浴槽に目標湯張り温度の湯を目標湯張り量だけ供給する湯張り制御を実行する湯張り制御手段52、第1バーナ5と第2バーナ6とによる総加熱量(以下、総バーナ加熱量という)のうち、給湯熱交換器8側の加熱に使用される熱量の割合を算出する給湯熱量分配比把握手段53、及び上記給湯制御を行うために必要なデータが記憶されたデータメモリ54(本発明の記憶手段に相当する)。
【0029】
給湯制御手段50は、リモコン40により設定された目標給湯温度の湯が給湯管路2から供給されるように、第1バーナ5と第2バーナ6の燃焼量を制御する。給湯制御手段50は、給湯管路2の下流側に接続されたカラン(図示しない)が開けられて、水道管からの給水が開始されたことを水量センサ13の検出信号から検知すると、燃焼ファン25を作動させて燃焼用空気の供給を開始し、イグナイタ26から点火プラグ27に高電圧を印加して火花放電を生じさせた状態で、元ガス電磁弁21と第2ガス電磁弁23とを開弁して第2バーナ6に点火する。
【0030】
そして、給湯制御手段50は、第1ガス電磁弁23と第2ガス電磁弁24の双方を開弁して第1バーナ5と第2バーナ6とを燃焼させる「大燃焼」、第1ガス電磁弁23を開弁して第2ガス電磁弁24を閉弁し、第1バーナ5のみを燃焼させる「中燃焼」、第1電磁弁23を閉弁して第2電磁弁24を開弁し、第2バーナ6のみを燃焼させる「小燃焼」という3段階で、第1バーナ5と第2バーナ6とによる総バーナ加熱量を調節する。また、給湯制御手段50は、ガス比例弁22の開度を変更することにより、「大燃焼」、「中燃焼」、「小燃焼」における加熱量をさらに細かく制御する。
【0031】
ここで、データメモリ54には、以下の表1に示したように、「大燃焼」における最大加熱量(Q大max)と最小加熱量(Q大min)、「中燃焼」における最大加熱量(Q中max)と最小加熱量(Q中min)、及び「小燃焼」における最大加熱量(Q小max)と最小加熱量(Q小min)のデータ(実験や計算により求められる)が記憶されている。
【0032】
【表1】

Figure 0003652599
【0033】
そのため、給湯制御手段50は、表1のデータとガス比例弁22の開度とから、「大燃焼」、「中燃焼」、「小燃焼」における第1バーナ5と第2バーナ6とによる総バーナ加熱量(QALL)を把握することができる。そして、給湯制御手段50は、給湯サーミスタ11の検出温度(TH)と、水量センサ13の検出流量(FW)と、給湯熱交換器8において水の加熱に実際に使用される熱量(QR)とから、以下の式(1)により、水道管からの給水温度(TW)を把握する。なお、熱量(QR)は、総バーナ加熱量(QALL)に追焚き熱交換器7と給湯熱交換器8とのトータルの熱効率(η)を掛けて算出される。
【0034】
このトータルの熱効率(η)は、総バーナ加熱量(QALL)の各状態(Q大max〜Q小min)ごとに設定されて、データメモリ54に記憶されている。
【0035】
【数1】
Figure 0003652599
【0036】
そして、給湯制御手段50は、給湯管路2とバイパス管9との合流箇所Xの下流側に供給される湯の温度を目標給湯温度(TA)とするのに必要な総バーナ加熱量(QALL)を以下の式(2)により算出する。
【0037】
【数2】
Figure 0003652599
【0038】
そして、給湯制御手段50は、上記式(2)により算出した総バーナ加熱量(QALL)が得られるように、ガス比例弁22の開度、燃焼ファン25の回転速度、及び第1ガス電磁弁23と第2ガス電磁弁24の開閉を制御する。
【0039】
このようにして、総バーナ加熱量(QALL)を制御することにより、基本的には給湯管路2から目標給湯温度(TA)の湯が供給されるが、給湯サーミスタ11の検出温度(TH)が目標給湯温度(TA)と一致しない場合は、給湯制御手段50は、更に総バーナ加熱量(QALL)の微調整を行う。また、湯量サーボ14により、給湯器1の最大能力を超えないように給湯管路2への給水量の微調整を行う。
【0040】
そして、給湯制御手段50は、使用者によりカランが閉められて、水道管から給湯管路2への給水が停止したことを水量センサ13の検出信号から検知したときに、元ガス電磁弁21と第1ガス電磁弁23と第2ガス電磁弁24とを閉弁し、燃焼ファン25の作動を停止して給湯制御を終了する。
【0041】
次に、追焚き制御手段51は、リモコン40による追焚きの開始指示に応じて、追焚き制御を開始する。追焚き制御手段51は、ポンプ17を作動させて浴槽4内の湯水を追焚き管路3に循環させ、この状態で、第1バーナ5により追焚き熱交換器7を加熱して、追焚き管路3内を循環する湯水を加熱する。これにより、浴槽4内に貯められた湯水が次第に昇温され、風呂サーミスタ18の検出温度がリモコン40により設定された目標追焚き温度となったときに、追焚き制御手段51は、第1バーナ5の燃焼を停止して追焚き制御を終了する。
【0042】
なお、追焚き制御手段51は、ポンプ17を作動させたときに、風呂水流スイッチ19により水流が検出されるか否かを確認する。そして、風呂水流スイッチ19により水流が検出され、浴槽4に湯水が貯められていると判断できるときに追焚き制御を実行する。
【0043】
また、湯張り制御手段52は、リモコン40による湯張りの開始指示に応じて湯張り制御を開始する。湯張り制御手段52は、先ず注湯電磁弁15を開弁し、これにより、水道管から湯張り管路2への給水が開始され、給湯制御手段50により、リモコン40により設定された目標湯張り温度での給湯制御が開始される。そして、給湯管路2から湯張り中継管30と追焚き管路3とを経由して、目標湯張り温度の湯が浴槽4に供給される。
【0044】
湯張り制御手段52は、湯量センサ20により検出される湯の供給流量と湯の供給時間とから、浴槽4に貯められた湯量を把握し、湯量がリモコン40により設定された目標湯張り量に達したときに、注湯電磁弁15を閉弁して湯張り制御を終了する。
【0045】
次に、上述したように、給湯制御を単独で行う場合には、第1バーナ5と第2バーナ6とによる総バーナ加熱量(QALL)のほとんどが、給湯熱交換器8内を通過する水を加熱するために使用される。そのため、上記式(2)により、目標給湯温度(TA)の湯を供給するために必要な総バーナ加熱量(QALL)を求めることができる。
【0046】
しかし、給湯制御と追焚き制御とを同時に行う場合には、第1バーナ5と第2バーナ6とによる総バーナ加熱量(QALL)が、給湯熱交換器8内を通過する水を加熱するために使用されると共に、追焚き熱交換器7内を通過する湯水を加熱するためにも使用される。
【0047】
そのため、給湯制御と追焚き制御とを同時に行う場合には、総バーナ加熱量(QALL)のうちで、給湯熱交換器8側に分配される熱量を把握して、給湯制御を行う必要がある。
【0048】
そこで、コントローラ1に備えられた給湯熱量分配比把握手段53は、総バーナ加熱量(QALL)に対する給湯熱交換器8の加熱に使用される熱量の割合である給湯熱量分配比(Kq)を算出し、給湯制御手段50は、該給湯熱量分配比(Kq)に基づいて目標給湯温度(TA)での給湯に必要となる総バーナ加熱量(QALL)を決定する。以下、給湯熱量分配比把握手段53による給湯熱量分配比(Kq)の算出手順について説明する。
【0049】
本願発明者らは、給湯熱量分配比を算出する方法について各種検討した結果、追焚き管路3から追焚き熱交換器7に供給される湯水の温度と、給湯熱交換器8から給湯管路2に供給される湯の温度との差である第1差分温度(ΔT1)と、給湯熱量分配比(Kq)とが比例することを知見した。
【0050】
これは、追焚き熱交換器7に供給される湯水の温度(=浴槽4に貯められた湯水の温度)が低いほど、追焚き熱交換器7側で使用される熱量が増加し、また、水道管から供給される水の温度はほぼ一定とみなされるので、給湯熱交換器8から供給される湯の温度が高いほど給湯熱交換器8側で使用される熱量が増加するため、両者の差が給湯熱量分配比(Kq)に比例するものと考えられる。
【0051】
図3は、上述した「大燃焼」における最大加熱量(Q大max)と最小加熱量(Q大min)、「中燃焼」における最大加熱量(Q中max)と最小加熱量(Q中min)、及び「小燃焼」における最大加熱量(Q小max)と最小加熱量(Q小min)に対する、給湯熱量分配比(Kq)と第1差分温度(ΔT1)との相関関係を示したグラフである。図中、▲1▼がQ大max、▲2▼がQ大min、▲3▼がQ中max、▲4▼がQ中min、▲5▼がQ小max、▲6▼がQ小minにそれぞれ対応している。
【0052】
給湯熱量分配比把握手段53は、風呂サーミスタ18により検出される追焚き管路3から追焚き熱交換器7に供給される湯水の温度と、熱交サーミスタ12により検出される給湯熱交換器8から給湯管路2に供給される湯の温度との差である第2差分温度(ΔT2)を、図3に示したグラフの第1差分温度(ΔT1)として該グラフに適用し、追焚き制御と給湯制御とが同時に実行されているときの該第2差分温度(ΔT2)に応じた給湯熱量分配比(Kq)を算出する。
【0053】
そして、給湯制御手段50は、給湯熱量分配比把握手段53により算出された給湯熱量分配比(Kq)を使用して、目標温度(TA)とするのに必要な総バーナ加熱量(QALL’)を以下の式(3)により算出し、該総バーナ加熱量(QALL’)が得られるように、第1バーナ5と第2バーナ6の燃焼量を制御する。
【0054】
【数3】
Figure 0003652599
【0055】
ここで、QALLは上記式(2)より算出される総バーナ加熱量である。
【0056】
このようにして、給湯熱量分配比(Kq)を使用して総バーナ加熱量(QALL)を制御することにより、給湯制御手段50は、追焚き制御と給湯制御とを同時に実行する場合であっても、精度良く給湯温度を制御することができる。
【0057】
そして、図3に示した相関関係を求めるため、データメモリ54には、以下の表2に示した実験データ(本発明の相関関係データに相当する)が記憶されている。表2は、追焚き制御実行時に追焚き管路3内を循環する湯水の流量がF1(大)であるときの、総バーナ加熱量(QALL)と第1差分温度(ΔT1)における給湯熱量分配比(Kq)を実験により求めたデータである。
【0058】
【表2】
Figure 0003652599
【0059】
図3のデータから、例えば、総バーナ加熱量(QALL)がQ大maxで第1差分温度(ΔT1)が0℃であるときの給湯熱量分配比Kq大max1と、総バーナ加熱量(QALL)がQ大maxで第1差分温度(ΔT1)が10℃であるときの給湯熱量分配比Kq大max1とから、以下の式(4)により図3の▲1▼のグラフの関係式を導くことができる。
【0060】
【数4】
Figure 0003652599
【0061】
同様にして、総バーナ加熱量(QALL)がQ大minで第1差分温度(ΔT1)が0℃であるときの給湯熱量分配比Kq大min1と、総バーナ加熱量(QALL)がQ大minで第1差分温度(ΔT1)が10℃であるときの給湯熱量分配比Kq大min1とから、以下の式(5)により図3の▲2▼のグラフの関係式を導くことができる。
【0062】
【数5】
Figure 0003652599
【0063】
また、総バーナ加熱量(QALL)がQ中maxで第1差分温度(ΔT1)が0℃であるときの給湯熱量分配比Kq中max1と、総バーナ加熱量(QALL)がQ中maxで第1差分温度(ΔT1)が10℃であるときの給湯熱量分配比Kq中max1とから、以下の式(6)により図3の▲3▼のグラフの関係式を導くことができる。
【0064】
【数6】
Figure 0003652599
【0065】
また、総バーナ加熱量(QALL)がQ中minで第1差分温度(ΔT1)が0℃であるときの給湯熱量分配比Kq中min1と、総バーナ加熱量(QALL)がQ中minで第1差分温度(ΔT1)が10℃であるときの給湯熱量分配比Kq中min1とから、以下の式(7)により図3の▲2▼のグラフの関係式を導くことができる。
【0066】
【数7】
Figure 0003652599
【0067】
また、総バーナ加熱量(QALL)がQ小maxで第1差分温度(ΔT1)が0℃であるときの給湯熱量分配比Kq小max1と、総バーナ加熱量(QALL)がQ小maxで第1差分温度(ΔT1)が10℃であるときの給湯熱量分配比Kq小max1とから、以下の式(8)により図3の▲5▼のグラフの関係式を導くことができる。
【0068】
【数8】
Figure 0003652599
【0069】
また、総バーナ加熱量(QALL)がQ小minで第1差分温度(ΔT1)が0℃であるときの給湯熱量分配比Kq小min1と、総バーナ加熱量(QALL)がQ小minで第1差分温度(ΔT1)が10℃であるときの給湯熱量分配比Kq小min1とから、以下の式(9)により図3の▲6▼のグラフの関係式を導くことができる。
【0070】
【数9】
Figure 0003652599
【0071】
なお、追焚き管路3内を循環する湯水の流量は、ポンプ17の能力や追焚き管路3の長さに応じて変動する。そのため、データメモリ54には、以下の表3に示したように、循環流量F1よりも小さい値に設定した循環流量F2(小)における実験データが記憶されている。
【0072】
【表3】
Figure 0003652599
【0073】
そして、給湯器1の設置作業者によるコントローラ4に設けられた循環流量切替えスイッチ(図示しない)の操作に応じて、給湯熱量分配比把握手段53は、循環流量F1(大)に応じた上記表2のデータと、循環流量F2(小)に応じた上記表3のデータとを切替えて上記式(4)〜式(9)により給湯熱量分配比Kqと第1差分温度ΔT1との関係式を決定する。
【0074】
これにより、追焚き管路3内を循環する湯水の流量に応じて、より精度良く、給湯熱量分配比(Kq)と第1差分温度(ΔT1)との関係式を決定することができる。なお、さらに多くの種類の循環流量についての実験データをデータメモリ54に記憶して、循環流量を選択できるようにすることによって、給湯熱量分配比(Kq)と第1差分温度(ΔT1)との関係式をさらに精度良く導くことができる。
【0075】
また、総バーナ加熱量(QALL)が、Q大max、Q大min、Q中max、Q中min、Q小max、Q小minのいずれかであるときは、上記式(4)〜式(9)から、給湯熱量分配比(Kq)を直接算出することができるが、例えばガス比例弁22により総バーナ加熱量がQ大maxとQ大minの間に制御された場合には、給湯熱量分配比(Kq)を算出することができない。
【0076】
そこで、かかる場合には、給湯熱量分配比把握手段53は、以下の式(10)により、給湯熱量分配比(Kq)を算出する。
【0077】
【数10】
Figure 0003652599
【0078】
ここで、Kq大maxは算出時における第2差分温度(ΔT2)を第1差分温度(ΔT1)として上記式(4)により算出した給湯熱量分配比であり、Kq大minは算出時における第2差分温度(ΔT2)を第1差分温度(ΔT1)として上記式(5)により算出した給湯熱量分配比である。
【0079】
これにより、給湯熱量分配比把握手段53は、総バーナ加熱量(QALL)がQ大maxとQ大minの間に制御されている場合の給湯熱量分配比(Kq)を精度良く算出することができる。
【0080】
また、同様にして、総バーナ加熱量(QALL)がQ中maxとQ中minの間に制御されている場合は、給湯熱量分配比把握手段53は、以下の式(11)により、給湯熱量分配比(Kq)を算出する。
【0081】
【数11】
Figure 0003652599
【0082】
ここで、Kq中maxは算出時における第2差分温度(ΔT2)を第1差分温度(ΔT1)として上記式(6)により算出した給湯熱量分配比であり、Kq中minは算出時における第2差分温度ΔT2を第1差分温度ΔT1として上記式(7)により算出した給湯熱量分配比である。
【0083】
また、総バーナ加熱量(QALL)がQ小maxとQ小minの間に制御されている場合は、給湯熱量分配比把握手段53は、以下の式(12)により、給湯熱量分配比(Kq)を算出する。
【0084】
【数12】
Figure 0003652599
【0085】
ここで、Kq小maxは算出時における第2差分温度(ΔT2)を第1差分温度(ΔT1)として上記式(8)により算出した給湯熱量分配比であり、Kq小minは算出時における第2差分温度(ΔT2)を第1差分温度(ΔT1)として上記式(9)により算出した給湯熱量分配比である。
【0086】
なお、本実施の形態では、「大燃焼」における最大燃焼量(Q大max)と最小燃焼量(Q大min)とを用いて、総バーナ加熱量(QALL)がQ大maxとQ大minの間に制御されているときの給湯熱量分配比(Kq)を算出したが、Q大maxとQ大minの間の加熱量についても何点か給湯熱量分配比(Kq)と第1差分温度(ΔT1)との関係式を導くためのデータをデータメモリ54に記憶しておき、制御されている総バーナ燃焼量(QALL)により近い加熱量についての関係式を用いて上記式(10)におけるKq大maxとKq大minとを算出してもよい。
【0087】
これにより、総バーナ加熱量(QALL)が、Q大maxとQ大minの間に制御されているときの給湯熱量分配比(Kq)をより精度良く算出することができる。「中燃焼」、「小燃焼」についても同様である。
【0088】
また、本実施の形態では、風呂サーミスタ18により検出される追焚き管路3から追焚き熱交換器7に供給される湯水の温度と、熱交サーミスタ12により検出される給湯熱交換器8から給湯管路2に供給される湯の温度との差を、本発明の第2差分温度(ΔT2)としたが、風呂サーミスタ18の検出温度と、リモコン40により設定された目標給湯温度(TA)から、以下の式(13)により算出した給湯熱交換器8から供給される湯の温度(TEXC,この場合、本発明の所定温度に相当する)との差を第2差分温度(ΔT2)としてもよい。
【0089】
【数13】
Figure 0003652599
【0090】
ここで、λは上述したバイパス比、TWは上記式(1)により算出した給水温度である。なお、水道管からの給水温度を検出する温度センサを設け、該温度センサの検出温度をTWとして上記式(13)から給湯熱交換器8から供給される湯の温度(TEXC)を求めてもよい。
【0091】
このように、熱交サーミスタ12の検出温度(TEX)ではなく、目標給湯温度(TA)を用いて算出した温度(TEXC)により第2差分温度(ΔT2)を設定することによって、総バーナ加熱量(QALL)の制御系の応答性が速過ぎて給湯熱交換器8から給湯される湯の温度が不安定となる場合に、給湯管路2からの給湯温度を安定させることができる。
【0092】
また、本実施の形態では、データメモリ54に、本発明の相関関係データとして上記表2と表3に示したデータを記憶し、該データから上記式(4)〜式(9)の関係式を導いたが、上記式(4)〜式(9)の関係式のデータを本発明の相関関係データとして直接データメモリ54に記憶しておくようにしてもよい。
【0093】
また、追焚きと給湯を同時に実行している時に、浴槽4に貯められた湯水の量(W)を、給湯熱量分配比(Kq)と総バーナ加熱量(QALL)と追焚き熱交換器7と給湯熱交換器8とのトータルの熱効率(η)とから算出した追焚き熱交換器7側で湯水の加熱に使用される熱量(QF=(1−Kq)・QALL・η)と、風呂サーミスタ18の検出温度の上昇度合い(ΔTF)とから、以下の式(14)により算出することができる。
【0094】
【数14】
Figure 0003652599
【0095】
この場合には、追焚き熱交換器7からの出湯温度を検出するサーミスタを設けることなく、浴槽4に貯められた湯水の量を精度良く把握することができる。
【0096】
また、本実施の形態では、本発明の相関関係データとして、表2及び表3に示したように、給湯と追焚きを同時に実行した場合の各総バーナ加熱量(Q大max〜Q小min)における給湯熱量分配比(Kq)と第1差分温度(ΔT1)との対応データをデータメモリ54に記憶させたが、各総バーナ加熱量(Q大max〜Q小min)における給湯熱交換器8側の熱効率(ηH)(ηH=Kq・ηの関係となる)と第1差分温度(ΔT1)との対応データを、本発明の相関関係データとしてデータメモリ54に記憶させるようにしてもよい。
【0097】
この場合には、総バーナ加熱量(QALL)は、目標給湯温度(TA)、水道管からの給水温度(TW)、水量センサ13の検出水量(FW)、及び給湯熱交換器8側の熱効率(ηH)から、以下の式(15)により算出することができる。
【0098】
【数15】
Figure 0003652599
【0099】
さらに、給湯と追焚きとを同時に実行した場合の各総バーナ加熱量(Q大max〜Q小min)における給湯熱交換器8と追焚き熱交換器7のトータルの熱効率(η)と第1差分温度(ΔT1)との対応データを、データメモリ54に記憶させておくことにより、追焚き熱交換器7側で湯水の加熱に実際に使用される熱量(QF)を以下の式(16)により算出することができる。
【0100】
【数16】
Figure 0003652599
【0101】
また、本実施の形態では、本発明の加熱手段としてガスを燃料とするバーナを示したが、灯油を燃料とするバーナを用いてもよく、また、電熱線により熱交換を行う構成としてもよい。
【図面の簡単な説明】
【図1】本発明の追焚き付き給湯器の全体構成図。
【図2】図1に示した追焚き付き給湯器の制御ブロック図。
【図3】バーナによる総加熱量に対する給湯管路の加熱に使用される熱量の割合を求めための相関関係を示したグラフ。
【符号の説明】
1…追焚き付き給湯器、2…給湯管路、3…追焚き管路、4…浴槽、5…第1バーナ、6…第2バーナ、7…追焚き熱交換器、8…給湯熱交換器、9…バイパス管、10…バイパスサーボ、11…給湯サーミスタ、12…熱交サーミスタ、13…水量センサ、14…湯量サーボ、15…注湯電磁弁、16…逆止弁、17…ポンプ、18…風呂サーミスタ、19…風呂水流スイッチ、20…湯量センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to hot water supply control in a so-called single-can two-water heater with reheating, in which a part of a heat exchanger for hot water supply and a heat exchanger for reheating are overlapped.
[0002]
[Prior art]
In recent years, for the purpose of saving space, a so-called single-can two-water heater with a reheater in which a part of a heat exchanger for hot water supply and a heat exchanger for reheating is overlapped has been developed. In such a water heater, these heat exchangers are heated by, for example, a gas burner. However, when performing hot water supply and reheating at the same time, the amount of heating by the gas burner depends on the reheating heat exchanger and the hot water heat exchanger. Distributed to.
[0003]
And it is necessary to control the heating amount of the gas burner so that the temperature of the hot water supplied from the hot water supply heat exchanger is matched with the target temperature set by the user. It is necessary to accurately grasp the proportion of the amount of heat used for heating the heat exchanger for hot water supply among the amount of heat generated by.
[0004]
Therefore, conventionally, the temperature sensor detects the temperature of the hot water supplied from the tracking pipe to the heating heat exchanger, and the temperature of the hot water supplied from the tracking heat exchanger to the tracking pipe. A return temperature sensor is provided for detecting the amount of heat used for heating the heat exchanger for heating from the difference between the detected temperatures of the two temperature sensors and the flow rate of hot water flowing through the heating pipe, and a known gas burner. The amount of heat used to heat the hot water heat exchanger was calculated by subtracting the amount of heat from the total amount of heating.
[0005]
However, in this case, since it is necessary to provide a return temperature sensor in addition to the normal temperature sensor that is usually provided to monitor and display the temperature of hot water stored in the bathtub, there is a disadvantage in that the cost increases. .
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned background, and is used for heating on the side of a hot water supply heat exchanger when performing reheating and hot water supply at the same time in a single can and two water channel type hot water heater with reheating. An object of the present invention is to provide a reheating water heater that can accurately grasp the amount of heating to be performed at low cost.
[0007]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above-mentioned object, and supplies hot water by heating a water supply pipe through which a predetermined flow rate of hot water is circulated to replenish the bath, and water supplied from the water supply. A hot water supply line for heating, a reheating heat exchanger for heating the hot water flowing through the reheating pipe, and a part of the reheating heat exchanger for heating the water flowing through the hot water supply line A hot water supply heat exchanger, a heating means for heating the reheating heat exchanger and the hot water supply heat exchanger, a heating amount adjusting means for adjusting the heating amount of the heating means, and reheating and hot water supply are executed simultaneously. Sometimes, a hot water supply heat quantity distribution ratio grasping means for grasping a hot water supply heat quantity distribution ratio, which is a ratio of the amount of heat used for heating the hot water supply heat exchanger with respect to the heating amount, and the hot water supply pipe line according to the hot water supply heat quantity distribution ratio The heating amount of the heating means required for supplying hot water of a predetermined temperature from And relates to reheating with water heater improvement and a hot water supply control means for controlling the heating amount of said heating means through said heating amount adjusting means so that the pressurized heat obtained.
[0008]
The inventors of the present application have conducted various studies to achieve the above object, and as a result, when the reheating and hot water supply are simultaneously performed in the reheating water heater, the reheating heat is supplied from the reheating pipeline. Used for heating the hot water supply heat exchanger out of the temperature difference between the temperature of hot water supplied to the exchanger and the temperature of hot water supplied from the hot water supply heat exchanger to the hot water supply line, and the heating amount of the heating means It was found that there is a correlation with the ratio of the amount of heat generated.
[0009]
In view of this, the first aspect of the present invention is the additional water temperature detecting means for detecting the temperature of hot water supplied from the additional pipe to the additional heat exchanger, and the hot water supply pipe from the hot water heat exchanger. A hot water supply temperature detecting means for detecting the temperature of hot water supplied to the passage, and a heating amount of the heating means. Predetermined heating amount In the case where the reheating and hot water supply are simultaneously executed with the setting, the temperature of hot water supplied from the reheating pipe to the reheating heat exchanger and the hot water supply from the hot water heat exchanger to the hot water supply pipe Storage means for storing correlation data indicating a correlation between a first differential temperature that is a difference from the temperature of hot water and the hot water supply heat amount distribution ratio, and the hot water supply heat amount distribution ratio grasping means includes the additional water Applying a second differential temperature, which is a temperature difference between the temperature detected by the temperature detecting means and the temperature detected by the hot-water supply hot water temperature detecting means, as the first differential temperature to the correlation data, the second differential temperature and the Predetermined heating amount The hot water supply heat quantity distribution ratio is calculated.
[0010]
According to the present invention, the temperature of hot water supplied to the storage heat exchanger from the reheating pipe and the temperature of hot water supplied from the hot water heat exchanger to the hot water supply are stored in the storage means. Correlation data indicating the correlation between the first difference temperature, which is the difference between the two, and the hot water supply heat amount distribution ratio is stored. Therefore, the hot water supply heat quantity distribution ratio grasping means uses the second differential temperature, which is the difference between the temperature detected by the additional water temperature detecting means and the temperature detected by the hot water temperature detecting means, as the first differential temperature. By applying to the data, the second differential temperature and the Predetermined heating amount It is possible to accurately grasp the hot water supply heat distribution ratio. In this case, it is not necessary to provide temperature detecting means for detecting the hot water supplied from the hot water supply heat exchanger to the tracking pipe.
[0011]
Further, according to a second aspect of the present invention, in the hot water heater with reheating, additional water temperature detection means for detecting a temperature of hot water supplied from the reheating pipeline to the reheating heat exchanger, When the heating amount of the heating means is set to a predetermined heating amount and the reheating and hot water supply are executed simultaneously, the temperature of the hot water supplied from the reheating pipeline to the reheating heat exchanger and the hot water supply heat exchanger Storage means for storing correlation data indicating a correlation between a first differential temperature, which is a difference between the temperature of hot water supplied to the hot water supply pipe and the hot water heat quantity distribution ratio, and the hot water supply heat quantity distribution The ratio grasping means applies a second differential temperature, which is a temperature difference between the detected temperature of the additional water temperature detecting means and the predetermined temperature, to the correlation data as the first differential temperature, and the second differential temperature And said Predetermined heating amount The hot water supply heat quantity distribution ratio is calculated.
[0012]
According to the present invention, the second differential temperature is set to the difference between the detected temperature of the additional water temperature detecting means and the predetermined temperature, so that the hot water supplied from the hot water heat exchanger to the hot water supply pipe line is obtained. If the temperature difference of the hot water is too fast and the second differential temperature is calculated using the measured temperature of the hot water to calculate the hot water supply heat quantity distribution ratio, the hot water supplied from the hot water heat exchanger to the hot water supply pipe is When the temperature of the water becomes unstable, the temperature of the hot water can be stabilized.
[0013]
Further, in the first aspect and the second aspect, the storage means stores the correlation data individually for a plurality of types of the predetermined heating amounts, and the hot water supply heat quantity distribution ratio grasping means. Selects correlation data to which the second differential temperature is applied from among the plurality of correlation data stored in the storage unit according to the heating amount of the heating unit determined by the hot water supply control unit It is characterized by doing.
[0014]
According to the present invention, the hot water supply heat amount distribution ratio at the second differential temperature can be calculated with respect to the plurality of types of predetermined heating amounts.
[0015]
Further, the hot water supply distribution ratio grasping means responds to a predetermined heating amount larger than the heating amount when the heating amount of the heating means determined by the hot water supply control means does not coincide with any of the plurality of predetermined heating amounts. Further, the second differential temperature is applied to the correlation data according to the hot water distribution ratio calculated by applying the second differential temperature to the correlation data and the predetermined heating amount smaller than the heating amount. The hot water supply heat amount distribution ratio at the second differential temperature difference and the heating amount is calculated based on the hot water supply heat amount distribution ratio.
[0016]
According to the present invention, even if the heating amount of the heating unit determined by the hot water supply control unit does not coincide with any of the plurality of predetermined heating amounts, the hot water distribution ratio grasping unit is the second unit. It is possible to calculate the hot water supply heat amount distribution ratio in the difference temperature difference and the heating amount.
[0017]
In the first aspect and the second aspect, the plurality of pieces stored in the storage unit Predetermined heating amount Includes the maximum heating amount and the minimum heating amount of the heating means that can be adjusted by the heating amount adjusting means.
[0018]
According to the present invention, the hot water supply control means can sufficiently control the temperature of the hot water supplied from the hot water supply heat exchanger to the hot water supply line by fully exerting the capability of the heating means.
[0019]
Further, in the first aspect and the second aspect, a circulation flow rate selecting unit for selecting the predetermined flow rate from a plurality of types of flow rates is provided, and the storage unit is provided for the plurality of types of flow rates. The correlation data is individually stored, and the hot water supply heat amount distribution ratio grasping means applies the second differential temperature to the correlation data according to the flow rate selected by the circulation flow rate selection means, The hot water supply heat distribution ratio at the second differential temperature and the flow rate is calculated.
[0020]
According to the present invention, the flow rate of the hot water flowing through the follow-up pipe line depends on the installation situation of the hot-water supply with the follow-up hot water, the capacity of the circulation pump provided to circulate the hot water, and the follow-up pipe When the length varies depending on the length of the path, the hot water supply heat distribution ratio can be calculated with higher accuracy by setting the predetermined flow rate to a flow rate closer to the flow rate by the circulation flow rate selection means.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a hot water heater with reheating according to the present invention, FIG. 2 is a control block diagram of the hot water heater with reheating shown in FIG. 1, and FIG. It is the graph which showed the correlation for calculating | requiring the ratio of the calorie | heat amount used for the heating by the side of a hot water supply pipe line.
[0022]
Referring to FIG. 1, a water heater 1 is connected to a water pipe (not shown) by a hot water supply pipe 2 and is connected to a bathtub 4 by a reheating pipe 3. The water heater 1 has a function of heating and supplying hot water supplied from the water pipe through the hot water supply pipe 2 and a function of heating and chasing the hot water stored in the bathtub 4.
[0023]
The entire operation of the water heater 1 is controlled by a controller 4, and a first burner 5 that operates according to a control signal from the controller 4, a second burner 6 that has a heating capability lower than that of the first burner, and a first burner 5, A reheating heat exchanger 7 heated by the second burner 6, a hot water supply heat exchanger 8, and a part of the water supplied from the water pipe to the hot water supply pipe line 2 is bypassed by the hot water supply heat exchanger 8 to exchange hot water supply heat. A bypass pipe 9 mixed in hot water discharged from the water heater 8, a bypass servo 10 for adjusting the opening degree of the bypass pipe 9 by a control signal from the controller 4, a downstream side of the junction X of the hot water supply pipe line 2 and the bypass pipe 9 A hot water thermistor 11 that detects the temperature of the hot water and outputs a detection signal to the controller 4, and a heat exchanger thermistor 12 that detects the temperature of the hot water near the outlet of the hot water heat exchanger 8 and outputs a detection signal to the controller 4 (Corresponding to a bright hot water supply hot water temperature detecting means), a water amount sensor 13 for detecting the flow rate of water supplied from the water supply to the hot water supply pipe 2 and outputting a detection signal to the controller 4, and supplied from the hot water supply pipe 2 A hot water servo 14 for adjusting the hot water flow rate is provided.
[0024]
Further, the water heater 1 includes a hot water relay pipe 30 that connects the hot water supply pipe 2 and the follow-up pipe 3, and a hot water solenoid valve 15 that operates by a control signal from the controller 4 to open and close the hot water relay pipe 30. A check valve 16 that allows passage of hot water in the direction from the hot water relay pipe 30 to the hot water relay pipe 30 and disables passage of hot water in the direction from the hot water relay pipe 30 to the hot water pipe 3, controller 4 is operated by a control signal from the pump 4 to circulate hot water stored in the bathtub 4 in the tracking pipe 3, and the temperature of hot water supplied from the bathtub 4 to the tracking pipe 3 (= stored in the bathtub). A bath thermistor 18 (corresponding to the additional water temperature detecting means of the present invention) that detects the temperature of the hot water and the like and detects the presence or absence of hot water flowing in the additional pipe 3. Bath water flow detector that outputs detection signal to controller 4 A hot water amount sensor 20 that detects the flow rate of hot water supplied from the hot water supply pipe 2 to the bathtub 4 via the hot water filling relay pipe 30 and the additional pipe 3 and outputs a detection signal to the controller 4. Prepare.
[0025]
In addition, the water heater 1 controls the operation of the first burner 5 and the second burner 6, so that the fuel gas is supplied to and shut off from the first burner 5 and the second burner 6 in accordance with a control signal from the controller 4. A gas proportional valve 22 that adjusts the supply flow rate of the fuel gas in accordance with a control signal from the controller 4, a fuel gas supply to the first burner 5 in accordance with a control signal from the controller 4 The first gas solenoid valve 23 that switches between shutoff and the control signal from the controller 4, the second gas solenoid valve 24 that switches between supply and shutoff of the fuel gas to the second burner 6 according to the control signal from the controller 4 Combustion fan 25 for supplying combustion air to the first burner 5 and the second burner 6, and ignition for generating a spark discharge by a high voltage applied from the igniter 26 according to a control signal from the controller 4 The lug 27, the frame rod 28 that detects the presence or absence of a combustion flame in the second burner 6 and outputs a detection signal to the controller 4, and the water at the highest temperature in the hot water supply pipe 2 in the hot water supply heat exchanger 8. And a water pipe thermistor 29 that outputs a detection signal to the controller 4.
[0026]
The first gas solenoid valve 23, the second gas solenoid valve 24, and the gas proportional valve 22 constitute the heating amount adjusting means of the present invention. The water pipe thermistor 29 is provided in order to prevent water staying in the hot water supply heat exchanger 8 from being heated and abnormally heated when only the reheating control is executed alone. When the detected temperature 29 exceeds a predetermined upper limit temperature, the controller 4 stops the combustion of the first burner 5 and the second burner 6.
[0027]
The controller 4 transmits and receives various signals to and from the remote controller 40 installed in a bathroom or the like. The remote controller 40 includes switches (not shown) for setting a hot water supply temperature, a hot water filling temperature, a chasing time, and the like, and a display unit (not shown) for displaying the hot water supply temperature, the hot water filling temperature, and the like.
[0028]
Next, referring to FIG. 2, the controller 4 includes a hot water supply control means 50 for performing hot water supply control for supplying hot water at a target hot water supply temperature from the hot water supply pipe 2, and the hot water stored in the bathtub 4 to the target reheating temperature. Reheating control means 51 for performing reheating control for raising the temperature, hot water control means 52 for performing hot water control for supplying hot water at a target hot water temperature to the bathtub by the target hot water amount, the first burner 5 and the second The hot water supply heat quantity distribution ratio grasping means 53 for calculating the ratio of the amount of heat used for heating on the hot water supply heat exchanger 8 side in the total heating amount by the burner 6 (hereinafter referred to as the total burner heating amount), and the hot water supply control A data memory 54 (corresponding to the storage means of the present invention) in which data necessary for execution is stored.
[0029]
The hot water supply control means 50 controls the combustion amount of the first burner 5 and the second burner 6 so that hot water at the target hot water supply temperature set by the remote controller 40 is supplied from the hot water supply pipe 2. When the hot water supply control means 50 detects from the detection signal of the water amount sensor 13 that a curan (not shown) connected to the downstream side of the hot water supply pipe 2 is opened and water supply from the water pipe is started, the combustion fan 25, the supply of combustion air is started, and a high voltage is applied from the igniter 26 to the spark plug 27 to cause a spark discharge, and the original gas solenoid valve 21 and the second gas solenoid valve 23 are The valve is opened and the second burner 6 is ignited.
[0030]
Then, the hot water supply control means 50 opens both the first gas solenoid valve 23 and the second gas solenoid valve 24 so as to burn the first burner 5 and the second burner 6, and the first gas solenoid. The valve 23 is opened and the second gas solenoid valve 24 is closed, “medium combustion” in which only the first burner 5 is burned, the first solenoid valve 23 is closed and the second solenoid valve 24 is opened. The total burner heating amount by the first burner 5 and the second burner 6 is adjusted in three stages of “small combustion” in which only the second burner 6 is burned. Further, the hot water supply control means 50 controls the heating amount in “large combustion”, “medium combustion”, and “small combustion” more finely by changing the opening of the gas proportional valve 22.
[0031]
Here, as shown in Table 1 below, the data memory 54 stores the maximum heating amount (Q large in “large combustion”). max ) And minimum heating amount (Q large min), maximum heating amount in medium combustion (Q medium) max ) And minimum heating (in Q) min ), And the maximum heating amount (small Q) in “small combustion” max ) And minimum heating (Q small) min ) Data (obtained by experiments and calculations).
[0032]
[Table 1]
Figure 0003652599
[0033]
Therefore, the hot water supply control means 50 calculates the total amount of the first burner 5 and the second burner 6 in the “large combustion”, “medium combustion”, and “small combustion” from the data in Table 1 and the opening degree of the gas proportional valve 22. Burner heating amount (Q ALL ). The hot water supply control means 50 detects the temperature detected by the hot water supply thermistor 11 (T H ) And the detected flow rate (F W ) And the amount of heat actually used to heat water in the hot water supply heat exchanger 8 (Q R ) And the water supply temperature from the water pipe (T W ). The amount of heat (Q R ) Is the total burner heating amount (Q ALL ) Multiplied by the total thermal efficiency (η) of the reheating heat exchanger 7 and the hot water supply heat exchanger 8.
[0034]
This total thermal efficiency (η) is the total burner heating (Q ALL ) States (Q large) max ~ Q small min ) And stored in the data memory 54.
[0035]
[Expression 1]
Figure 0003652599
[0036]
Then, the hot water supply control means 50 determines the temperature of hot water supplied to the downstream side of the junction X between the hot water supply pipe line 2 and the bypass pipe 9 as a target hot water supply temperature (T A ) Total burner heating amount (Q ALL ) Is calculated by the following equation (2).
[0037]
[Expression 2]
Figure 0003652599
[0038]
And the hot-water supply control means 50 is the total burner heating amount (Q calculated by said Formula (2). ALL ) Is controlled, the opening of the gas proportional valve 22, the rotational speed of the combustion fan 25, and the opening and closing of the first gas solenoid valve 23 and the second gas solenoid valve 24 are controlled.
[0039]
In this way, the total burner heating amount (Q ALL ) Is basically controlled from the hot water supply line 2 to the target hot water temperature (T A ) Is supplied, but the temperature detected by the hot water supply thermistor 11 (T H ) Is the target hot water supply temperature (T A ), The hot water supply control means 50 further determines the total burner heating amount (Q ALL ). The hot water amount servo 14 finely adjusts the amount of water supplied to the hot water supply pipe 2 so as not to exceed the maximum capacity of the water heater 1.
[0040]
Then, when the hot water control means 50 detects from the detection signal of the water amount sensor 13 that the water supply from the water pipe to the hot water supply pipe 2 has been stopped because the curan is closed by the user, The first gas solenoid valve 23 and the second gas solenoid valve 24 are closed, the operation of the combustion fan 25 is stopped, and the hot water supply control is finished.
[0041]
Next, the chasing control means 51 starts chasing control in response to the chasing start instruction from the remote controller 40. The chasing control means 51 operates the pump 17 to circulate hot water in the bathtub 4 to the chasing pipe 3, and in this state, the chasing heat exchanger 7 is heated by the first burner 5 and chasing. Hot water circulating in the pipe 3 is heated. As a result, the hot water stored in the bathtub 4 is gradually heated, and when the detected temperature of the bath thermistor 18 reaches the target tracking temperature set by the remote controller 40, the tracking control means 51 has the first burner. 5 is stopped and the chasing control is terminated.
[0042]
The chasing control means 51 checks whether or not the water flow is detected by the bath water flow switch 19 when the pump 17 is operated. When the water flow is detected by the bath water flow switch 19 and it can be determined that hot water is stored in the bathtub 4, the chasing control is executed.
[0043]
Further, the hot water filling control means 52 starts the hot water filling control in response to the hot water filling start instruction from the remote controller 40. The hot water filling control means 52 first opens the hot water solenoid valve 15, thereby starting water supply from the water pipe to the hot water filling pipe line 2, and the hot water supply control means 50 sets the target hot water set by the remote controller 40. Hot water supply control at the tension temperature is started. Then, hot water having a target hot water temperature is supplied from the hot water supply pipe 2 to the bathtub 4 via the hot water relay pipe 30 and the follow-up pipe 3.
[0044]
The hot water filling control means 52 grasps the amount of hot water stored in the bathtub 4 from the hot water supply flow rate detected by the hot water amount sensor 20 and the hot water supply time, and the hot water amount becomes the target hot water filling amount set by the remote controller 40. When reaching, the hot water solenoid valve 15 is closed and the hot water filling control is finished.
[0045]
Next, as described above, when the hot water supply control is performed independently, the total burner heating amount (Q by the first burner 5 and the second burner 6) ALL ) Is used to heat the water passing through the hot water heat exchanger 8. Therefore, the target hot water supply temperature (T A ) Total burner heating amount required to supply hot water (Q) ALL ).
[0046]
However, when performing hot water supply control and reheating control simultaneously, the total burner heating amount (Q by the first burner 5 and the second burner 6) ALL ) Is used to heat the water passing through the hot water supply heat exchanger 8 and also used to heat the hot water passing through the reheating heat exchanger 7.
[0047]
Therefore, when performing hot water supply control and reheating control simultaneously, the total burner heating amount (Q ALL ), It is necessary to grasp the amount of heat distributed to the hot water supply heat exchanger 8 side and perform hot water supply control.
[0048]
Therefore, the hot water supply heat amount distribution ratio grasping means 53 provided in the controller 1 is used for the total burner heating amount (Q ALL The hot water supply heat quantity distribution ratio (Kq), which is the ratio of the amount of heat used for heating the hot water supply heat exchanger 8 to the hot water supply heat exchanger 8, is calculated, and the hot water supply control means 50 calculates the target hot water supply temperature (Kq) T A ) Total burner heating required for hot water supply (Q) ALL ). Hereinafter, a calculation procedure of the hot water supply heat amount distribution ratio (Kq) by the hot water supply heat amount distribution ratio grasping means 53 will be described.
[0049]
The inventors of the present application have studied various methods for calculating the hot water supply heat quantity distribution ratio, and as a result, the temperature of hot water supplied from the reheating line 3 to the reheating heat exchanger 7 and the hot water supply line from the hot water heat exchanger 8 are calculated. The first differential temperature (ΔT, which is the difference from the temperature of the hot water supplied to 2 1 ) And the hot water supply heat quantity distribution ratio (Kq) were found to be proportional.
[0050]
This is because as the temperature of hot water supplied to the reheating heat exchanger 7 (= temperature of hot water stored in the bathtub 4) is lower, the amount of heat used on the reheating heat exchanger 7 side increases, Since the temperature of the water supplied from the water pipe is considered to be almost constant, the amount of heat used on the hot water supply heat exchanger 8 side increases as the temperature of the hot water supplied from the hot water supply heat exchanger 8 increases. It is considered that the difference is proportional to the hot water supply heat quantity distribution ratio (Kq).
[0051]
FIG. 3 shows the maximum heating amount (Q max ) And minimum heating amount (Q large min), maximum heating amount in medium combustion (Q medium) max ) And minimum heating (in Q) min ), And the maximum heating amount (small Q) in “small combustion” max ) And minimum heating (Q small) min ) And the first temperature difference (ΔT) 1 It is the graph which showed the correlation with). In the figure, (1) is large Q max , ▲ 2 ▼ is Q large min, ▲ 3 ▼ is Q max , ▲ 4 ▼ is in Q min 、 ▲ 5 ▼ is small Q max , ▲ 6 ▼ is small Q min It corresponds to each.
[0052]
The hot water supply heat quantity distribution ratio grasping means 53 includes the temperature of hot water supplied from the reheating line 3 detected by the bath thermistor 18 to the reheating heat exchanger 7, and the hot water supply heat exchanger 8 detected by the heat exchange thermistor 12. The second differential temperature (ΔT), which is the difference from the temperature of hot water supplied to the hot water supply pipe 2 from 2 ) For the first differential temperature (ΔT in the graph shown in FIG. 1 ) As the second differential temperature (ΔT when the reheating control and the hot water supply control are executed simultaneously. 2 ) To calculate the hot water distribution ratio (Kq).
[0053]
Then, the hot water supply control means 50 uses the hot water supply heat quantity distribution ratio (Kq) calculated by the hot water supply heat quantity distribution ratio grasping means 53 to use the target temperature (T A ) Total burner heating amount (Q ALL ') Is calculated by the following equation (3), and the total burner heating amount (Q ALL The combustion amount of the first burner 5 and the second burner 6 is controlled so that ') is obtained.
[0054]
[Equation 3]
Figure 0003652599
[0055]
Where Q ALL Is the total burner heating amount calculated from the above equation (2).
[0056]
In this way, the total burner heating amount (Q is calculated using the hot water supply calorie distribution ratio (Kq). ALL ), The hot water supply control means 50 can control the hot water supply temperature with high accuracy even when the reheating control and the hot water supply control are executed simultaneously.
[0057]
In order to obtain the correlation shown in FIG. 3, the data memory 54 stores experimental data (corresponding to the correlation data of the present invention) shown in Table 2 below. Table 2 shows that the flow rate of hot water circulating in the tracking pipe 3 is F when the tracking control is executed. 1 (Large) total burner heating amount (Q ALL ) And the first differential temperature (ΔT 1 ) Is a data obtained by experiment for the hot water heat distribution ratio (Kq).
[0058]
[Table 2]
Figure 0003652599
[0059]
From the data in FIG. 3, for example, the total burner heating amount (Q ALL ) Is large Q max The first differential temperature (ΔT 1 ) Is 0 ° C, hot water distribution ratio Kq is large max L 1 And total burner heating (Q ALL ) Is large Q max The first differential temperature (ΔT 1 ) Is 10 ° C, the hot water distribution ratio Kq is large max H 1 From the above, the relational expression of the graph (1) in FIG.
[0060]
[Expression 4]
Figure 0003652599
[0061]
Similarly, total burner heating amount (Q ALL ) Is large Q min The first differential temperature (ΔT 1 ) Is 0 ° C, hot water distribution ratio Kq is large min L 1 And total burner heating (Q ALL ) Is large Q min The first differential temperature (ΔT 1 ) Is 10 ° C, the hot water distribution ratio Kq is large min H 1 From the above, the relational expression of the graph (2) in FIG.
[0062]
[Equation 5]
Figure 0003652599
[0063]
The total burner heating amount (Q ALL ) In Q max The first differential temperature (ΔT 1 ) Is hot water heat distribution ratio Kq when it is 0 ° C max L 1 And total burner heating (Q ALL ) In Q max The first differential temperature (ΔT 1 ) Is hot water heat distribution ratio Kq when it is 10 ℃ max H 1 From the above, the relational expression of the graph (3) in FIG.
[0064]
[Formula 6]
Figure 0003652599
[0065]
The total burner heating amount (Q ALL ) In Q min The first differential temperature (ΔT 1 ) Is hot water heat distribution ratio Kq when it is 0 ° C min L 1 And total burner heating (Q ALL ) In Q min The first differential temperature (ΔT 1 ) Is hot water heat distribution ratio Kq when it is 10 ℃ min H 1 From the above, the relational expression of the graph (2) in FIG. 3 can be derived from the following expression (7).
[0066]
[Expression 7]
Figure 0003652599
[0067]
The total burner heating amount (Q ALL ) Is small Q max The first differential temperature (ΔT 1 ) Is 0 ° C, hot water distribution ratio Kq is small max L 1 And total burner heating (Q ALL ) Is small Q max The first differential temperature (ΔT 1 ) Is 10 ° C, hot water distribution ratio Kq is small max H 1 Therefore, the relational expression of the graph (5) in FIG. 3 can be derived from the following expression (8).
[0068]
[Equation 8]
Figure 0003652599
[0069]
The total burner heating amount (Q ALL ) Is small Q min The first differential temperature (ΔT 1 ) Is 0 ° C, hot water distribution ratio Kq is small min L 1 And total burner heating (Q ALL ) Is small Q min The first differential temperature (ΔT 1 ) Is 10 ° C, hot water distribution ratio Kq is small min H 1 Therefore, the relational expression of the graph (6) in FIG. 3 can be derived from the following expression (9).
[0070]
[Equation 9]
Figure 0003652599
[0071]
Note that the flow rate of the hot water circulating in the tracking pipe 3 varies depending on the capacity of the pump 17 and the length of the tracking pipe 3. Therefore, the data memory 54 stores the circulation flow rate F as shown in Table 3 below. 1 Circulating flow rate F set to a smaller value than 2 The experimental data in (small) is stored.
[0072]
[Table 3]
Figure 0003652599
[0073]
Then, in response to an operation of a circulation flow rate switch (not shown) provided in the controller 4 by an operator who installs the water heater 1, the hot water supply heat quantity distribution ratio grasping means 53 is connected to the circulation flow rate F. 1 (Large) data in Table 2 above and circulation flow rate F 2 The data in Table 3 is switched according to (small), and the hot water supply heat quantity distribution ratio Kq and the first differential temperature ΔT are calculated by the above equations (4) to (9). 1 Is determined.
[0074]
Accordingly, the hot water supply heat quantity distribution ratio (Kq) and the first differential temperature (ΔT) are more accurately determined according to the flow rate of the hot water circulating in the reheating conduit 3. 1 ) Can be determined. It should be noted that experimental data on more types of circulating flow rates are stored in the data memory 54 so that the circulating flow rate can be selected, whereby the hot water supply heat distribution ratio (Kq) and the first differential temperature (ΔT 1 ) Can be derived with higher accuracy.
[0075]
The total burner heating amount (Q ALL ) But large Q max , Q large min During Q max During Q min , Q small max , Q small min In any case, the hot water supply heat quantity distribution ratio (Kq) can be directly calculated from the above equations (4) to (9). For example, the gas proportional valve 22 causes the total burner heating amount to be large by Q. max And Q min If it is controlled during this period, the hot water supply heat quantity distribution ratio (Kq) cannot be calculated.
[0076]
Therefore, in such a case, the hot water supply heat quantity distribution ratio grasping means 53 calculates the hot water supply heat quantity distribution ratio (Kq) by the following equation (10).
[0077]
[Expression 10]
Figure 0003652599
[0078]
Where Kq is large max Is the second differential temperature (ΔT 2 ) For the first differential temperature (ΔT 1 ) Is the hot water distribution ratio calculated by the above equation (4), and Kq is large min Is the second differential temperature (ΔT 2 ) For the first differential temperature (ΔT 1 ) Is the hot water supply heat amount distribution ratio calculated by the above equation (5).
[0079]
As a result, the hot water supply heat quantity distribution ratio grasping means 53 determines the total burner heating amount (Q ALL ) Is large Q max And Q min It is possible to accurately calculate the hot water supply heat amount distribution ratio (Kq) when it is controlled during this period.
[0080]
Similarly, the total burner heating amount (Q ALL ) In Q max And Q min If it is controlled during this period, the hot water supply heat amount distribution ratio grasping means 53 calculates the hot water supply heat amount distribution ratio (Kq) by the following equation (11).
[0081]
## EQU11 ##
Figure 0003652599
[0082]
Where in Kq max Is the second differential temperature (ΔT 2 ) For the first differential temperature (ΔT 1 ) Is the hot water supply heat quantity distribution ratio calculated by the above equation (6), and in Kq min Is the second differential temperature ΔT at the time of calculation 2 The first differential temperature ΔT 1 As a hot water supply heat quantity distribution ratio calculated by the above equation (7).
[0083]
The total burner heating amount (Q ALL ) Is small Q max And Q small min If it is controlled during this period, the hot water supply heat quantity distribution ratio grasping means 53 calculates the hot water supply heat quantity distribution ratio (Kq) by the following equation (12).
[0084]
[Expression 12]
Figure 0003652599
[0085]
Where Kq is small max Is the second differential temperature (ΔT 2 ) For the first differential temperature (ΔT 1 ) Is the hot water supply heat quantity distribution ratio calculated by the above equation (8), and Kq small min Is the second differential temperature (ΔT 2 ) For the first differential temperature (ΔT 1 ) Is the hot water supply heat quantity distribution ratio calculated by the above equation (9).
[0086]
In the present embodiment, the maximum combustion amount in “large combustion” (Q large max ) And the minimum combustion amount (Q large min), the total burner heating amount (Q ALL ) Is large Q max And Q min The calorific value distribution ratio (Kq) for hot water supply when it is controlled during max And Q min As for the amount of heating during the period, the hot water distribution ratio (Kq) and the first differential temperature (ΔT) 1 ) Is stored in the data memory 54, and the total burner combustion amount (Q ALL ) Using the relational expression for the heating amount closer to max And Kq min And may be calculated.
[0087]
As a result, the total burner heating amount (Q ALL ) But large Q max And Q min It is possible to calculate the hot water supply heat distribution ratio (Kq) when it is controlled during the period with higher accuracy. The same applies to “medium combustion” and “small combustion”.
[0088]
In the present embodiment, the temperature of the hot water supplied from the reheating line 3 detected by the bath thermistor 18 to the reheating heat exchanger 7 and the hot water supply heat exchanger 8 detected by the heat exchange thermistor 12 are also shown. The difference between the temperature of hot water supplied to the hot water supply pipe 2 and the second differential temperature (ΔT 2 ), But the detected temperature of the bath thermistor 18 and the target hot water temperature (T A ) From the hot water supply heat exchanger 8 calculated by the following equation (13) (T EXC , In this case, the difference from the predetermined temperature of the present invention is the second difference temperature (ΔT 2 ).
[0089]
[Formula 13]
Figure 0003652599
[0090]
Where λ is the bypass ratio described above, T W Is the feed water temperature calculated by the above equation (1). A temperature sensor for detecting the temperature of the water supply from the water pipe is provided, and the temperature detected by the temperature sensor is T W As shown in the above equation (13), the temperature of hot water supplied from the hot water supply heat exchanger 8 (T EXC ) May be requested.
[0091]
Thus, the detected temperature (T EX ), Not the target hot water supply temperature (T A ) (T) calculated using EXC ) To obtain the second differential temperature (ΔT 2 ) To set the total burner heating (Q ALL When the temperature of the hot water supplied from the hot water supply heat exchanger 8 becomes unstable due to the responsiveness of the control system)), the hot water supply temperature from the hot water supply pipe 2 can be stabilized.
[0092]
In the present embodiment, the data shown in Tables 2 and 3 are stored in the data memory 54 as the correlation data of the present invention, and the relational expressions (4) to (9) are stored from the data. However, the data of the relational expressions (4) to (9) may be directly stored in the data memory 54 as the correlation data of the present invention.
[0093]
In addition, when reheating and hot water supply are performed simultaneously, the amount of hot water stored in the bathtub 4 (W) is calculated from the hot water supply heat distribution ratio (Kq) and the total burner heating amount (Q ALL ) And the additional heat exchanger 7 and the hot water supply heat exchanger 8 and the amount of heat (Q) used for heating the hot water on the additional heat exchanger 7 side calculated from the total thermal efficiency (η). F = (1-Kq) ・ Q ALL Η) and the degree of increase in the temperature detected by the bath thermistor 18 (ΔT F ) And the following equation (14).
[0094]
[Expression 14]
Figure 0003652599
[0095]
In this case, it is possible to accurately grasp the amount of hot water stored in the bathtub 4 without providing a thermistor for detecting the temperature of the hot water discharged from the reheating heat exchanger 7.
[0096]
Further, in the present embodiment, as the correlation data of the present invention, as shown in Tables 2 and 3, each total burner heating amount (Q large) when hot water supply and reheating are executed simultaneously. max ~ Q small min ) And the first differential temperature (ΔT) 1 ) Is stored in the data memory 54, but each total burner heating amount (Q large) max ~ Q small min ) In the hot water supply heat exchanger 8 side (η H ) (Η H = Kq · η) and the first differential temperature (ΔT 1 ) May be stored in the data memory 54 as correlation data of the present invention.
[0097]
In this case, the total burner heating amount (Q ALL ) Is the target hot water supply temperature (T A ), Water supply temperature from water pipe (T W ), The amount of water detected by the water amount sensor 13 (F W ), And the thermal efficiency of the hot water supply heat exchanger 8 (η H ) From the following equation (15).
[0098]
[Expression 15]
Figure 0003652599
[0099]
Furthermore, the total burner heating amount (Q large) when hot water supply and reheating are performed simultaneously. max ~ Q small min ) Of the hot water supply heat exchanger 8 and the reheating heat exchanger 7 and the first differential temperature (ΔT) 1 )) Is stored in the data memory 54, so that the amount of heat (Q that is actually used for heating hot water on the reheating heat exchanger 7 side). F ) Can be calculated by the following equation (16).
[0100]
[Expression 16]
Figure 0003652599
[0101]
Further, in the present embodiment, the burner using gas as fuel is shown as the heating means of the present invention, but a burner using kerosene as fuel may be used, and heat exchange may be performed using a heating wire. .
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a hot water heater with a reheating device according to the present invention.
FIG. 2 is a control block diagram of the hot water heater with reheating shown in FIG.
FIG. 3 is a graph showing the correlation for determining the ratio of the amount of heat used for heating the hot water supply pipe to the total amount of heating by the burner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hot water heater with reheating, 2 ... Hot water supply pipe line, 3 ... Reheating water pipe line, 4 ... Bathtub, 5 ... 1st burner, 6 ... 2nd burner, 7 ... Reheating heat exchanger, 8 ... Hot water supply heat exchange 9 ... Bypass pipe, 10 ... Bypass servo, 11 ... Hot water supply thermistor, 12 ... Heat exchange thermistor, 13 ... Water quantity sensor, 14 ... Hot water quantity servo, 15 ... Hot water solenoid valve, 16 ... Check valve, 17 ... Pump, 18 ... Bath thermistor, 19 ... Bath water flow switch, 20 ... Hot water sensor

Claims (6)

風呂を追焚きするために所定流量の湯水が循環される追焚き管路と、水道から供給される水を加熱して湯を供給するための給湯管路と、該追焚き管路を流れる湯水を加熱する追焚き熱交換器と、その一部が該追焚き熱交換器と重複して該給湯管路を流れる水を加熱する給湯熱交換器と、該追焚き熱交換器と該給湯熱交換器とを加熱する加熱手段と、該加熱手段の加熱量を調節する加熱量調節手段と、追焚きと給湯とを同時に実行するときに、該加熱量に対する前記給湯管路の加熱に使用される熱量の割合である給湯熱量分配比を把握する給湯熱量分配比把握手段と、該給湯熱量分配比に応じて前記給湯管路から所定温度の湯を供給するために必要となる前記加熱手段の加熱量を決定し、該加熱量が得られるように前記加熱量調節手段を介して前記加熱手段の加熱量を制御する給湯制御手段とを備えた追焚き付き給湯器において、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度を検出する追焚き入水温度検出手段と、前記給湯熱交換器から前記給湯管路に供給される湯の温度を検出する給湯温度検出手段と、前記加熱手段の加熱量を所定加熱量に設定して追焚きと給湯とを同時に実行した場合における、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度と前記給湯熱交換器から前記給湯管路に供給される湯の温度との差である第1差分温度と、前記給湯熱量分配比との相関関係を示す相関関係データを記憶した記憶手段とを備え、前記給湯熱量分配比把握手段は、前記追焚き入水温度検出手段の検出温度と前記給湯温度検出手段の検出温度との温度差である第2差分温度を前記第1差分温度として前記相関関係データに適用して、該第2差分温度且つ前記所定加熱量における前記給湯熱量分配比を算出することを特徴とする追焚き付き給湯器。A hot water supply line for supplying hot water by heating water supplied from the water supply, and hot water flowing through the hot water supply pipe, in which hot water of a predetermined flow rate is circulated to replenish the bath A reheating heat exchanger that heats the water flowing through the hot water supply pipe, a portion of which overlaps with the reheating heat exchanger, the reheating heat exchanger, and the hot water heat When the heating means for heating the exchanger, the heating amount adjusting means for adjusting the heating amount of the heating means, and the reheating and hot water supply are executed simultaneously, the hot water supply pipe line is used for heating the heating amount. A hot water supply heat amount distribution ratio grasping means for grasping a hot water supply heat amount distribution ratio, which is a ratio of the amount of heat generated, and a heating means required for supplying hot water at a predetermined temperature from the hot water supply pipe according to the hot water supply heat amount distribution ratio. Through the heating amount adjusting means so as to obtain the heating amount. In the hot water heater with reheating provided with the hot water supply control means for controlling the heating amount of the heating means, reheating water temperature detection for detecting the temperature of hot water supplied from the reheating pipeline to the reheating heat exchanger. Means, hot water supply temperature detecting means for detecting the temperature of hot water supplied from the hot water supply heat exchanger to the hot water supply line, and setting the heating amount of the heating means to a predetermined heating amount , A first difference that is a difference between the temperature of hot water supplied from the reheating pipe line to the reheating heat exchanger and the temperature of hot water supplied from the hot water supply heat exchanger to the hot water supply pipe when executed. Storage means for storing correlation data indicating a correlation between a temperature and the hot water supply heat amount distribution ratio, and the hot water supply heat amount distribution ratio grasping means is detected by the additional water temperature detection means and the hot water temperature detection. Temperature difference from the detected temperature of the means There the applied to the correlation data of the second differential temperature as the first differential temperature, the second differential temperature and reheating with water heater and calculates the hot-water supply heat distribution ratio at the predetermined heating amount . 風呂を追焚きするために所定流量の湯水が循環される追焚き管路と、水道から供給される水を加熱して湯を供給するための給湯管路と、該追焚き管路を流れる湯水を加熱する追焚き熱交換器と、その一部が該追焚き熱交換器と重複して該給湯管路を流れる水を加熱する給湯熱交換器と、該追焚き熱交換器と該給湯熱交換器とを加熱する加熱手段と、該加熱手段の加熱量を調節する加熱量調節手段と、追焚きと給湯とを同時に実行するときに、該加熱量に対する前記給湯管路の加熱に使用される熱量の割合である給湯熱量分配比を把握する給湯熱量分配比把握手段と、該給湯熱量分配比に応じて前記給湯管路から所定温度の湯を供給するために必要となる前記加熱手段の加熱量を決定し、該加熱量が得られるように前記加熱量調節手段を介して前記加熱手段の加熱量を制御する給湯制御手段とを備えた追焚き付き給湯器において、
前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度を検出する追焚き入水温度検出手段と、
前記加熱手段の加熱量を所定加熱量に設定して追焚きと給湯とを同時に実行した場合における、前記追焚き管路から前記追焚き熱交換器に供給される湯水の温度と前記給湯熱交換器から前記給湯管路に供給される湯の温度との差である第1差分温度と、前記給湯熱量分配比との相関関係を示す相関関係データを記憶した記憶手段とを備え、
前記給湯熱量分配比把握手段は、前記追焚き入水温度検出手段の検出温度と前記所定温度との温度差である第2差分温度を前記第1差分温度として前記相関関係データに適用して、該第2差分温度且つ前記所定加熱量における前記給湯熱量分配比を算出することを特徴とする追焚き付き給湯器。
A hot water supply line for supplying hot water by heating water supplied from the water supply, and hot water flowing through the hot water supply pipe, in which hot water of a predetermined flow rate is circulated to replenish the bath A reheating heat exchanger that heats the water flowing through the hot water supply pipe, a portion of which overlaps with the reheating heat exchanger, the reheating heat exchanger, and the hot water heat When the heating means for heating the exchanger, the heating amount adjusting means for adjusting the heating amount of the heating means, and the reheating and hot water supply are executed simultaneously, the hot water supply pipe line is used for heating the heating amount. A hot water supply heat amount distribution ratio grasping means for grasping a hot water supply heat amount distribution ratio, which is a ratio of the amount of heat generated, and a heating means required for supplying hot water at a predetermined temperature from the hot water supply pipe according to the hot water supply heat amount distribution ratio. Through the heating amount adjusting means so as to obtain the heating amount. In reheating with water heater and a hot water supply control means for controlling the heating amount of the serial heating means,
Reheating water temperature detection means for detecting the temperature of hot water supplied from the reheating pipeline to the reheating heat exchanger;
When the heating amount of the heating means is set to a predetermined heating amount and reheating and hot water supply are performed simultaneously, the temperature of hot water supplied from the reheating pipeline to the reheating heat exchanger and the hot water supply heat exchange A storage means for storing correlation data indicating a correlation between a first differential temperature that is a difference between the temperature of hot water supplied to the hot water supply pipe from a water heater and the hot water supply heat quantity distribution ratio;
The hot water supply heat quantity distribution ratio grasping means applies a second difference temperature, which is a temperature difference between the detected temperature of the additional water temperature detection means and the predetermined temperature, as the first difference temperature to the correlation data, and A hot water heater with reheating, wherein the hot water supply heat amount distribution ratio at the second differential temperature and the predetermined heating amount is calculated.
前記記憶手段には、複数種類の前記所定加熱量に対して、前記相関関係データが個別に記憶され、
前記給湯熱量分配比把握手段は、前記給湯制御手段により決定された前記加熱手段の加熱量に応じて、前記記憶手段に記憶された複数の前記相関関係データの中から、前記第2差分温度を適用する相関関係データを選択することを特徴とする請求項1又は請求項2記載の追焚き付き給湯器。
The storage unit stores the correlation data individually for a plurality of types of the predetermined heating amounts,
The hot water supply heat amount distribution ratio grasping means obtains the second differential temperature from the plurality of correlation data stored in the storage means according to the heating amount of the heating means determined by the hot water supply control means. 3. The hot water heater with reheating according to claim 1 or 2, wherein correlation data to be applied is selected.
前記給湯分配比把握手段は、前記給湯制御手段により決定された前記加熱手段の加熱量が、前記複数の所定加熱量のいずれとも一致しないときには、該加熱量よりも大きい所定加熱量に応じた前記相関関係データに前記第2差分温度を適用して算出した給湯熱量分配比と、該加熱量よりも小さい所定加熱量に応じた前記相関関係データに前記第2差分温度を適用して算出した給湯熱量分配比とに基づいて、該第2差分温度差且つ該加熱量における前記給湯熱量分配比を算出することを特徴とする請求項3記載の追焚き付き給湯器。When the heating amount of the heating unit determined by the hot water supply control unit does not coincide with any of the plurality of predetermined heating amounts, the hot water distribution ratio grasping unit is configured to respond to the predetermined heating amount larger than the heating amount. Hot water supply heat amount distribution ratio calculated by applying the second differential temperature to the correlation data and the hot water supply calculated by applying the second differential temperature to the correlation data according to a predetermined heating amount smaller than the heating amount The hot water heater with reheating according to claim 3, wherein the hot water supply heat amount distribution ratio at the second differential temperature difference and the heating amount is calculated based on a heat amount distribution ratio. 前記記憶手段に記憶された前記複数の所定加熱量の中には、前記加熱量調節手段により調節可能な前記加熱手段の最大加熱量と最小加熱量とが含まれることを特徴とする請求項3又は請求項4記載の追焚き付き給湯器。The plurality of predetermined heating amounts stored in the storage unit include a maximum heating amount and a minimum heating amount of the heating unit that can be adjusted by the heating amount adjusting unit. Or the hot water heater with a reed of Claim 4. 前記所定流量を複数種類の流量の中から選択するための循環流量選択手段を備え、
前記記憶手段には、前記複数種類の流量に対して、前記相関関係データが個別に記憶され、
前記給湯熱量分配比把握手段は、前記循環流量選択手段により選択された流量に応じた前記相関関係データに前記第2差分温度を適用して、該第2差分温度且つ該流量における前記給湯熱量分配比を算出することを特徴とする請求項1から請求項5のうちいずれか1項記載の追焚き付き給湯器。
A circulation flow rate selection means for selecting the predetermined flow rate from a plurality of types of flow rates,
The storage unit stores the correlation data individually for the plurality of types of flow rates,
The hot water supply heat amount distribution ratio grasping means applies the second differential temperature to the correlation data corresponding to the flow rate selected by the circulation flow rate selection means, and distributes the hot water supply heat amount distribution at the second differential temperature and the flow rate. The ratio is calculated, The hot water heater with a renewal of any one of Claims 1-5 characterized by the above-mentioned.
JP2000361622A 2000-11-28 2000-11-28 Water heater with remembrance Expired - Fee Related JP3652599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000361622A JP3652599B2 (en) 2000-11-28 2000-11-28 Water heater with remembrance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000361622A JP3652599B2 (en) 2000-11-28 2000-11-28 Water heater with remembrance

Publications (2)

Publication Number Publication Date
JP2002162100A JP2002162100A (en) 2002-06-07
JP3652599B2 true JP3652599B2 (en) 2005-05-25

Family

ID=18833026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000361622A Expired - Fee Related JP3652599B2 (en) 2000-11-28 2000-11-28 Water heater with remembrance

Country Status (1)

Country Link
JP (1) JP3652599B2 (en)

Also Published As

Publication number Publication date
JP2002162100A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
US8662022B2 (en) Water heater
KR100905924B1 (en) Individual heating water temperature control device in each room heating control system
US20070179678A1 (en) Water heater energy savings algorithm for reducing cold water complaints
US11473787B2 (en) Boiler for heating and hot-water control method therefor
JP3683400B2 (en) Combined water heater
JP3652599B2 (en) Water heater with remembrance
JP3878476B2 (en) Flow water heater
JP3881190B2 (en) Water heater with remembrance
JP3655189B2 (en) Water heater with remembrance
JP3730392B2 (en) Water heater
JP3881192B2 (en) Bath water heater
JP2021032487A (en) Hot water supply device
JP2020197332A (en) Hot water supply method, hot water storage unit, hot water supply system and program
JP2007107842A (en) Hot water system
JP3487905B2 (en) Water heater and combustion control method using the same
JP4641277B2 (en) Linked hot water system
JP3935759B2 (en) Heat supply system
JP3487889B2 (en) Water heater combustion control method
JP4215337B2 (en) Heat supply system
JP3834420B2 (en) Gas water heater
JP2682553B2 (en) Hot water heating system
KR100291491B1 (en) Method controlling a gas boiler according to gas press
JP3859837B2 (en) Combustion device
JP3792401B2 (en) Apparatus for calculating the amount of residual water in a bathtub in a water heater
JP3952485B2 (en) Bath water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

R150 Certificate of patent or registration of utility model

Ref document number: 3652599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees