[go: up one dir, main page]

JP3636829B2 - Gas concentration measurement method using multi-wavelength light - Google Patents

Gas concentration measurement method using multi-wavelength light Download PDF

Info

Publication number
JP3636829B2
JP3636829B2 JP17870596A JP17870596A JP3636829B2 JP 3636829 B2 JP3636829 B2 JP 3636829B2 JP 17870596 A JP17870596 A JP 17870596A JP 17870596 A JP17870596 A JP 17870596A JP 3636829 B2 JP3636829 B2 JP 3636829B2
Authority
JP
Japan
Prior art keywords
wavelengths
wavelength
light
gas concentration
easily absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17870596A
Other languages
Japanese (ja)
Other versions
JPH1010044A (en
Inventor
直彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP17870596A priority Critical patent/JP3636829B2/en
Publication of JPH1010044A publication Critical patent/JPH1010044A/en
Application granted granted Critical
Publication of JP3636829B2 publication Critical patent/JP3636829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多波長光により大気中のガス(原子、分子、エアロゾル等)濃度を計測する方法に関するものである。
【0002】
【従来の技術】
大気中のガス濃度を測定する方法として、例えば図 に示すように、単体又は複数の多波長光照射装置1から多波長の光2を順次に計測対象ガス3に照射し、その多波長の光を受光装置4により受光し、データ解析装置5により計測対象ガス3の構成成分の濃度計測を行う方法がある。この多波長光を用いる従来の計測方法であるレーザレーダは、計測対象ガスにより吸収され易い(吸収の大きい)波長と、吸収され難い(吸収の小さい)波長の2波長を用いた差分吸収レーザレーダ(DIAL)計測法が用いられている。また、さらに精度を高めるために、3つ以上の多波長を用いる測定方法がある。
この従来の2波長を用いたDIAL計測法における受信光子数は、式1で現される。
【0003】
【数1】

Figure 0003636829
ここで、Nr は受信光子数,Nt は照射光子数,ηは光学系全効率,ΔRは距離分解能,βb は後方散乱係数,Aは受信面積,Rは測定距離,βa は消散係数である。
このDIAL計測法では、式1を2波長について記述し、その差を求めることにより表される。そこで、測定したいガス濃度n(R)及び吸収断面積σにより、βa =σn(R)と表され、2つの波長に対してσのみが異なる場合、一般的なDIAL計測法の式として、次の式2で表される。
【0004】
【数2】
Figure 0003636829
σonとσoff は、それぞれ、吸収の大きい波長と吸収の小さい波長に対する吸収断面積である。
【0005】
【発明が解決しようとする課題】
しかしながら、この式2の場合は、前提条件として測定対象ガス以外のガスによる吸収や散乱の影響が、2つの波長に対して同じであると見做せる場合に限られるものである。即ち、2波長での消散係数βa が測定対象ガスのみで異なる場合に成り立つものであり、他のガスの影響がある場合は成り立たないのである。そして、測定対象ガス以外のガスに対して、消散係数βa が同じ2波長を選ぶことは困難な場合が多く、2波長を用いるDIAL計測法では、測定対象となるガス以外の消散係数(吸収断面積)が等しくない場合は、誤差があるため測定精度が悪いという問題がある。
また、3つ以上の多波長を用いる測定は、用いる波長の数に応じた回数の測定を必要とし、計測に長時間を必要とする問題があった。
【0006】
【課題を解決するための手段】
本発明による多波長光によるガス濃度計測方法は、大気中の各種測定対象ガスに、吸収され易い波長の光と吸収され難い波長の光を照射し、それぞれの照射光の大気からの後方散乱光(反射光)を望遠鏡で受光して測定する差分吸収レーザーレーダー(DIAL)計測法を用いるガス濃度計測方法において、測定対象ガスに対して、吸収され易い異なる波長の2波長と、吸収され難い異なる波長の2波長であって、かつ前記吸収され易い2波長の測定誤差対象ガスに対する消散係数の和と前記吸収され難い2波長の測定誤差対象ガスに対する消散係数の和とが等しくなるように4波長をそれぞれ選定し、前記吸収され易い2波長の光を1組とし、前記吸収され難い2波長の光を1組としてそれぞれ前記測定対象ガスに照射し、該照射された2組の反射光をそれぞれ受光し、該反射光の光子数に基づいてガス濃度を計測することを特徴とするものである。
【0007】
【発明の実施の形態】
本発明を、4波長を用いた例について説明する。この4波長のうち2波長は測定対象ガスに吸収され易い波長で、他の2波長は測定対象ガスに吸収され難い波長を選定する。また、式1において、消散係数βa のみが4波長で異なるものとする。そして、測定対象ガスに吸収され易い2波長での消散係数をそれぞれβon1 ,βon2 、また測定対象ガスに吸収され難い2波長での消散係数をそれぞれβoff1,βoff2とする。そして、測定対象ガスをx,誤差となるガスを0とすると、各4波長の消散係数は式3で表される。
【0008】
【数3】
Figure 0003636829
σi はそれぞれの波長に対する吸収断面積である。それぞれの波長での式1を記述して、よく吸収する2波長(on)での2式から、吸収しにくい2波長(off )の2式を引くと、次の式4が導かれる。
【0009】
【数4】
Figure 0003636829
ここで、式5の
【数5】
Figure 0003636829
であるような波長を選択すると、式4は次の式6
【数6】
Figure 0003636829
となり、誤差となる測定対象ガス以外のガスの影響が含まれない式となる。
【0010】
ここで、
【数7】
Figure 0003636829
とすると、式6の項
【数8】
Figure 0003636829
は、
【0011】
【数9】
Figure 0003636829
となる。
【0012】
同様に、式6の項の
【数10】
Figure 0003636829
は、次の式13に変換できる。
【数11】
Figure 0003636829
【0013】
ただし、前述の式11及び式13は、次の式14又は式15を条件とする。
【数12】
Figure 0003636829
よって、式6はさらに次の式16のように変形できる。
【数13】
Figure 0003636829
即ち、測定は、4波長すべてを計測する必要がなく、on(on1 ,on2 )とoff (off1,off2)の2波長づつまとめて計測することができるので、2波長を用いたDIAL計測法と同じ時間で計測することが可能である。
なお、前述の式14と式15は、式16に示すガス濃度n(R)の精度を高める条件を示すもので、式14と式15の左辺が小さくなるように、波長に対する照射光の強度を調節することにより、測定精度を向上させることが可能である。
【0014】
【実施例】
測定対象ガスをSO2 (二酸化硫黄)として、前記計算式16に、図1に示す公知の特性データに基づく表1に示した数値(各波長におけるSO2 の吸収断面積)と、表1のデータにもとづいて算出された表2に示した受信光子数を、式6および式16に当てはめて計算した例を示す。
なお、エアロゾルの消散係数を、300nm で 2×10-4-1とし、エアロゾルによる光の消散がレイリー散乱によると仮定し、 1/λ4 に比例するとする。
SO2 の密度は、図1に示した吸収断面積の特性、及び温度 15℃, 1atm ,単位 1ppb では、n=2.55×1016-3であることにより、吸収の大きい波長を300.0nm (on1 )と298.6nm (on2 )、吸収の小さい波長を299.3nm (off1,off2)の3つの波長で計算を行う。
ここで、
【数14】
Figure 0003636829
と仮定する。(光出力10J 、受光望遠鏡の直径50cm、後方散乱係数 1.0×10-5 m-1光学系全効率0.01に相当)
また、測定距離Rを 3km、距離分解能ΔRを100mとする。
【0015】
【表1】
Figure 0003636829
このときの受信される光子数を表2に示す。
【0016】
【表2】
Figure 0003636829
以上により、式11の左辺と右辺はともに有効数字が3桁以内で 1.237となり、また式13の左辺と右辺はともに有効数字が3桁以内で 0.808となり一致する。
この条件で、式6の従来の多波長によるDIAL計測法で全4波長を計測し、密度を算出すると2.35×1016cm-3となるが、本発明の方法で密度を算出した場合においても、その計測値は2.34×1016cm-3となり、2桁の精度で正しく、誤差は無視できる程度のものである。
なお、この実施例では便宜上吸収され難い波長は1波長として示したが、前記の式5の条件等を満たす波長の異なる2波長を用いて、全4波長で計測できることは当然である。また、吸収され難い波長を2波長とし、吸収され易い波長を1波長として3波長を用いて計測してもよい。
また、式8に表2の計算データを入れてΔNonを求めると、ΔNon=Non1 −Non/2 =67.5となるが、298.6 nmの照射強度を300.0 nmのそれより、9843/9708=1.0139倍にすることにより、Non1 とNon2 がほとんど等しくなり、ΔNonはほとんど0となり、計算されるガス濃度n(R)は、近似式を用いるために生じる誤差はなくなる。
【0017】
【発明の効果】
以上詳細に説明したように、本発明は所要の条件に適合する異なる波長の3波長又は4波長を、測定対象ガスに吸収され易い波長と吸収され難い波長の2組に分けて順次に測定対象ガスに照射して,その複数又は単数の波長の反射信号をそれぞれ受信してそのデータに基づき演算処理するものであるため、特に測定対象ガス周辺の誤差となるガスによる光の吸収が大きい場合には、従来の2波長によるDIAL計測法に比較して、測定精度の向上を図ることができる。また、従来の精度向上を図るための3波長以上の多波長によるDIAL計測法に比較して、測定時間を短縮することができ、過渡現象の測定も可能となるなどの効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の一実施例の測定対象ガスSO2 の波長/吸収断面積の特性図である。
【図2】本発明の対象とするDIAL計測方法の測定構成概略図である。
【符号の説明】
1 多波長光照射装置
2 多波長の光
3 計測対象ガス
4 受光装置
5 データ解析装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the concentration of gas (atom, molecule, aerosol, etc.) in the atmosphere using multi-wavelength light.
[0002]
[Prior art]
As a method for measuring the gas concentration in the atmosphere, for example, as shown in the figure, the multi-wavelength light 2 is sequentially irradiated to the measurement target gas 3 from a single or a plurality of multi-wavelength light irradiation apparatuses 1 and the multi-wavelength light is irradiated. Is received by the light receiving device 4, and the concentration of the constituent components of the measurement target gas 3 is measured by the data analyzing device 5. A laser radar that is a conventional measurement method using this multi-wavelength light is a differential absorption laser radar that uses two wavelengths, a wavelength that is easily absorbed (largely absorbed) and a wavelength that is difficult to be absorbed (smallly absorbed). The (DIAL) measurement method is used. In order to further improve accuracy, there is a measurement method using three or more multiple wavelengths.
The number of received photons in the conventional DIAL measurement method using two wavelengths is expressed by Equation 1.
[0003]
[Expression 1]
Figure 0003636829
Here, Nr is the number of received photons, Nt is the number of irradiated photons, η is the total efficiency of the optical system, ΔR is the distance resolution, βb is the backscattering coefficient, A is the receiving area, R is the measurement distance, and βa is the extinction coefficient.
This DIAL measurement method is expressed by describing Equation 1 for two wavelengths and calculating the difference between them. Therefore, when the gas concentration n (R) to be measured and the absorption cross-sectional area σ are expressed as βa = σn (R) and only σ is different for the two wavelengths, the following formula is used as a general DIAL measurement method. It is represented by the following formula 2.
[0004]
[Expression 2]
Figure 0003636829
[sigma] on and [sigma] off are absorption cross sections for a wavelength having a large absorption and a wavelength having a small absorption, respectively.
[0005]
[Problems to be solved by the invention]
However, in the case of Equation 2, the precondition is limited to the case where the influence of absorption or scattering by a gas other than the measurement target gas can be considered to be the same for the two wavelengths. That is, this is true when the extinction coefficient βa at the two wavelengths is different only for the measurement target gas, and is not true when there is an influence of other gases. In many cases, it is difficult to select two wavelengths having the same extinction coefficient βa for gases other than the gas to be measured. In the DIAL measurement method using two wavelengths, the extinction coefficient (absorption cutoff) other than the gas to be measured is used. If the (area) is not equal, there is a problem that measurement accuracy is poor due to an error.
In addition, the measurement using three or more multi-wavelengths requires a number of measurements corresponding to the number of wavelengths used, and has a problem of requiring a long time for measurement.
[0006]
[Means for Solving the Problems]
The gas concentration measurement method using multi-wavelength light according to the present invention irradiates various measurement target gases in the atmosphere with light having a wavelength that is easily absorbed and light having a wavelength that is difficult to absorb, and backscattered light from the atmosphere of each irradiation light. In a gas concentration measurement method using a differential absorption laser radar (DIAL) measurement method in which (reflected light) is received by a telescope and measured, two wavelengths of different wavelengths that are easily absorbed differ from a measurement target gas and are difficult to be absorbed. 4 wavelengths so that the sum of the extinction coefficient for the two-wavelength measurement error target gas that is two wavelengths and is easily absorbed is equal to the sum of the extinction coefficient for the two-wavelength measurement error target gas that is difficult to absorb. Are selected, and the measurement target gas is irradiated with the two wavelengths of light that are easily absorbed as one set, and the two wavelengths of light that are not easily absorbed as one set. Receiving the reflected light, respectively, it is characterized in that to measure the gas concentration on the basis of the number of photons reflected light.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described using an example using four wavelengths. Of these four wavelengths, two wavelengths are wavelengths that are easily absorbed by the measurement target gas, and the other two wavelengths are wavelengths that are difficult to be absorbed by the measurement target gas. In Equation 1, only the extinction coefficient βa is different at four wavelengths. The extinction coefficients at two wavelengths that are easily absorbed by the measurement target gas are βon1 and βon2, respectively, and the extinction coefficients at the two wavelengths that are difficult to be absorbed by the measurement target gas are βoff1 and βoff2, respectively. Then, assuming that the measurement target gas is x and the error gas is 0, the extinction coefficients for each of the four wavelengths are expressed by Equation 3.
[0008]
[Equation 3]
Figure 0003636829
σi is the absorption cross section for each wavelength. When Equation 1 at each wavelength is described, and Equation 2 at 2 wavelengths (off) that are difficult to absorb is subtracted from Equation 2 at 2 wavelengths (on) that absorbs well, Equation 4 below is derived.
[0009]
[Expression 4]
Figure 0003636829
Here, Equation 5 in Equation 5
Figure 0003636829
If we select a wavelength such that
[Formula 6]
Figure 0003636829
Thus, the equation does not include the influence of gases other than the measurement target gas that are errors.
[0010]
here,
[Expression 7]
Figure 0003636829
Then, the term of Equation 6
Figure 0003636829
Is
[0011]
[Equation 9]
Figure 0003636829
It becomes.
[0012]
Similarly, in the term of Equation 6,
Figure 0003636829
Can be converted into the following equation (13).
[Expression 11]
Figure 0003636829
[0013]
However, the above-mentioned formula 11 and formula 13 are conditional on the following formula 14 or formula 15.
[Expression 12]
Figure 0003636829
Therefore, Expression 6 can be further transformed as Expression 16 below.
[Formula 13]
Figure 0003636829
In other words, it is not necessary to measure all four wavelengths, and it is possible to measure two wavelengths, on (on1, on2) and off (off1, off2), so that the DIAL measurement method using two wavelengths It is possible to measure at the same time.
In addition, the above-mentioned formula 14 and formula 15 show the conditions for increasing the accuracy of the gas concentration n (R) shown in formula 16, and the intensity of the irradiation light with respect to the wavelength so that the left side of formula 14 and formula 15 becomes small. It is possible to improve measurement accuracy by adjusting.
[0014]
【Example】
The measurement target gas is SO 2 (sulfur dioxide), and the numerical value shown in Table 1 (SO 2 absorption cross section at each wavelength) based on the known characteristic data shown in FIG. An example is shown in which the number of received photons shown in Table 2 calculated based on the data is calculated by applying Equation 6 and Equation 16.
It is assumed that the aerosol extinction coefficient is 2 × 10 −4 m −1 at 300 nm and that the light dissipation by the aerosol is due to Rayleigh scattering and is proportional to 1 / λ 4 .
The density of SO 2 is the absorption cross section characteristic shown in FIG. 1, and the temperature is 15 ° C., 1 atm, and the unit is 1 ppb, so that n = 2.55 × 10 16 m −3. On1) and 298.6nm (on2), and the wavelength with small absorption is calculated at three wavelengths of 299.3nm (off1, off2).
here,
[Expression 14]
Figure 0003636829
Assume that (Equivalent to an optical output of 10J, a receiving telescope diameter of 50 cm, and a backscattering coefficient of 1.0 × 10 -5 m -1 optical system total efficiency of 0.01)
The measurement distance R is 3 km, and the distance resolution ΔR is 100 m.
[0015]
[Table 1]
Figure 0003636829
Table 2 shows the number of photons received at this time.
[0016]
[Table 2]
Figure 0003636829
From the above, the left and right sides of Equation 11 are 1.237 with 3 significant digits, and the left and right sides of Equation 13 are 0.808 with 3 significant digits.
Under this condition, when all four wavelengths are measured by the conventional multi-wavelength DIAL measurement method of Equation 6 and the density is calculated to be 2.35 × 10 16 cm −3 , even when the density is calculated by the method of the present invention. The measured value is 2.34 × 10 16 cm −3 , which is accurate with two digits of accuracy and the error is negligible.
In this embodiment, the wavelength that is difficult to be absorbed for convenience is shown as one wavelength, but it is natural that measurement can be performed with all four wavelengths using two different wavelengths satisfying the condition of the above-described formula 5 and the like. Alternatively, the measurement may be performed using three wavelengths, with two wavelengths that are difficult to be absorbed and one wavelength that is easily absorbed.
Further, when ΔN on is calculated by putting the calculation data of Table 2 into Equation 8, ΔN on = N on1 −N on /2=67.5, but the irradiation intensity at 298.6 nm is 9843/9708 than that at 300.0 nm. = by the 1.0139-fold, most equalizes the n on1 and n on2, .DELTA.N on most zero, calculated as gas concentration n (R), the error will not occur in order to use an approximate expression.
[0017]
【The invention's effect】
As described above in detail, the present invention divides three or four different wavelengths that meet the required conditions into two sets of wavelengths that are easily absorbed by the gas to be measured and wavelengths that are difficult to be absorbed. Since the gas is irradiated and the reflected signals of the plurality or single wavelengths are received and processed based on the data, especially when the light absorption by the gas that causes an error around the measurement target gas is large. Compared with the conventional DIAL measurement method using two wavelengths, the measurement accuracy can be improved. In addition, the measurement time can be shortened and transient phenomena can be measured as compared with the conventional DIAL measurement method using three or more wavelengths for improving accuracy. .
[Brief description of the drawings]
FIG. 1 is a characteristic diagram of wavelength / absorption cross section of a measurement object gas SO 2 according to one embodiment of the present invention.
FIG. 2 is a schematic diagram of a measurement configuration of a DIAL measurement method that is an object of the present invention.
[Explanation of symbols]
1 Multi-wavelength light irradiation device 2 Multi-wavelength light 3 Gas to be measured 4 Light-receiving device 5 Data analysis device

Claims (4)

大気中の各種測定対象ガスに、吸収され易い波長の光と吸収され難い波長の光を照射し、それぞれの照射光の大気からの後方散乱光(反射光)を望遠鏡で受光して測定する差分吸収レーザーレーダー(DIAL)計測法を用いるガス濃度計測方法において、
測定対象ガスに対して、吸収され易い異なる波長の2波長と、吸収され難い異なる波長の2波長であって、かつ前記吸収され易い2波長の測定誤差対象ガスに対する消散係数の和と前記吸収され難い2波長の測定誤差対象ガスに対する消散係数の和とが等しくなるように4波長をそれぞれ選定し、
前記吸収され易い2波長の光を1組とし、前記吸収され難い2波長の光を1組としてそれぞれ前記測定対象ガスに照射し、
該照射された2組の反射光をそれぞれ受光し、該反射光の光子数に基づいてガス濃度を計測することを特徴とする多波長光によるガス濃度計測方法。
The difference between the measurement target gas in the atmosphere, which is irradiated with light with a wavelength that is easily absorbed and light with a wavelength that is difficult to absorb, and the backscattered light (reflected light) from the atmosphere of each irradiated light is received by a telescope and measured. In gas concentration measurement method using absorption laser radar (DIAL) measurement method,
For the measurement target gas, two wavelengths of different wavelengths that are easily absorbed and two wavelengths of different wavelengths that are difficult to be absorbed, and the sum of the extinction coefficients for the measurement error target gases of the two wavelengths that are easily absorbed and the absorption. 4 wavelengths are selected so that the sum of the extinction coefficients for the difficult measurement error target gases of 2 wavelengths are equal.
Irradiate the measurement object gas with a set of two wavelengths of light that are easily absorbed and a set of two wavelengths of light that are difficult to absorb,
A gas concentration measurement method using multi-wavelength light, which receives each of the two sets of reflected light irradiated and measures the gas concentration based on the number of photons of the reflected light.
前記吸収され易い異なる波長の2波長又は吸収され難い異なる波長の2波長のうちのいずれか一方の波長を1波長として、当該波長のデータの演算時に2倍にして2波長分データとして処理するようにした請求項1記載の多波長光によるガス濃度計測方法。Either one of the two wavelengths of the different wavelengths that are easily absorbed or the two wavelengths of the different wavelengths that are difficult to be absorbed is defined as one wavelength, and is processed as data for two wavelengths by doubling when calculating the data of the wavelength. The gas concentration measuring method using multiwavelength light according to claim 1. 前記吸収され易い波長及び吸収され難い波長をそれぞれ異なる波長の3波長以上をとしてデータ解析処理するようにした請求項1記載の多波長光によるガス濃度計測方法。2. The gas concentration measurement method using multi-wavelength light according to claim 1, wherein data analysis processing is performed with the wavelength that is easily absorbed and the wavelength that is not easily absorbed as three or more different wavelengths. 前記吸収され易い多波長又は吸収され難い多波長の各波長の照射強度を、前記各波長の受信される光子数の比率にもとづいて調整するようにした請求項1乃至3記載の多波長光によるガス濃度計測方法。4. The multi-wavelength light according to claim 1, wherein the irradiation intensity of each wavelength of the multi-wavelength that is easily absorbed or multi-wavelength that is difficult to be absorbed is adjusted based on a ratio of the number of received photons of each wavelength. Gas concentration measurement method.
JP17870596A 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light Expired - Fee Related JP3636829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17870596A JP3636829B2 (en) 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17870596A JP3636829B2 (en) 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light

Publications (2)

Publication Number Publication Date
JPH1010044A JPH1010044A (en) 1998-01-16
JP3636829B2 true JP3636829B2 (en) 2005-04-06

Family

ID=16053127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17870596A Expired - Fee Related JP3636829B2 (en) 1996-06-20 1996-06-20 Gas concentration measurement method using multi-wavelength light

Country Status (1)

Country Link
JP (1) JP3636829B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0228890D0 (en) 2002-12-11 2003-01-15 Qinetiq Ltd Laser radar apparatus
CN104007088B (en) * 2014-06-16 2016-03-30 中国人民解放军陆军军官学院 The measuring method of back scattering laser radar geometric factor
KR102139815B1 (en) * 2020-04-27 2020-07-30 한밭대학교 산학협력단 Aerosol fine and coarse particle information extraction methods and system using more than two wavelength extinction
CN112268871B (en) * 2020-11-24 2024-01-26 西南技术物理研究所 Method for simultaneously measuring concentration of various polluted gases in atmosphere
KR102702224B1 (en) * 2022-08-03 2024-09-04 국립한밭대학교 산학협력단 aerosol PM2.5 retrieval method and system from aerosol extinction coefficient Using wavelength dependent aerosol extinction coefficients power exponent

Also Published As

Publication number Publication date
JPH1010044A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
RU2400715C2 (en) Spectrometre calibration method
JP4312294B2 (en) Isotopomer absorption spectroscopy analyzer and method
JPH102857A (en) Analysis of gas mixture by infrared method
US20180149586A1 (en) Gas analysis apparatus and gas analysis method
JP4079404B2 (en) Multi-component gas analysis method by FTIR method
JPH07190931A (en) Gas analyzer and gas analyzing mechanism
JP2000346801A5 (en)
JP3636829B2 (en) Gas concentration measurement method using multi-wavelength light
JP3754581B2 (en) Analysis method for multi-component organic solutions
CN105572067A (en) Flue gas concentration measuring method based on spectrum analysis
JP3817517B2 (en) Non-dispersive infrared gas measurement method using optical filter
JPH0567171B2 (en)
GB2070765A (en) Spectrophotometry
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
JP7461948B2 (en) Sample gas analyzer, sample gas analysis method, and sample gas analysis program
JP7473546B2 (en) Analysis equipment
JP4205821B2 (en) Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer
WO2013133008A1 (en) Spectrophotometer and absorption photometry method
JP3004747B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JPH0414298B2 (en)
JP3174710B2 (en) Gas analyzer
JPH04265839A (en) Analyzing method of many components in spectroscopic analysis
Isaksson et al. Accurate wavelength measurements of a putative standard for near-infrared diffuse reflection spectrometry
JP3787332B2 (en) Thermal lens absorption analyzer
JP3212107B2 (en) Spectrometry

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees