[go: up one dir, main page]

JP3648541B2 - High thermal conductivity silicon nitride ceramics and method for producing the same - Google Patents

High thermal conductivity silicon nitride ceramics and method for producing the same Download PDF

Info

Publication number
JP3648541B2
JP3648541B2 JP2000318912A JP2000318912A JP3648541B2 JP 3648541 B2 JP3648541 B2 JP 3648541B2 JP 2000318912 A JP2000318912 A JP 2000318912A JP 2000318912 A JP2000318912 A JP 2000318912A JP 3648541 B2 JP3648541 B2 JP 3648541B2
Authority
JP
Japan
Prior art keywords
silicon nitride
thermal conductivity
sintered body
high thermal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000318912A
Other languages
Japanese (ja)
Other versions
JP2002128569A (en
Inventor
喜代司 平尾
裕之 林
清司 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000318912A priority Critical patent/JP3648541B2/en
Publication of JP2002128569A publication Critical patent/JP2002128569A/en
Application granted granted Critical
Publication of JP3648541B2 publication Critical patent/JP3648541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた特性を有する高熱伝導窒化ケイ素セラミックス及びその製造方法に関するものであり、更に詳しくは、窒化ケイ素マグネシウム(MgSiN2 )を焼結助剤として用いることにより、比較的低温での緻密化と粒成長を可能として高熱伝導窒化ケイ素焼結体を製造する方法及びその製品に関するものである。
本発明は、熱機関、熱交換器、ヒートパイプ等の機械部品材料や半導体基板、プリント配線基板等の電気絶縁材料として用いるのに適した高熱伝導窒化ケイ素焼結体並びにその製造法を提供するものである。
【0002】
【従来の技術】
一般に、構造部材として用いられる材料系については、構造部材としての放熱材料を考えた場合、最も一般的に用いられる金属材料は、500℃を越える条件下において冷却等を行うことなしに用いることは不可能である。更に、これらの金属材料は、セラミックスに比べて、耐食性、耐酸化性に劣る。更に、導電体であることから、パワ−デバイスなど高い放熱性を要求される絶縁基板材料として用いることは難しい。
一方、窒化アルミニウム焼結体、炭化ケイ素焼結体等のセラミック材料は、高い絶縁性と高い熱伝導性を合わせ持つことから、一部、放熱基板材料として使用されるようになってきた。しかし、これらの高熱伝導性セラミックスは、強度、靱性が低く、機械的信頼性に欠けるため、その用途は非常に限られたものであった。
【0003】
次に、窒化ケイ素系の材料については、一般に、窒化ケイ素焼結体は、高い強度と高い靱性を合わせ持つ優れた構造用セラミック材料として知られている。更に、炭化ケイ素や窒化アルミニウムとの結晶構造の類似性から窒化ケイ素結晶も高い熱伝導率を持つ。しかし、多結晶体、即ち、窒化ケイ素焼結体において、100W/mK以上の高い熱伝導率を発現させるには、以下の例1)〜例4)に例示するように、高温、高圧窒素中での焼結や、ホットプレス焼結と熱処理を組み合わせた方法など、煩雑で、かつ非常にコストのかかるプロセスが必要であった。また、以下の例3)と例4)では、種結晶添加とシ−ト成形などの成形方法を組み合わせた手法により配向構造を持つ焼結体が作製され、粒子の配向方向で120〜140W/mKの高い熱伝導率が達成されている。
しかし、これらの焼結体は、著しい熱伝導率の異方性を示し、配向方向に垂直な方向では高熱伝導方向の約半分の熱伝導率しか示さない。
【0004】
例1) 平均粒径0.5μmの窒化ケイ素粉末に0.5〜4mol%のY23とNd23 の等モル混合物を焼結助剤として添加し、2000℃、1000気圧の窒素圧下で4時間焼結した焼結体の熱伝導率は100〜120W/mKであった(Journal of the American Ceramic Society,vol.79,No.11,pp.2878−82(1996))。
【0005】
例2) 比表面積5m2 /gの窒化ケイ素粉末に5wt%のY23 を添加した粉末を1気圧の窒素中、1800℃、40MPaの一軸加圧下で2時間ホットプレス焼結し、更に、1850℃で16時間熱処理した試料の熱伝導率はホットプレスの加圧方向に垂直な方向で110W/mKであった(Journal ofthe American Ceramic Society,vol.82,No.11,pp.3105−12(1999))。
【0006】
例3) 比表面積10m2 /gの窒化ケイ素粉末に種結晶として5体積%の棒状窒化ケイ素粒子(短軸径1μm、長軸径10μm)、焼結助剤として5wt%のY23 、更に、有機溶剤とバインダ−を混合して得られたスラリ−をドクタ−ブレ−ド法を用いて、厚さ約100μmに成形し、これを積層して脱脂後、ホットプレスにより緻密化し、更に、9気圧の窒素中、1850℃で24時間熱処理して配向構造を持つ窒化ケイ素焼結体を得た(特許第2882575号(本出願人による特許))。この焼結体は、粒子配向方向で約120W/mKの高い熱伝導率を有するが、粒子の配向方向に垂直な方向での熱伝導率は約70W/mKである。
【0007】
例4) 平均粒径約0.5μmの窒化ケイ素粉末に種結晶として5wt%の棒状窒化ケイ素粒子(短軸径1μm、長軸径10μm)、焼結助剤として0.5mol%のY23 と0.5mol%Nd23 、更に、有機溶剤とバインダ−を混合して得られたスラリ−をドクタ−ブレ−ド法を用いて、厚さ約100μmに成形し、これを積層して脱脂後、ホットプレスにより緻密化し、更に、300気圧の窒素中、2200℃で4時間熱処理して配向構造を持つ窒化ケイ素焼結体を得ている(日本セラミックス協会学術論文誌、104巻、12月号、pp.1171−73(1996))。この焼結体は、粒子配向方向で約140W/mKの高い熱伝導率を有するが、粒子の配向方向に垂直な方向での熱伝導率は約70W/mKである。
【0008】
【発明が解決しようとする課題】
上述したように、これまで、高熱伝導窒化ケイ素焼結体は、高窒素圧下、高温で焼結あるいはホットプレスの後熱処理を行うという高コストのプロセスにより作製されていた。これは、高熱伝導化には、(1)焼結後に残留する低熱伝導のガラス相を低減させるために少ない量の焼結助剤で緻密化を行うこと、(2)粒成長を生じさせ、熱伝導の阻害要因である粒子内部の酸素を低減させること、が必要とされるからである。
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記高コストのプロセスによらないで高熱伝導窒化ケイ素セラミックスを製造する方法を開発することを目標として鋭意研究を積み重ねた結果、窒化ケイ素粉末に少なくとも窒化ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を添加する方法を採用することにより所期の目的を達成し得ることを見出し、本発明を完成するに至った。
本発明の目的は、高い熱伝導率を持つ窒化ケイ素焼結体を簡便かつ低コストで製造するために、低温で緻密化と粒成長が可能な新しい焼結助剤を開発することにある。
また、本発明は、少なくとも窒化ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を用いて、低温での緻密化と粒成長を可能とする新しい高熱伝導窒化ケイ素セラミックスの製造方法を提供することを目的とするものである。
更に、本発明は、上記製造方法により得られる、100W/mK以上の高い熱伝導率を有する高熱伝導窒化ケイ素焼結体を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するめの本発明は、以下の技術的手段から構成される。
(1)高熱伝導窒化ケイ素焼結体を製造する方法において、窒化ケイ素粉末に窒化ケイ素マグネシウム(MgSiN2と希土類酸化物を含む焼結助剤を添加して液相中の酸素含有量を増加させることなくMgを液相の構成元素として添加し、成形した後、これを1900℃以下の温度で焼結し、焼結体の緻密化(相対密度で98%以上)と平均粒径で1μm以上に粒成長した組織を発達させることにより、窒化ケイ素粒子内部の不純物を著しく低減させて100W/mK以上の高い熱伝導率を有する緻密な焼結体を作製することを特徴とする高熱伝導窒化ケイ素焼結体の製造方法。
(2)上記窒化ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を2〜10mol%添加する、前記(1)記載の高熱伝導窒化ケイ素焼結体の製造方法。
【0010】
【発明の実施の形態】
窒化ケイ素に焼結助剤として、酸化マグネシウム(MgO)を添加することが、焼結温度の低下に非常に有効なことは以前から知られている。しかし、MgOをMg源として添加したのでは、低温焼結は可能であるが粒成長が遅いこと、粒界ガラス相中の酸素含有量を増加させるため、窒化ケイ素粒子内部の酸素量の低減が生じにくいことにより、高熱伝導化は困難であった。
本発明者らは、MgOに代わるMg源として、非酸化物を探索した結果、MgSiN2 が混合・成形など大気中のプロセスにおいても安定であり、かつ比較的低温での緻密化と粒成長が可能であることを見出した。即ち、窒化ケイ素粉末に少なくとも窒化ケイ素マグネシウム(MgSiN2 )粉末を含む焼結助剤を添加することにより、1900℃以下の焼結温度で100W/mK以上の高い熱伝導率を有する緻密な焼結体を得ることに成功した。
【0011】
本発明により、高熱伝導窒化ケイ素焼結体を作製するには、まず、窒化ケイ素原料粉末に少なくとも窒化ケイ素マグネシウム(MgSiN2 )を含む所定量の焼結助剤を添加する。
この窒化ケイ素マグネシウムとしては、例えば、ケイ化マグネシウム金属粉末(Mg2 Si)を窒素雰囲気中1400℃程度に加熱し合成されたもの(日本セラミックス協会学術論文誌、105巻、934−939ページ、1997年記載の方法)を粉砕して得た粉末が用いられる。
窒化ケイ素原料は、α型、β型いずれの結晶系のものを用いても良いが、好適には、平均粒径1μm以下の微粉末を用いることが望ましい。焼結助剤としては、少なくとも窒化ケイ素マグネシウム(MgSiN2 )を含むものを使用することが重要であり、これ以外に、一般に用いられる焼結助剤、例えば、Sc23、Y23 、Nd23 、Yb2 3 等の希土類酸化物、HfO2 、CeO2 、ZrO2 等の酸化物の1種以上を添加することができる。
上記焼結助剤の添加量は、緻密化の方法(常圧焼結、ガス圧焼結、ホットプレスなど)により異なるが、高熱伝導化の阻害要因となる残留ガラス相をできるだけ低減すること、高熱伝導化には粒成長が必要であるが緻密化の後の粒成長は残留ガラス相が少ないほど速いこと、等の意味から緻密化が可能な最少量に留めることが望ましく、具体的には焼結助剤量として2〜10mol%が好ましい。
【0012】
次に、これらの原料の混合に当たっては、粉体の混合あるいは混練に用いられる遊星ミル、ポットミル、トロンメルなどの通常の機械を使用することができる。この混合は、湿式、乾式のどちらでも良いが、望ましくは湿式において混合される。湿式混合においては、水、メタノール、エタノール、トルエンなどの溶剤が用いられるが、窒化ケイ素の酸化を抑えるために有機溶媒を用いることが望ましい。有機溶剤を用いた場合は、カチオン性セルロース、ポリカルボン酸などの分散剤を用いることにより効率良く混合することができる。
【0013】
上記の方法で混合したスラリーから溶媒を乾燥して得た混合粉末を金型を用いて所定の形状に成形する。場合によっては成形密度を高めるため金型成形後に冷間静水圧成形(CIP)が行われる。また、上記の方法で混合したスラリーに、ポリビニルブチラール等の有機バインダーを適量添加し、ドクターブレード法等によるシート成形、あるいは押出し成形などの成形法を用いて直接シート状の成形体を作製することもできる。
【0014】
次に、上記成形体は、まず、窒素雰囲気中、600〜1000℃の温度で仮焼を行い、有機成分を加熱除去した後、1900℃以下、1700〜1900℃の温度、1〜10気圧の窒素中で1〜24時間焼結する。
本発明は、上記特定の焼結助剤を使用することにより、窒素中の加熱だけで焼結体の緻密化が可能であるが、必要により、ホットプレス処理等を採用することは適宜可能である。
本発明により、1900℃以下の低温焼結で、焼結体の緻密化(相対密度で98%以上)と平均粒径で1μm以上に粒成長した組織を発達させることが可能となる。
【0015】
【作用】
本発明者らは、窒化ケイ素の高熱伝導化に関する基礎的な検討を重ねた結果、窒化ケイ素焼結体の高熱伝導化には、焼結体を構成する窒化ケイ素粒子内部の不純物酸素を著しく低減させる必要があること、更に、粒子内部の酸素低減には十分な粒成長が必要なことを見出した。即ち、高い純度を持つ窒化ケイ素原料においてさえ、窒化ケイ素粒子内部には0.5wt%程度の不純物酸素が含まれている。高温での緻密化後、液相を介した溶解再析出反応により微細な原料粉末粒子は大きな粒子へと成長するが、この際、粒子内部の不純物酸素はガラス相に取り残され、酸素含有量の少ない窒化ケイ素として再析出する。このため、高熱伝導化には、酸素のトラップ効果を高めるため酸素含有量の少ない液相を生成させること、平均粒径として2倍以上となるような十分な粒成長を起こすことが重要である。
本発明において、窒化ケイ素粉末に少なくとも窒化ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を添加することにより、液相中の酸素含有量を増加させることなく焼結温度の低下に必要なMgを液相の構成元素として添加でき、更に、窒化物として添加するので液相中の窒素濃度が高くなり粒成長が促進され、その結果、焼結温度の低下と高熱伝導化が同時に達成される。
【0016】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は当該実施例によって何ら限定されるものではない。
実施例
(1)窒化ケイ素焼結体の作製
ケイ化マグネシウム(MgSi2 )を窒素気流中1400℃で5分間加熱することにより窒化ケイ素マグネシウム(MgSiN2 )粉末を合成した。
平均粒子径0.5μmのβ−窒化ケイ素粉末に、0.5wt%の分散剤、5mol%の窒化ケイ素マグネシウム粉末及び2〜5mol%の酸化イッテリビウム(Yb23 )を添加し、メタノ−ルを分散媒とし窒化ケイ素製ポットと窒化ケイ素製ボ−ルを用いて2時間遊星ミル混合を行った。エバポレ−タを用いてメタノ−ルを蒸発させた後、窒素中800℃で仮焼し有機分を除去した。得られた粉末は金型を用いて直径20mm、厚さ5mmのペレットに成形し、更に、5ton/cm2 の圧力でCIP処理した。成形体を窒化ホウ素(BN)製ルツボに設置し、10気圧の加圧窒素中、1900℃で2〜24時間焼結を行った。
【0017】
(2)窒化ケイ素焼結体の特性
焼結体の表面を研削し、厚さ約2mmの円盤状試験片を作製し、レ−ザ−フラッシュ法を用いて熱伝導率を測定した。表1に、この様にして得られた焼結体の密度、熱伝導率をまとめて示す。
【0018】
比較例
上記実施例において、MgSiN2 の代わりに平均粒子径0.2μmの酸化マグネシウム(MgO)を2〜5mol%添加する以外は、実施例と全く同じ方法で作製した窒化ケイ素焼結体の特性も合わせて表1に示す。
【0019】
【表1】

Figure 0003648541
【0020】
表1から明らかなように、本発明の方法により得られた窒化ケイ素焼結体は、相対密度で98%以上に緻密化し、100W/mK以上の高い熱伝導率を示す。焼結体の切断面から平均粒子径を測定した結果、MgO添加では平均粒子径が1μm前後であったのに対し、MgSiN2 を添加した本発明の焼結体は1.2〜3.8μmの平均粒子径を有しており、MgSiN2 添加が粒成長の促進に有効であることが分かる。
【0021】
【発明の効果】
以上詳述した通り、本発明は、窒化ケイ素粉末に少なくとも窒化ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を添加し、成形し、次いで、これを1900℃以下の温度で焼結することを特徴とする高熱伝導窒化ケイ素セラミックスの製造方法に係り、本発明により、1)1900℃以下の低温焼結で焼結体の緻密化と粒成長を可能とする、2)100W/ml以上の高い熱伝導率の窒化ケイ素焼結体が得られる、という格別の効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly thermally conductive silicon nitride ceramic having excellent characteristics and a method for producing the same, and more particularly, by using silicon magnesium nitride (MgSiN 2 ) as a sintering aid, The present invention relates to a method for producing a highly heat-conductive silicon nitride sintered body that can be formed and grown, and a product thereof.
The present invention provides a high thermal conductivity silicon nitride sintered body suitable for use as a mechanical component material such as a heat engine, a heat exchanger, a heat pipe, or an electrical insulating material such as a semiconductor substrate or a printed wiring board, and a method for producing the same. Is.
[0002]
[Prior art]
In general, regarding a material system used as a structural member, when considering a heat dissipating material as a structural member, the most commonly used metal material can be used without cooling or the like under conditions exceeding 500 ° C. Impossible. Furthermore, these metal materials are inferior in corrosion resistance and oxidation resistance compared to ceramics. Furthermore, since it is a conductor, it is difficult to use it as an insulating substrate material that requires high heat dissipation such as a power device.
On the other hand, ceramic materials such as an aluminum nitride sintered body and a silicon carbide sintered body have both been used as a heat dissipation substrate material because they have both high insulation and high thermal conductivity. However, these high thermal conductive ceramics have low strength and toughness and lack mechanical reliability, so that their uses are very limited.
[0003]
Next, as for silicon nitride-based materials, silicon nitride sintered bodies are generally known as excellent structural ceramic materials having both high strength and high toughness. Furthermore, silicon nitride crystals also have high thermal conductivity due to the similarity in crystal structure with silicon carbide and aluminum nitride. However, in order to express a high thermal conductivity of 100 W / mK or more in a polycrystalline body, that is, a silicon nitride sintered body, as illustrated in Examples 1) to 4) below, in high temperature and high pressure nitrogen. A complicated and very costly process such as sintering in combination with hot press sintering and heat treatment was required. In Examples 3) and 4) below, a sintered body having an orientation structure is produced by a method combining seed crystal addition and a molding method such as sheet molding, and 120 to 140 W / in the grain orientation direction. A high thermal conductivity of mK has been achieved.
However, these sintered bodies exhibit remarkable thermal conductivity anisotropy, and show only about half the thermal conductivity in the direction perpendicular to the orientation direction as compared with the high thermal conductivity direction.
[0004]
Example 1) 0.5-4 mol% equimolar mixture of Y 2 O 3 and Nd 2 O 3 was added as a sintering aid to silicon nitride powder having an average particle size of 0.5 μm, and nitrogen at 2000 ° C. and 1000 atm. The thermal conductivity of the sintered body sintered for 4 hours under pressure was 100 to 120 W / mK (Journal of the American Ceramic Society, vol. 79, No. 11, pp. 2878-82 (1996)).
[0005]
Example 2) A powder obtained by adding 5 wt% Y 2 O 3 to silicon nitride powder having a specific surface area of 5 m 2 / g was hot-press sintered for 2 hours at 1800 ° C. under 40 MPa uniaxial pressure in nitrogen at 1 atm. The thermal conductivity of the sample heat-treated at 1850 ° C. for 16 hours was 110 W / mK in the direction perpendicular to the pressing direction of the hot press (Journal of the American Ceramic Society, vol. 82, No. 11, pp. 3105). 12 (1999)).
[0006]
Example 3) 5% by volume of rod-like silicon nitride particles (short axis diameter 1 μm, long axis diameter 10 μm) as a seed crystal on silicon nitride powder having a specific surface area of 10 m 2 / g, 5 wt% Y 2 O 3 as a sintering aid, Furthermore, a slurry obtained by mixing an organic solvent and a binder is formed into a thickness of about 100 μm by using a doctor blade method, laminated and degreased, and then densified by hot pressing. Then, a silicon nitride sintered body having an oriented structure was obtained by heat treatment at 1850 ° C. for 24 hours in nitrogen at 9 atm (Patent No. 28825575 (patent by the present applicant)). This sintered body has a high thermal conductivity of about 120 W / mK in the grain orientation direction, but the thermal conductivity in a direction perpendicular to the grain orientation direction is about 70 W / mK.
[0007]
Example 4) Silicon nitride powder having an average particle diameter of about 0.5 μm, 5 wt% rod-shaped silicon nitride particles (short axis diameter 1 μm, long axis diameter 10 μm) as seed crystals, 0.5 mol% Y 2 O as a sintering aid 3 and 0.5 mol% Nd 2 O 3 , and then a slurry obtained by mixing an organic solvent and a binder was formed into a thickness of about 100 μm using a doctor blade method, and this was laminated. After degreasing, it is densified by hot pressing, and further heat treated in nitrogen at 300 atmospheres at 2200 ° C. for 4 hours to obtain a silicon nitride sintered body having an oriented structure (Japan Ceramic Society Academic Journal, Vol. 104, December, pp. 1171-73 (1996)). This sintered body has a high thermal conductivity of about 140 W / mK in the grain orientation direction, but the thermal conductivity in a direction perpendicular to the grain orientation direction is about 70 W / mK.
[0008]
[Problems to be solved by the invention]
As described above, high thermal conductivity silicon nitride sintered bodies have heretofore been produced by a high-cost process in which sintering is performed at a high temperature under high nitrogen pressure or post-heat treatment after hot pressing. This is because for high thermal conductivity, (1) densification with a small amount of sintering aid to reduce the low thermal conductivity glass phase remaining after sintering, (2) causing grain growth, This is because it is necessary to reduce oxygen inside the particles, which is a factor that inhibits heat conduction.
Under such circumstances, the present inventors have conducted intensive research with the goal of developing a method for producing high thermal conductive silicon nitride ceramics without relying on the high cost process in view of the above prior art. As a result, it was found that the intended purpose can be achieved by adopting a method of adding a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) to the silicon nitride powder, and the present invention has been completed. .
An object of the present invention is to develop a new sintering aid capable of densification and grain growth at a low temperature in order to produce a silicon nitride sintered body having high thermal conductivity simply and at low cost.
In addition, the present invention provides a new method for producing high thermal conductivity silicon nitride ceramics that enables densification and grain growth at low temperature using a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ). It is the purpose.
Furthermore, an object of the present invention is to provide a high thermal conductivity silicon nitride sintered body having a high thermal conductivity of 100 W / mK or more, obtained by the above production method.
[0009]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) high thermal conductivity silicon nitride Oite to a method of manufacturing a sintered body, nitriding silicon magnesium nitrided silicon powder (MgSiN 2) and with the addition of sintering aid containing a rare earth oxide in the liquid phase Mg was added as a constituent element of the liquid phase without increasing the oxygen content, and after molding, this was sintered at a temperature of 1900 ° C. or lower to densify the sintered body (relative density of 98% or more) you produce a dense sintered body having an average grain size more Rukoto developed a grain growth tissue above 1μm, the high thermal conductivity of more than 100W / mK to significantly reduce impurities inside the silicon nitride particles method for producing a high thermal conductive silicon nitride sintered body characterized by and this.
(2) The method for producing a high thermal conductivity silicon nitride sintered body according to (1), wherein 2 to 10 mol% of a sintering aid containing silicon magnesium nitride (MgSiN 2 ) is added.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
It has long been known that the addition of magnesium oxide (MgO) as a sintering aid to silicon nitride is very effective in lowering the sintering temperature. However, when MgO is added as the Mg source, low-temperature sintering is possible, but since the grain growth is slow and the oxygen content in the grain boundary glass phase is increased, the oxygen content inside the silicon nitride particles is reduced. Due to the fact that it does not occur easily, it has been difficult to achieve high thermal conductivity.
As a result of searching for a non-oxide as an Mg source to replace MgO, the present inventors have found that MgSiN 2 is stable even in an atmospheric process such as mixing and forming, and densification and grain growth at a relatively low temperature are possible. I found it possible. That is, by adding a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) powder to the silicon nitride powder, dense sintering having a high thermal conductivity of 100 W / mK or higher at a sintering temperature of 1900 ° C. or lower. Successfully gained a body.
[0011]
In order to produce a high thermal conductivity silicon nitride sintered body according to the present invention, first, a predetermined amount of a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) is added to the silicon nitride raw material powder.
As this silicon magnesium nitride, for example, a magnesium silicide metal powder (Mg 2 Si) synthesized by heating to about 1400 ° C. in a nitrogen atmosphere (Japan Ceramic Society Journal, Vol. 105, pages 934-939, 1997) The powder obtained by pulverizing the method described in the year) is used.
The silicon nitride raw material may be either α-type or β-type crystal system, but it is preferable to use fine powder having an average particle size of 1 μm or less. As a sintering aid, it is important to use one containing at least silicon magnesium nitride (MgSiN 2 ). Besides this, commonly used sintering aids such as Sc 2 O 3 and Y 2 O 3 are used. One or more of rare earth oxides such as Nd 2 O 3 and Yb 2 O 3 and oxides such as HfO 2 , CeO 2 and ZrO 2 can be added.
The amount of the sintering aid added varies depending on the densification method (atmospheric pressure sintering, gas pressure sintering, hot pressing, etc.), but it is possible to reduce as much as possible the residual glass phase that is an obstacle to high thermal conductivity, Grain growth is necessary for high thermal conductivity, but it is desirable that grain growth after densification is as fast as the residual glass phase is small. The amount of sintering aid is preferably 2 to 10 mol%.
[0012]
Next, when mixing these raw materials, ordinary machines such as a planetary mill, a pot mill, and a trommel used for powder mixing or kneading can be used. This mixing may be either a wet method or a dry method, but is desirably mixed in a wet method. In the wet mixing, a solvent such as water, methanol, ethanol, or toluene is used, but it is desirable to use an organic solvent in order to suppress oxidation of silicon nitride. When an organic solvent is used, it can be mixed efficiently by using a dispersing agent such as cationic cellulose or polycarboxylic acid.
[0013]
The mixed powder obtained by drying the solvent from the slurry mixed by the above method is molded into a predetermined shape using a mold. In some cases, cold isostatic pressing (CIP) is performed after molding to increase the molding density. In addition, an appropriate amount of an organic binder such as polyvinyl butyral is added to the slurry mixed by the above method, and a sheet-like molded body is directly produced using a molding method such as a sheet molding by a doctor blade method or an extrusion molding. You can also.
[0014]
Next, the molded body is first calcined in a nitrogen atmosphere at a temperature of 600 to 1000 ° C., and after removing the organic components by heating, the temperature is 1900 ° C. or less, the temperature is 1700 to 1900 ° C., and the pressure is 1 to 10 atm. Sinter in nitrogen for 1-24 hours.
In the present invention, by using the above-mentioned specific sintering aid, it is possible to densify the sintered body only by heating in nitrogen, but if necessary, it is possible to adopt a hot press treatment or the like as appropriate. is there.
According to the present invention, it is possible to develop a dense structure (98% or more in relative density) of a sintered body and a structure having an average particle diameter of 1 μm or more by low temperature sintering at 1900 ° C. or less.
[0015]
[Action]
As a result of repeated basic studies on increasing the thermal conductivity of silicon nitride, the present inventors have significantly reduced the impurity oxygen inside the silicon nitride particles constituting the sintered body in order to increase the thermal conductivity of the sintered silicon nitride. It has been found that sufficient grain growth is necessary to reduce oxygen inside the grains. That is, even in a silicon nitride material having high purity, about 0.5 wt% of impurity oxygen is contained inside the silicon nitride particles. After densification at a high temperature, fine raw material powder particles grow into large particles by dissolution and reprecipitation reaction via the liquid phase. At this time, impurity oxygen inside the particles is left behind in the glass phase, and the oxygen content is reduced. Re-deposit as less silicon nitride. For this reason, in order to increase the thermal conductivity, it is important to generate a liquid phase with a low oxygen content in order to enhance the trapping effect of oxygen, and to generate sufficient grain growth that makes the average grain size more than twice. .
In the present invention, by adding a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) to the silicon nitride powder, Mg required for lowering the sintering temperature without increasing the oxygen content in the liquid phase can be obtained. Since it can be added as a constituent element of the liquid phase and further added as a nitride, the nitrogen concentration in the liquid phase is increased and grain growth is promoted. As a result, a reduction in the sintering temperature and a higher thermal conductivity are achieved at the same time.
[0016]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples.
Example (1) Production of Silicon Nitride Sintered Body Magnesium silicide (MgSi 2 ) was heated in a nitrogen stream at 1400 ° C. for 5 minutes to synthesize a magnesium magnesium nitride (MgSiN 2 ) powder.
0.5 wt% dispersant, 5 mol% silicon magnesium nitride powder and 2-5 mol% ytterbium oxide (Yb 2 O 3 ) are added to β-silicon nitride powder having an average particle size of 0.5 μm, and methanol is added. As a dispersion medium, planetary mill mixing was performed for 2 hours using a silicon nitride pot and a silicon nitride ball. After evaporating the methanol using an evaporator, the organic component was removed by calcination at 800 ° C. in nitrogen. The obtained powder was formed into pellets having a diameter of 20 mm and a thickness of 5 mm using a mold, and further subjected to CIP treatment at a pressure of 5 ton / cm 2 . The formed body was placed in a boron nitride (BN) crucible and sintered at 1900 ° C. for 2 to 24 hours in pressurized nitrogen at 10 atm.
[0017]
(2) Characteristics of silicon nitride sintered body The surface of the sintered body was ground to produce a disk-shaped test piece having a thickness of about 2 mm, and the thermal conductivity was measured using a laser flash method. Table 1 summarizes the density and thermal conductivity of the sintered body thus obtained.
[0018]
Comparative Example The characteristics of the silicon nitride sintered body produced in the same manner as in the above example except that 2 to 5 mol% of magnesium oxide (MgO) having an average particle diameter of 0.2 μm was added instead of MgSiN 2. These are also shown in Table 1.
[0019]
[Table 1]
Figure 0003648541
[0020]
As is clear from Table 1, the silicon nitride sintered body obtained by the method of the present invention is densified to 98% or higher in relative density and exhibits a high thermal conductivity of 100 W / mK or higher. As a result of measuring the average particle diameter from the cut surface of the sintered body, the average particle diameter was about 1 μm when MgO was added, whereas the sintered body of the present invention to which MgSiN 2 was added was 1.2 to 3.8 μm. It can be seen that the addition of MgSiN 2 is effective in promoting grain growth.
[0021]
【The invention's effect】
As described in detail above, the present invention adds a sintering aid containing at least silicon magnesium nitride (MgSiN 2 ) to the silicon nitride powder, forms it, and then sinters it at a temperature of 1900 ° C. or lower. The present invention relates to a method for producing high thermal conductivity silicon nitride ceramics. According to the present invention, 1) the sintered body can be densified and grain growth can be performed at a low temperature sintering of 1900 ° C. or lower. A special effect is obtained that a silicon nitride sintered body having thermal conductivity can be obtained.

Claims (2)

熱伝導窒化ケイ素焼結体を製造する方法において、窒化ケイ素粉末に窒化ケイ素マグネシウム(MgSiN2と希土類酸化物を含む焼結助剤を添加して液相中の酸素含有量を増加させることなくMgを液相の構成元素として添加し、成形した後、これを1900℃以下の温度で焼結し、焼結体の緻密化(相対密度で98%以上)と平均粒径で1μm以上に粒成長した組織を発達させることにより、窒化ケイ素粒子内部の不純物酸素を著しく低減させて100W/mK以上の高い熱伝導率を有する緻密な焼結体を作製することを特徴とする高熱伝導窒化ケイ素焼結体の製造方法。 A method of producing a high thermal conductive silicon nitride sintered body, increasing the oxygen content in the liquid phase by adding a sintering aid containing a rare earth oxide and nitrided silicon magnesium nitrided silicon powder (MgSiN 2) Mg was added as a constituent element of the liquid phase without forming, and after molding, this was sintered at a temperature of 1900 ° C. or less, densification of the sintered body (relative density of 98% or more) and an average particle diameter of 1 μm wherein the Turkey to prepare a dense sintered body having a grain growth tissue more Rukoto developed a high thermal conductivity of more than 100W / mK significantly reduce the impurity oxygen inside the silicon nitride particles above A method for producing a high thermal conductivity silicon nitride sintered body. 上記窒化ケイ素マグネシウム(MgSiN2 )を含む焼結助剤を2〜10mol%添加する、請求項1記載の高熱伝導窒化ケイ素焼結体の製造方法。The method for producing a high thermal conductivity silicon nitride sintered body according to claim 1, wherein 2 to 10 mol% of a sintering aid containing silicon magnesium nitride (MgSiN 2 ) is added.
JP2000318912A 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same Expired - Lifetime JP3648541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318912A JP3648541B2 (en) 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318912A JP3648541B2 (en) 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002128569A JP2002128569A (en) 2002-05-09
JP3648541B2 true JP3648541B2 (en) 2005-05-18

Family

ID=18797460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318912A Expired - Lifetime JP3648541B2 (en) 2000-10-19 2000-10-19 High thermal conductivity silicon nitride ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3648541B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304333C (en) * 2005-01-14 2007-03-14 中国科学院上海硅酸盐研究所 Low temperature sintering method for high hardness silicon nitride ceramics
KR101582704B1 (en) * 2008-07-03 2016-01-05 히타치 긴조쿠 가부시키가이샤 Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
KR101794410B1 (en) * 2015-08-17 2017-11-07 한국과학기술원 Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
US20220402826A1 (en) 2019-11-28 2022-12-22 Tokuyama Corporation Method for manufacturing silicon nitride sintered compact
CN111362704A (en) * 2020-03-19 2020-07-03 西安澳秦新材料有限公司 High-thermal-conductivity silicon nitride ceramic and preparation method thereof
CN111620697A (en) * 2020-06-08 2020-09-04 浙江锐克特种陶瓷有限公司 Silicon nitride substrate material prepared based on hot-pressing sintering method
CN111635235A (en) * 2020-06-08 2020-09-08 浙江锐克特种陶瓷有限公司 A kind of preparation method of high strength and high thermal conductivity silicon nitride substrate
KR20230029610A (en) 2020-06-30 2023-03-03 가부시끼가이샤 도꾸야마 Silicon nitride sintered substrate
WO2022004754A1 (en) 2020-06-30 2022-01-06 株式会社トクヤマ Method for continuously producing silicon nitride sintered compact
CN117098742A (en) 2021-03-30 2023-11-21 株式会社德山 Method for producing silicon nitride sintered body
CN113800918B (en) * 2021-09-18 2022-12-09 湖南工业大学 Trace in-situ carbon-induced Si3N4 heat-conducting ceramic material and preparation method thereof
KR20240125576A (en) 2021-12-22 2024-08-19 가부시끼가이샤 도꾸야마 Silicon nitride powder
CN115594510A (en) * 2022-11-21 2023-01-13 潍坊学院(Cn) A kind of silicon nitride heat conduction substrate and preparation method thereof
CN116639985B (en) * 2023-06-07 2024-05-28 湖南湘瓷科艺有限公司 High-thermal-conductivity silicon nitride ceramic substrate and application thereof
JP7610660B1 (en) 2023-08-22 2025-01-08 株式会社Maruwa Silicon nitride sintered body, insulated circuit board, and semiconductor device
CN117550901B (en) * 2023-11-13 2024-05-14 中国人民解放军国防科技大学 A method for preparing high thermal conductivity and high strength silicon nitride ceramics using core-shell structure Si3N4@MgSiN2 powder

Also Published As

Publication number Publication date
JP2002128569A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP3648541B2 (en) High thermal conductivity silicon nitride ceramics and method for producing the same
Hu et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics
JP3501317B2 (en) High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body
Wang et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
Zhu et al. Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics
CN100355701C (en) A kind of preparation method of silicon nitride ceramics with high thermal conductivity
Lukianova et al. Microstructure and phase composition of cold isostatically pressed and pressureless sintered silicon nitride
JP6436905B2 (en) Boron carbide ceramics and manufacturing method thereof
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
JP3472585B2 (en) Aluminum nitride sintered body
JP4325824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP2008156142A (en) Aluminum nitride sintered body and method for producing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
Li et al. Thermal conductivity and flexural strength of two-step hot-pressed SiC ceramics
Cheng et al. Boron nitride–aluminum nitride ceramic composites fabricated by transient plastic phase processing
JP2000044351A (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP5265859B2 (en) Aluminum nitride sintered body
Kobayashi et al. Evaluation of Al‐Si‐C‐N Ceramics Fabricated by Spark Plasma Sintering
JP2541150B2 (en) Aluminum nitride sintered body
JP3241215B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350