[go: up one dir, main page]

JP3639497B2 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP3639497B2
JP3639497B2 JP2000098770A JP2000098770A JP3639497B2 JP 3639497 B2 JP3639497 B2 JP 3639497B2 JP 2000098770 A JP2000098770 A JP 2000098770A JP 2000098770 A JP2000098770 A JP 2000098770A JP 3639497 B2 JP3639497 B2 JP 3639497B2
Authority
JP
Japan
Prior art keywords
submount
semiconductor laser
common electrode
light emitting
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098770A
Other languages
Japanese (ja)
Other versions
JP2001284731A (en
Inventor
靖之 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP2000098770A priority Critical patent/JP3639497B2/en
Publication of JP2001284731A publication Critical patent/JP2001284731A/en
Application granted granted Critical
Publication of JP3639497B2 publication Critical patent/JP3639497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体レーザ装置に関する。
【0002】
【従来の技術】
複数のレ−ザ発光部を一体に備えるモノリシックタイプの半導体レーザ素子をステム上にサブマウントを介して装着した半導体レーザ装置は、半導体レーザ素子の放熱特性を向上させるために、発光領域(活性層)が下に位置するジャンクションダウンの形態で使用される場合が多い(例えば特開平6―216468号公報)。図4は、この様なジャンクションダウンの形態で半導体レーザ素子100を用いる場合の断面図を示している。この図に示すように、サブマウント101の上面には各レーザ発光部100a、100bに対応した個別の電極102a,102bが形成され、これらの電極とリード(図示せず)間にワイヤボンド配線103a,103bが施されている。また、半導体レーザ素子100の基板側に設けた共通の電極100cとステム104の段差105上面の間にワイヤボンド配線103cが施されている。
【0003】
【発明が解決しようとする課題】
従来の半導体レーザ装置は、半導体レーザ素子の最上部からステムの段差上面にワイヤボンド配線を施すので、ワイヤボンド配線の引き回し長さが長くなり、近接した他のワイヤボンド配線やサブマウントの角などと接触する危険性が高い。また、ステムにワイヤボンド用と位置決め用を兼ねる段差構造105を必要とし、その形成のための別の加工工程が必要となる。段差構造を設けない場合は、ステム104にワイヤボンド用の平面領域を別途必要とするので、小型化を図りにくいなどの課題が有った。
【0004】
そこで本発明は、ワイヤの引き回しによる短絡事故の発生を防止することを課題の1つとする。また、ステムの加工工数の削減や形状の小型化を図ることを課題の1つとする。また、光学特性の安定化を図ることを課題の1つとする。
【0005】
【課題を解決するための手段】
本発明の半導体レーザ装置は請求項1に記載のように、複数のレ−ザ発光部を一体に備えるモノリシックタイプの半導体レーザ素子をサブマウント上にジャンクションダウンで装着した半導体レーザ装置において、前記サブマウントは、前記複数のレーザ発光部に対応した複数の個別電極と前記各レーザ発光部に共通の共通電極を同一面に配置し、前記共通電極は、前記サブマウントを貫通する金属ビアホールによって前記サブマウント裏面の金属製ステムに接続し、前記金属ビアホールは、前記各レーザ発光部の光軸と平面的に重なる位置を避けて前記サブマウントに形成していることを特徴とする。
【0006】
本発明の半導体レーザ装置は請求項2に記載のように、前記半導体レーザ素子から前記共通電極に接続するワイヤボンド配線の位置を前記金属ビアホールと平面的に重なる位置を避けた位置としたことを特徴とする。
【0007】
本発明の半導体レーザ装置は請求項3に記載のように、前記共通電極は、前記各レーザ発光部の光軸と平面的に重なる寸法が同じになるように形成していることを特徴とする。
【0010】
【発明の実施の形態】
以下本発明の実施例について、図面を参照して説明する。図1は半導体レーザ装置の要部斜視図、図2は図1の要部の平面図である。
【0011】
この実施例の半導体レーザ装置1は、ステム2の上面にサブマウント3を配置固定し、このサブマウント3の上面にモノリシックタイプの半導体レーザ素子4を配置固定して構成している。
【0012】
ステム2は、熱伝導性、導電性が良い金属製で、銅や鉄やその合金などを加工して柱状に形成している。このステム2の近傍には、ステム2を挟むように複数のリードピン5を配置している。
【0013】
サブマウント3は、絶縁性の材料、例えば窒化アルミニウム、炭化珪素,シリコンなどから選択した材料を用いることができ、中でも、熱伝導性が良い窒化アルミニウムを用いるのが好ましい。このサブマウント3の上面には、上面前半部分に個別電極6,7を左右に区分けして形成し、上面後半部分に共通電極8を個別電極6,7に跨るような長さをもって形成している。このサブマウント3の下面には、下面を覆うように下面電極9を形成している。
【0014】
前記サブマウント3には、その上下を貫通するように金属ビアホール10を形成している。この金属ビアホール10は。サブマウント内に形成したスルーホールを金属で充填したもので、モリブデン、タングステン、金、銀、銅、ニッケルなどの金属を充填金属として用いることができる。この金属ビアホール10は、共通電極8と下面電極9の電気的な接続を行なうために、共通電極8と平面的な重なりを持った位置に形成している。このサブマウント3は、金錫、鉛錫等の半田材を用いてステム2の所定位置に固定される。
【0015】
前記半導体レーザ素子4は、共通の基板に形成した複数の発光領域を溝によって分離することにより形成した複数(この例では2つ)のレーザ発光部4a,4bを一体に備えるモノリシックタイプの素子で、共通基板が上に位置し、発光領域が下に位置するジャンクションダウンの形態で用いられている。このレーザ素子4の共通基板側の一方の面には、共通電極11が形成され、反対側の面にはレーザ発光部4a,4bに対応した個別電極12,13を形成している。この半導体レーザ素子4は、その個別電極12,13がサブマウント3の個別電極6,7と対面するように位置決めされ、金錫、鉛錫等の半田材を用いてサブマウント3の上面に固定される。
【0016】
上記のようにステム2上に固定されたサブマウント3、このサブマウント3上に固定された半導体レーザ素子4に対して、金線を用いたワイヤボンド配線14が施される。まず、サブマウント3の個別電極6とリードピン5の間にワイヤボンド配線14aが施され、個別電極7とリードピン5の間にワイヤボンド配線14bが施される。また、レーザ素子4の共通電極11とサブマウント3の共通電極8の間にワイヤボンド配線14cが施される。
【0017】
ここで、ワイヤボンド配線14cは、半導体レーザ素子4の光軸X1,X2をワイヤボンド配線14cが遮らないように光軸X1,X2の上方を迂回して配置している。そのために、ワイヤボンド配線14cと共通電極8の接点を、光軸X1,X2との平面的な重なりを避けて共通電極8の左右方向(光軸X1と直交する方向)の端に配置している。共通電極8に対するワイヤボンドは、金属ビアホール10の真上に位置するように行なっても良いが、この実施例では、共通電極8と金属ビアホール10の接触状態に前記ワイヤボンドが悪影響を与えないように、金属ビアホール10との平面的な重なりを避けて、共通電極8に対するワイヤボンド配線を行なっている。
【0018】
また、前記金属ビアホール10の上に位置する電極8の表面は、金属ビアホール10の伸縮などの影響を受けて凸凹面となりやすく、この凸凹面が後方レーザ光に乱反射などの悪影響を与える可能性が有る。そこで、金属ビアホール10も光軸X1,X2との平面的な重なりを避けて共通電極8の左右方向の端に配置している。
【0019】
上記構成の半導体レーザ装置は、リードピン5,5に選択的に所定の電圧を印加することによって動作を開始する。すなわち、リードピン5に駆動電圧を加えると、ワイヤボンド配線14a、個別電極6、12、レーザ発光部4a、共通電極11、ワイヤボンド配線14c、共通電極8、金属ビアホール10、下面電極9、ステム2を通る経路で電流が流れて光軸X1に沿ったレーザ光がレーザ発光部4aから出力する。レーザ発光部4bも同様で、リードピン5、ワイヤボンド配線14bを経た経路で電流が流れて光軸X2に沿ったレーザ光がレーザ発光部4bから出力する。レーザ素子4の前方レーザ出力に比べて低出力の後方レーザ出力は、共通電極8の上方空間を通ってモニター用の受光素子(図示せず)に入射する。ここで、共通電極8は、光軸X1,X2と平面的に重なる寸法が同じになるように、左右方向に同一の幅を持って形成しているので、共通電極8による後方モニター用光の反射状態を各レーザ発光部4a、4bで共通な状態に保つことができる。
【0020】
また、サブマウント3の同一面上に個別電極6,7と共通電極8を配置しているので、半導体レーザ素子4の最上部に位置する電極11に対するワイヤボンド配線14cの引き回し距離を短く設定することができる。加えて、絶縁性サブマウント3の上下を金属ビアホール10によって貫通して共通電極8とステム2との導通を図っているので、ワイヤボンド配線14の接触事故の発生を未然に防止することができる。また、同一面上に電極6,7,8を形成しているので、検査針を当てての通電テストを事前に行なって半導体レーザ素子4の特性検査を行ない易くすることができる。
【0021】
上記実施例は、サブマウント3として絶縁性の材料を用い、その上下の導通を金属ビアホール10を用いて行なう場合を示したが、サブマウントの上下の導通を図るためにサブマウント材料に導電性のものを用いても良い。例えばサブマウントとして良導電性のシリコンや金属を材料として用いることができ、この場合の半導体レーザ装置は、図3に示すような構成となる。
【0022】
すなわち、導電性材料からなるサブマウント20の上面前半部には絶縁膜21が形成され、この絶縁膜21の上に、個別電極6,7が形成される。サブマウント20の前記絶縁膜21が形成されていない領域が共通電極8として機能する。下面電極は設けても良いが、共通電極8と同様にサブマウント20の下面自体を前記電極9として機能させる場合は省略することができる。その他の構成は、図1,2に示した先の実施例と同様の構成とすることができる。
【0023】
【発明の効果】
以上のように本発明によれば、ワイヤボンド用の配線の引き回し長さを短く設定でき、配線の接触による短絡事故の発生を防止することができる。また、ステムの加工工数の削減や形状の小型化を図ることができる。また、複数のレーザ発光部の出力状態を均一化して光学特性の安定化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す要部斜視図である。
【図2】サブマウント周辺部分の拡大図である。
【図3】本発明の他の実施例を示す要部斜視図である。
【図4】従来例を示す断面図である。
【符号の説明】
1 半導体レーザ装置
2 ステム
3 サブマウント
4 半導体レーザ素子
10 金属ビアホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser device.
[0002]
[Prior art]
A semiconductor laser device in which a monolithic type semiconductor laser element integrally provided with a plurality of laser light emitting portions is mounted on a stem via a submount has a light emitting region (active layer) in order to improve the heat dissipation characteristics of the semiconductor laser element. ) Is often used in the form of a junction-down located below (for example, JP-A-6-216468). FIG. 4 shows a cross-sectional view when the semiconductor laser device 100 is used in such a junction-down configuration. As shown in this figure, individual electrodes 102a and 102b corresponding to the laser light emitting portions 100a and 100b are formed on the upper surface of the submount 101, and wire bond wiring 103a is provided between these electrodes and leads (not shown). , 103b. A wire bond wiring 103 c is provided between the common electrode 100 c provided on the substrate side of the semiconductor laser element 100 and the upper surface of the step 105 of the stem 104.
[0003]
[Problems to be solved by the invention]
In the conventional semiconductor laser device, the wire bond wiring is applied from the top of the semiconductor laser element to the upper surface of the stepped portion of the stem, so that the length of the wire bond wiring is increased, and other adjacent wire bond wiring, submount corners, etc. There is a high risk of contact. Further, the step structure 105 serving both for wire bonding and positioning is required for the stem, and another processing step for forming the step structure 105 is required. In the case where the step structure is not provided, a separate plane area for wire bonding is required for the stem 104, and there is a problem that it is difficult to reduce the size.
[0004]
Accordingly, an object of the present invention is to prevent the occurrence of a short circuit accident due to the routing of the wire. Another challenge is to reduce the number of stem processing steps and to reduce the size of the stem. Another object is to stabilize the optical characteristics.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a semiconductor laser device according to claim 1, wherein a monolithic type semiconductor laser element integrally provided with a plurality of laser light emitting portions is mounted on a submount in a junction-down manner. In the mount, a plurality of individual electrodes corresponding to the plurality of laser light emitting units and a common electrode common to the laser light emitting units are arranged on the same surface, and the common electrode is formed by the metal via hole penetrating the submount. The metal via hole is connected to a metal stem on the back of the mount, and the metal via hole is formed in the submount so as not to overlap with the optical axis of each laser light emitting portion in a plane .
[0006]
According to the semiconductor laser device of the present invention, as described in claim 2, the position of the wire bond wiring connected from the semiconductor laser element to the common electrode is set to a position that avoids a position overlapping the metal via hole in a plane. Features.
[0007]
According to a third aspect of the present invention, in the semiconductor laser device according to the third aspect, the common electrode is formed to have the same size as the plane overlapped with the optical axis of each of the laser light emitting portions. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the main part of the semiconductor laser device, and FIG. 2 is a plan view of the main part of FIG.
[0011]
In the semiconductor laser device 1 of this embodiment, a submount 3 is arranged and fixed on the upper surface of a stem 2, and a monolithic type semiconductor laser element 4 is arranged and fixed on the upper surface of the submount 3.
[0012]
The stem 2 is made of a metal having good thermal conductivity and conductivity, and is formed in a columnar shape by processing copper, iron, an alloy thereof, or the like. A plurality of lead pins 5 are arranged near the stem 2 so as to sandwich the stem 2.
[0013]
The submount 3 can be made of an insulating material, for example, a material selected from aluminum nitride, silicon carbide, silicon, etc. Among them, it is preferable to use aluminum nitride having good thermal conductivity. On the upper surface of the submount 3, the individual electrodes 6 and 7 are formed on the upper half of the upper surface so as to be divided into right and left, and the common electrode 8 is formed on the upper half of the upper surface with a length extending over the individual electrodes 6 and 7. Yes. A lower surface electrode 9 is formed on the lower surface of the submount 3 so as to cover the lower surface.
[0014]
A metal via hole 10 is formed in the submount 3 so as to penetrate through the top and bottom. This metal via hole 10 is. A through-hole formed in the submount is filled with a metal, and a metal such as molybdenum, tungsten, gold, silver, copper, or nickel can be used as the filling metal. The metal via hole 10 is formed at a position having a planar overlap with the common electrode 8 in order to electrically connect the common electrode 8 and the lower electrode 9. The submount 3 is fixed to a predetermined position of the stem 2 using a solder material such as gold tin or lead tin.
[0015]
The semiconductor laser element 4 is a monolithic type element integrally including a plurality (two in this example) of laser light emitting portions 4a and 4b formed by separating a plurality of light emitting regions formed on a common substrate by grooves. The common substrate is located on the upper side and the light emitting region is located on the lower side. A common electrode 11 is formed on one surface of the laser element 4 on the common substrate side, and individual electrodes 12 and 13 corresponding to the laser light emitting portions 4a and 4b are formed on the opposite surface. The semiconductor laser element 4 is positioned so that the individual electrodes 12 and 13 face the individual electrodes 6 and 7 of the submount 3 and fixed to the upper surface of the submount 3 using a solder material such as gold tin or lead tin. Is done.
[0016]
As described above, the wire mount wiring 14 using a gold wire is applied to the submount 3 fixed on the stem 2 and the semiconductor laser element 4 fixed on the submount 3. First, a wire bond wiring 14 a is applied between the individual electrode 6 and the lead pin 5 of the submount 3, and a wire bond wiring 14 b is applied between the individual electrode 7 and the lead pin 5. A wire bond wiring 14 c is provided between the common electrode 11 of the laser element 4 and the common electrode 8 of the submount 3.
[0017]
Here, the wire bond wiring 14c is arranged around the optical axes X1 and X2 so as not to block the optical axes X1 and X2 of the semiconductor laser element 4 by the wire bond wiring 14c. For this purpose, the contact point between the wire bond wiring 14c and the common electrode 8 is arranged at the end of the common electrode 8 in the left-right direction (direction perpendicular to the optical axis X1) while avoiding a planar overlap with the optical axes X1 and X2. Yes. The wire bond to the common electrode 8 may be performed so as to be positioned immediately above the metal via hole 10. However, in this embodiment, the wire bond does not adversely affect the contact state between the common electrode 8 and the metal via hole 10. In addition, wire bonding wiring to the common electrode 8 is performed while avoiding planar overlap with the metal via hole 10.
[0018]
In addition, the surface of the electrode 8 positioned on the metal via hole 10 is likely to be uneven due to the expansion and contraction of the metal via hole 10, and this uneven surface may adversely affect the back laser light such as irregular reflection. Yes. Therefore, the metal via hole 10 is also disposed at the end in the left-right direction of the common electrode 8 while avoiding a planar overlap with the optical axes X1 and X2.
[0019]
The semiconductor laser device having the above configuration starts operation by selectively applying a predetermined voltage to the lead pins 5 and 5. That is, when a drive voltage is applied to the lead pin 5, the wire bond wiring 14 a, the individual electrodes 6, 12, the laser light emitting portion 4 a, the common electrode 11, the wire bond wiring 14 c, the common electrode 8, the metal via hole 10, the bottom electrode 9, the stem 2 A current flows along a path passing through and a laser beam along the optical axis X1 is output from the laser emitting unit 4a. The same applies to the laser light emitting portion 4b, and a current flows through a path passing through the lead pin 5 and the wire bond wiring 14b, and laser light along the optical axis X2 is output from the laser light emitting portion 4b. The rear laser output, which is lower in output than the front laser output of the laser element 4, enters the light receiving element for monitoring (not shown) through the space above the common electrode 8. Here, since the common electrode 8 is formed with the same width in the left-right direction so that the dimension overlapping the optical axes X1 and X2 in the same plane is the same, The reflection state can be maintained in a state common to the laser light emitting units 4a and 4b.
[0020]
Further, since the individual electrodes 6 and 7 and the common electrode 8 are arranged on the same surface of the submount 3, the distance of the wire bond wiring 14c to the electrode 11 positioned at the uppermost part of the semiconductor laser element 4 is set short. be able to. In addition, since the upper and lower sides of the insulating submount 3 are penetrated by the metal via holes 10 to conduct the common electrode 8 and the stem 2, it is possible to prevent the occurrence of a contact accident of the wire bond wiring 14. . Further, since the electrodes 6, 7, and 8 are formed on the same surface, it is possible to easily perform the characteristic inspection of the semiconductor laser element 4 by conducting an energization test in advance by applying an inspection needle.
[0021]
Although the above embodiment shows the case where an insulating material is used as the submount 3 and the upper and lower continuity is performed using the metal via hole 10, the submount material is electrically conductive to achieve the upper and lower continuity of the submount. May be used. For example, a highly conductive silicon or metal can be used as a material for the submount, and the semiconductor laser device in this case has a configuration as shown in FIG.
[0022]
That is, the insulating film 21 is formed on the upper half of the upper surface of the submount 20 made of a conductive material, and the individual electrodes 6 and 7 are formed on the insulating film 21. A region of the submount 20 where the insulating film 21 is not formed functions as the common electrode 8. Although the lower surface electrode may be provided, it can be omitted when the lower surface of the submount 20 functions as the electrode 9 similarly to the common electrode 8. Other configurations can be the same as those of the previous embodiment shown in FIGS.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to set the length of the wire bonding wiring to be short, and to prevent occurrence of a short circuit accident due to wiring contact. In addition, the number of stem processing steps can be reduced and the size of the stem can be reduced. In addition, it is possible to stabilize the optical characteristics by making the output states of the plurality of laser light emitting portions uniform.
[Brief description of the drawings]
FIG. 1 is a perspective view of an essential part showing an embodiment of the present invention.
FIG. 2 is an enlarged view of a peripheral portion of a submount.
FIG. 3 is a perspective view of a main part showing another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor laser apparatus 2 Stem 3 Submount 4 Semiconductor laser element 10 Metal via hole

Claims (3)

複数のレ−ザ発光部を一体に備えるモノリシックタイプの半導体レーザ素子をサブマウント上にジャンクションダウンで装着した半導体レーザ装置において、前記サブマウントは、前記複数のレーザ発光部に対応した複数の個別電極と前記各レーザ発光部に共通の共通電極を同一面に配置し、前記共通電極は、前記サブマウントを貫通する金属ビアホールによって前記サブマウント裏面の金属製ステムに接続し、前記金属ビアホールは、前記各レーザ発光部の光軸と平面的に重なる位置を避けて前記サブマウントに形成していることを特徴とする半導体レーザ装置。In a semiconductor laser device in which a monolithic type semiconductor laser element integrally provided with a plurality of laser light emitting units is mounted on a submount in a junction down manner, the submount includes a plurality of individual electrodes corresponding to the plurality of laser light emitting units. And a common electrode common to the laser light emitting portions are arranged on the same surface, the common electrode is connected to a metal stem on the back surface of the submount by a metal via hole penetrating the submount, and the metal via hole is A semiconductor laser device characterized in that it is formed on the submount so as to avoid a position overlapping with the optical axis of each laser light emitting section in a plane . 前記半導体レーザ素子から前記共通電極に接続するワイヤボンド配線の位置を前記金属ビアホールと平面的に重なる位置を避けた位置としたことを特徴とする請求項1記載の半導体レーザ装置。 2. The semiconductor laser device according to claim 1 , wherein a position of the wire bond wiring connected from the semiconductor laser element to the common electrode is a position avoiding a position overlapping the metal via hole in a plane . 前記共通電極は、前記各レーザ発光部の光軸と平面的に重なる寸法が同じになるように形成していることを特徴とする請求項1〜2記載の半導体レーザ装置。 3. The semiconductor laser device according to claim 1, wherein the common electrode is formed so as to have the same dimension in plan view as the optical axis of each laser light emitting unit .
JP2000098770A 2000-03-31 2000-03-31 Semiconductor laser device Expired - Fee Related JP3639497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098770A JP3639497B2 (en) 2000-03-31 2000-03-31 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098770A JP3639497B2 (en) 2000-03-31 2000-03-31 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2001284731A JP2001284731A (en) 2001-10-12
JP3639497B2 true JP3639497B2 (en) 2005-04-20

Family

ID=18613218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098770A Expired - Fee Related JP3639497B2 (en) 2000-03-31 2000-03-31 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3639497B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759081B2 (en) 2002-07-18 2006-03-22 Nec化合物デバイス株式会社 Semiconductor laser device
JP4586337B2 (en) * 2002-08-26 2010-11-24 住友電気工業株式会社 Semiconductor laser module and semiconductor laser device
CN100552993C (en) * 2006-09-22 2009-10-21 亿光电子工业股份有限公司 High heat conduction LED packaging structure
CA2708392C (en) * 2007-12-21 2014-03-18 Mitsubishi Electric Corporation Laser light source module
JP5410195B2 (en) * 2009-08-11 2014-02-05 日本オクラロ株式会社 Multi-beam semiconductor laser device
JP5779214B2 (en) * 2013-10-01 2015-09-16 ウシオオプトセミコンダクター株式会社 Multi-beam semiconductor laser device
JP6940750B2 (en) * 2017-04-28 2021-09-29 日亜化学工業株式会社 Laser device
US10714891B2 (en) 2018-07-06 2020-07-14 Himax Technologies Limited Projector, electronic device having projector and associated manufacturing method
JP2020020861A (en) * 2018-07-30 2020-02-06 奇景光電股▲ふん▼有限公司 Projector, electronic device having projector, and related manufacturing method
JP7178284B2 (en) * 2019-02-13 2022-11-25 古河電気工業株式会社 optical module

Also Published As

Publication number Publication date
JP2001284731A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP7368450B2 (en) Semiconductor device and bonding method
JP3639497B2 (en) Semiconductor laser device
CN114762201B (en) Semiconductor laser element and method for manufacturing the same, and semiconductor laser device
JP7473376B2 (en) Semiconductor Device
JP2000223622A (en) Semiconductor device, method of manufacturing the same, and mounting structure using the same
JPH01181490A (en) Semiconductor laser device
JP2002064224A (en) Light emitting diode and method of manufacturing the same
JP7329519B2 (en) Semiconductor laser device
JP2003258178A (en) Semiconductor device
JP2000349353A (en) Peltier module and module for optical communication equipped with the same
JP6900798B2 (en) Multi-beam type semiconductor laser element and multi-beam type semiconductor laser device
US11605769B2 (en) Light emitting element and light emitting device
JP2006165151A (en) Power semiconductor device
JP2007095984A (en) Semiconductor module
JPH10229223A (en) Thermoelectric element
JP7114292B2 (en) Semiconductor laser device
JPH07307520A (en) Method for assembling of stacked semiconductor laser device
JP3222635B2 (en) Semiconductor laser device and mounting method thereof
JP7536924B2 (en) Electronic package and method for manufacturing electronic package - Patents.com
JP4329187B2 (en) Semiconductor element
JPH08228045A (en) Semiconductor laser mount structure
CN117117627B (en) Laser unit and laser
JP7622904B2 (en) Semiconductor laser device
JP7536607B2 (en) Semiconductor laser device and method for manufacturing the same
JP2001068778A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

LAPS Cancellation because of no payment of annual fees