JP3632751B2 - Lowering agent for fermented liquid food and lowering method using the same - Google Patents
Lowering agent for fermented liquid food and lowering method using the same Download PDFInfo
- Publication number
- JP3632751B2 JP3632751B2 JP2000178029A JP2000178029A JP3632751B2 JP 3632751 B2 JP3632751 B2 JP 3632751B2 JP 2000178029 A JP2000178029 A JP 2000178029A JP 2000178029 A JP2000178029 A JP 2000178029A JP 3632751 B2 JP3632751 B2 JP 3632751B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- lowering
- sol
- silica sol
- fermented liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Silicon Compounds (AREA)
- Soy Sauces And Products Related Thereto (AREA)
- Alcoholic Beverages (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、発酵液状食品の滓下げ剤およびそれを使用した滓下げ方法に関し、さらに詳しくは、特定シリカ微粒子の水分散ゾルからなる発酵液状食品の滓下げ剤およびそれを使用した滓下げ方法に関するものである。
【0002】
【従来技術】
従来、蛋白混濁を生ずる液状食品、例えば、清酒、ブドウー酒、ビール、その他の醸造酒および醤油などの滓下げ剤としてシリカゾルを用いることが、特公昭59−33351号公報、特公昭60−6187号公報等により公知である。
また、本発明者らは、先に、滓下げ速度の早い滓下げ剤として、少なくとも二つの異なる粒子径分布を持つシリカゾルであって、一の粒子径分布を有する粒子群の粒子径分布のピーク値が、最小粒子径分布を有する粒子群の粒子径分布のピーク値の1.3倍以上であるシリカゾルを提案した(特公平8−13265号公報)。
【0003】
また、特許第3017455号掲載公報には、液状物に含まれる蛋白質の除去方法として、正電荷を有するシリカゾルを用いることが記載されている。
しかしながら、これら従来の滓下げ剤は滓下げ速度の点で必ずしも満足の行くものではなく、改善が望まれている。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題点を解決し、発酵液状食品の滓下げ速度が早く、蛋白混濁物質の凝集沈降分離を行うに要する時間を短縮できる滓下げ剤を提供することにある。
【0005】
【課題を解決するための手段】
本発明に関する発酵液状食品の滓下げ剤は、シリカ微粒子が水に分散したゾルであって、該ゾルのpH4〜6範囲における該微粒子のゼーター電位が負の値で絶対値が35mV以上であることを特徴とする。
前記シリカ微粒子の平均粒子径は20nm以下であることが好ましい。
前記シリカ微粒子は、アルミナ、酸化鉄、チタニア、ジルコニアからなる群から選ばれた1種または2種以上の金属酸化物を2重量%未満含有することが好ましい。
また、本発明に関する発酵液状食品の滓下げ方法は、上記滓下げ剤を発酵液状食品に添加し、蛋白混濁物質を凝集させ沈降分離することを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明の好適な実施形態について、詳細に説明する。
一般に、ゾル中に分散したシリカ微粒子のゼーター電位はゾルのpH値によって変化するが、発酵液状食品のpHは通常4〜6の範囲にあることから、本発明ではpH4〜6の範囲におけるシリカ微粒子のゼーター電位を特定するものである。本発明のシリカゾルが滓下げ剤として効果的に作用するためには、pH4〜6範囲において負の値で絶対値が35mV以上のゼーター電位を有することが必要である。
このゼーター電位は、超音波方式ゼーター電位測定装置(例えば、Matec社製ESA8000)で測定することができる。測定条件としては、予め希釈塩酸水溶液で試料シリカゾルのpHを所定の値に調整し、同ゾルのシリカ微粒子濃度を5重量%、温度を25℃とする。
【0007】
上記シリカ微粒子は、前述のpH範囲におけるゼーター電位値を負の値で絶対値を大きくするために、シリカ以外の金属化合物を含有していてもよい。このような金属化合物としては、アルミナ、酸化鉄、チタニア、ジルコニアなどの金属酸化物が例示され、特に、アルミナは好適である。該シリカ微粒子中に含有される該金属化合物の量は、酸化物として2重量%未満、好ましくは0.05〜1重量%の範囲が望ましい。
また、上記シリカ微粒子は、平均粒子径が20nm以下であることが好ましい。該平均粒子径が20nmより大きい場合には、前記pHの範囲におけるゼーター電位値が負の値で絶対値が小さくなる傾向にある。シリカ微粒子の平均粒子径は、好ましくは15nm以下、さらに好ましくは0.5〜10nmの範囲である。
【0008】
本発明に係る滓下げ剤としてのシリカゾルは、pH4〜6範囲におけるシリカ微粒子のゼーター電位が負の値で絶対値が35mV以上であり、その絶対値が極めて大きい。一方、発酵液状食品中において滓を構成する蛋白質は、全体としては負のゼーター電位を有しているものの、本発明に係る滓下げ剤に比較してその絶対値は小さく、−5mV程度である。前記蛋白質と滓下げ剤のゼーター電位の差が大きい程、発酵液状食品中の蛋白質はヘテロ凝集を起こし易く、本発明ではゼーター電位差が負の値で30mV以上あるためヘテロ凝集を起こす。該電位差は、好ましくは負の値で35mV以上、さらに好ましくは負の値で35〜70mVの範囲にあるのが望ましい。なお、本発明に係る滓下げ剤のシリカゾルは、SiO2 濃度として10〜40重量%のものが望ましい。
【0009】
上記滓下げ剤は、清酒、みりん、ビール、ワインなどの酒類、醤油、酢、果汁などの蛋白混濁を生ずる液状食品の滓下げに使用して好適である。
本発明に係る発酵液状食品の滓下げ方法では、上記発酵液状食品に該滓下げ剤を添加し、撹拌すると、液状食品中の蛋白混濁物質は直ちに凝集沈降する。凝集沈降物は、濾過など通常の方法により分離される。液状食品中への該滓下げ剤の添加量は蛋白混濁物質の量によって変わるが、清酒の場合、通常30重量%SiO2 濃度ゾルとして10〜2000ppm、好ましくは40〜1000ppm程度である。
本発明方法では、該滓下げ剤の外に従来の場合と同様に凝集物の成長を助けるための凝集剤、例えばゼラチン等の蛋白質やポリビニルピロリドン等の可溶性高分子物質などを添加して凝集効果をさらに促進させることも可能である。
【0010】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより限定されるものではない。
【0011】
実施例1
シリカ微粒子の平均粒子径が10nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI―30)100gに、1重量%Al2 O3 濃度のアルミン酸ソーダ水溶液20gを1g/minの速度で添加し、その後、90℃で1時間加熱熟成して滓下げ用シリカゾルを調製した。ゾル中のシリカ微粒子は0.6重量%のアルミナを含有する。また、該シリカゾル中のシリカ微粒子のゼーター電位を米国Matec社製ESA8000測定装置にて測定したところ、pH5におけるゼーター電位は−40mVであった。
このシリカゾルを用いて以下の条件で滓下げテストを行った。原料清酒を攪拌機付き1リットルビーカーに500ml採取し、撹拌しながら活性炭0.75gを添加し、5分後上述のシリカゾルを0.3ml添加し、5分間撹拌した。次いで、1重量%ゼラチン水溶液1.5mlを添加した後、10分間撹拌を継続した。その後、攪拌機を止め経過時間による濁度の変化をコロナ濁度計にて測定した。その結果を表1に示す。
【0012】
実施例2
実施例1の30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−30)の代わりに平均粒子径が18nmである40重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−40)100gを用いて、実施例1と同様の方法によりシリカゾルを調製した。ゾル中のシリカ微粒子は0.5重量%のアルミナを含有し、シリカ微粒子のゼーター電位は、−50mVであった。このシリカゾルを用いて実施例1と同様に滓下げテストを行い、結果を表1に示した。
【0013】
実施例3
実施例1の30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI―30)の代わりに平均粒子径が7nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI―350)を用いて、実施例1と同様の方法でシリカ微粒子のゼーター電位が−38mVのシリカゾルを調製した。このシリカゾルを用いて実施例1と同様に滓下げテストを行った。結果を表1に示す。
【0014】
実施例4
シリカ微粒子の平均粒子径が5nmである20重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−550)30gと、シリカ微粒子の平均粒子径が10nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−30)50gと、シリカ微粒子の平均粒子径が25nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−50)50gとを混合して、シリカ微粒子の粒子径分布が3つのピークを示すシリカゾルを調製した。このシリカゾル中のシリカ微粒子の平均粒子径は11nmであった。
このシリカゾル100gに、1重量%ZrO2 濃度の炭酸ジルコニルアンモニウム水溶液20gを1g/minの速度で添加し、その後、90℃で1時間加熱熟成して滓下げ用シリカゾルを調製した。ゾル中のシリカ微粒子は0.7重量%のジルコニアを含有する。また、pH5の該シリカゾル中のシリカ微粒子のゼーター電位は−39mVであった。このシリカゾルを用いて実施例1と同様に滓下げテストを行った。結果を表1に示す。
【0015】
実施例5
シリカ微粒子の平均粒子径が21nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−50)50gとシリカ微粒子の平均粒子径が10nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−30)50gとを混合して、シリカ微粒子の平均粒子径が15nmのシリカゾルを調製した。このゾルに実施例1と同様の方法でアルミン酸ソーダ水溶液を添加処理して、0.6重量%のアルミナを含有するシリカゾルを調製した。pH5の該シリカゾル中のシリカ微粒子のゼーター電位は、−45mVであり、このシリカゾルを用いて実施例1と同様に滓下げテストを行った。結果を表1に示す。
【0016】
実施例6
実施例5で調製した滓下げ用シリカゾルを用いて以下の条件で酢の滓下げテストを行った。
原料酢を攪拌機付き1リットルビーカーに500ml採取し、撹拌しながら上記シリカゾルを1.5ml添加し、5分間撹拌した。次いで、5重量%ゼラチン水溶液15mlを添加した後、10分間撹拌を継続した。その後、攪拌機を止め経過時間による濁度の変化を測定した。その結果を表1に示す。
【0017】
実施例7
実施例5で調製した滓下げ用シリカゾルを用いて以下の条件で醤油の滓下げテストを行った。
火入れ醤油を攪拌機付き1リットルビーカーに500ml採取し、撹拌しながら上記シリカゾルを0.6ml添加し、5分間撹拌した。次いで、1重量%ゼラチン水溶液3mlを添加した後、10分間撹拌を継続した。その後、攪拌機を止め経過時間による濁度の変化を10%NaCl水溶液で20倍に希釈して測定した。その結果を表1に示す。
【0018】
実施例8
実施例5で調製した滓下げ用シリカゾルを用いて以下の条件でワインの滓下げテストを行った。
原料ワインを攪拌機付き1リットルビーカーに500ml採取し、撹拌しながらベントナイト0.08gを添加し、5分間撹拌した後、上記シリカゾルを0.1ml添加し、次いで、1重量%ゼラチン水溶液0.3mlを添加した後、10分間撹拌を継続した。その後、攪拌機を止め経過時間による濁度の変化をコロナ濁度計にて測定した。その結果を表1に示す。
【0019】
比較例1
シリカ微粒子の平均粒子径が10nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−30)を用いて以下の条件で清酒の滓下げテストを行った。なお、このゾルがpH5のときのシリカ微粒子のゼーター電位は−20mVであった。
原料清酒を攪拌機付き1リットルビーカーに500ml採取し、撹拌しながら活性炭0.75gを添加し、5分後上記シリカゾルを0.3ml添加し、5分間撹拌した。次いで、1重量%ゼラチン水溶液1.5mlを添加した後、10分間撹拌を継続した。その後、攪拌機を止め経過時間による濁度の変化をコロナ濁度計にて測定した。その結果を表1に示す。
【0020】
比較例2
比較例1のシリカ微粒子の代わりに、シリカ微粒子の平均粒子径が45nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI―45P)を使用した以外は、比較例1と全く同様にして滓下げテストを行った。結果を表1に示す。
【0021】
比較例3
実施例6の酢の滓下げテストにおいて、シリカ微粒子の平均粒子径が45nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−45P)を使用した以外は実施例6と全く同様にして、酢の滓下げテストを行った。結果を表1に示す。
【0022】
比較例4
実施例7の醤油の滓下げテストにおいて、シリカ微粒子の平均粒子径が45nmである30重量%シリカゾル(触媒化成工業(株)製、カタロイドSI−45P)を使用した以外は実施例7と全く同様にして、醤油の滓下げテストを行った。結果を表1に示す。
【0023】
【表1】
【0024】
【発明の効果】
本発明の滓下げ剤は、表1の滓下げテストの結果から明らかなように、シリカ微粒子のゼーター電位が負の値で絶対値が35mV以上のシリカゾルであるため、ゼーター電位値が−35mVよりその絶対値で小さい通常のシリカゾルに比較して滓下げ速度が早く、滓下げに要する時間を短縮することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dripping agent for a fermented liquid food and a dripping method using the same, and more particularly to a dripping agent for a fermented liquid food comprising an aqueous dispersion sol of specific silica fine particles and a dripping method using the same. Is.
[0002]
[Prior art]
Conventionally, silica sol is used as a suspending agent for liquid foods causing protein turbidity, for example, sake, grape liquor, beer, other brewed liquors, and soy sauce. It is known by a gazette.
In addition, the present inventors previously described a silica sol having at least two different particle size distributions as a lowering agent having a high lowering rate, and a particle size distribution peak of a particle group having one particle size distribution. A silica sol whose value is 1.3 times or more the peak value of the particle size distribution of the particle group having the minimum particle size distribution has been proposed (Japanese Patent Publication No. 8-13265).
[0003]
Japanese Patent No. 3017455 describes that a silica sol having a positive charge is used as a method for removing a protein contained in a liquid material.
However, these conventional lowering agents are not always satisfactory in terms of the lowering speed, and improvements are desired.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a dripping agent capable of shortening the time required for performing agglomeration and sedimentation separation of protein turbidity substances by reducing the dripping speed of fermented liquid foods. .
[0005]
[Means for Solving the Problems]
The suspending agent for fermented liquid food according to the present invention is a sol in which silica fine particles are dispersed in water, and the zeta potential of the fine particles in the pH 4 to 6 range of the sol is negative and the absolute value is 35 mV or more. It is characterized by.
The average particle diameter of the silica fine particles is preferably 20 nm or less.
The silica fine particles preferably contain less than 2% by weight of one or more metal oxides selected from the group consisting of alumina, iron oxide, titania and zirconia.
In addition, a method for lowering a fermented liquid food according to the present invention is characterized by adding the above-described lowering agent to a fermented liquid food so as to aggregate and precipitate a protein turbid substance.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
In general, the zeta potential of silica fine particles dispersed in a sol varies depending on the pH value of the sol. However, since the pH of a fermented liquid food is usually in the range of 4 to 6, in the present invention, the silica fine particles in the range of pH 4 to 6 are used. This specifies the zeta potential. In order for the silica sol of the present invention to act effectively as a suspending agent, it is necessary to have a zeta potential with a negative value and an absolute value of 35 mV or more in the pH 4-6 range.
This zeta potential can be measured with an ultrasonic zeta potential measuring device (for example, ESA8000 manufactured by Matec). As measurement conditions, the pH of the sample silica sol is adjusted to a predetermined value with a dilute hydrochloric acid aqueous solution in advance, and the silica fine particle concentration of the sol is set to 5% by weight and the temperature is set to 25 ° C.
[0007]
The silica fine particles may contain a metal compound other than silica in order to increase the absolute value of the zeta potential value in the above pH range with a negative value. Examples of such metal compounds include metal oxides such as alumina, iron oxide, titania, and zirconia, and alumina is particularly preferable. The amount of the metal compound contained in the silica fine particles is less than 2% by weight as an oxide, preferably 0.05 to 1% by weight.
The silica fine particles preferably have an average particle size of 20 nm or less. When the average particle size is larger than 20 nm, the zeta potential value in the pH range is negative and the absolute value tends to be small. The average particle diameter of the silica fine particles is preferably 15 nm or less, more preferably in the range of 0.5 to 10 nm.
[0008]
In the silica sol as the suspending agent according to the present invention, the zeta potential of the silica fine particles in the pH 4 to 6 range is a negative value and the absolute value is 35 mV or more, and the absolute value is extremely large. On the other hand, the protein constituting koji in the fermented liquid food has a negative zeta potential as a whole, but its absolute value is small compared with the koji lowering agent according to the present invention, and is about -5 mV. . The greater the difference in zeta potential between the protein and the suspending agent, the more likely the protein in the fermented liquid food will undergo heteroaggregation. In the present invention, the zeta potential difference is 30 mV or more as a negative value, causing heteroaggregation. The potential difference is preferably a negative value of 35 mV or more, more preferably a negative value in the range of 35 to 70 mV. The silica sol of the hanging agent according to the present invention is preferably 10 to 40% by weight as the SiO 2 concentration.
[0009]
The above-described dripping agent is suitable for use in dripping liquid foods that produce protein turbidity such as sake, mirin, beer and wine, and soy sauce, vinegar and fruit juice.
In the method for lowering a fermented liquid food according to the present invention, when the dripping agent is added to the fermented liquid food and stirred, the protein turbid substance in the liquid food immediately aggregates and settles. The aggregated sediment is separated by a usual method such as filtration. The amount of the suspending agent added to the liquid food varies depending on the amount of the protein turbid substance. In the case of sake, it is usually about 10 to 2000 ppm, preferably about 40 to 1000 ppm as a 30 wt% SiO 2 concentration sol.
In the method of the present invention, in addition to the suspending agent, a flocculant for assisting the growth of the agglomerate as in the conventional case, for example, a protein such as gelatin or a soluble polymer substance such as polyvinylpyrrolidone is added to effect the aggregation. Can be further promoted.
[0010]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0011]
Example 1
100 g of 30 wt% silica sol (catalyst SI-30, manufactured by Catalytic Chemical Industry Co., Ltd.) having an average particle diameter of silica fine particles of 10 nm is added to 1 g / min of 20 g of 1 wt% aqueous solution of sodium aluminate with an Al 2 O 3 concentration. Then, the mixture was heated and aged at 90 ° C. for 1 hour to prepare a silica sol for lowering. The silica fine particles in the sol contain 0.6% by weight of alumina. Moreover, when the zeta potential of the silica fine particles in the silica sol was measured with an ESA8000 measuring apparatus manufactured by Matec, USA, the zeta potential at pH 5 was −40 mV.
Using this silica sol, a lowering test was performed under the following conditions. 500 ml of raw material sake was collected in a 1-liter beaker equipped with a stirrer, and 0.75 g of activated carbon was added while stirring, and after 5 minutes, 0.3 ml of the above silica sol was added and stirred for 5 minutes. Subsequently, 1.5 ml of a 1% by weight gelatin aqueous solution was added, and stirring was continued for 10 minutes. Then, the stirrer was stopped and the change in turbidity with elapsed time was measured with a corona turbidimeter. The results are shown in Table 1.
[0012]
Example 2
40 wt% silica sol having an average particle size of 18 nm (cataloid SI-40, produced by Catalytic Chemical Industry Co., Ltd.) instead of the 30 wt% silica sol of Example 1 (catalytic SI-30, produced by Catalytic Chemical Industry Co., Ltd.) A silica sol was prepared in the same manner as in Example 1 using 100 g. The silica fine particles in the sol contained 0.5% by weight of alumina, and the zeta potential of the silica fine particles was −50 mV. Using this silica sol, a lowering test was conducted in the same manner as in Example 1, and the results are shown in Table 1.
[0013]
Example 3
30 wt% silica sol having an average particle diameter of 7 nm (cataloid SI-350, produced by Catalytic Chemical Industry Co., Ltd.) instead of the 30 wt% silica sol of Example 1 (produced by Catalytic Chemical Industry Co., Ltd., cataloid SI-30) Was used to prepare a silica sol having a silica fine particle zeta potential of −38 mV in the same manner as in Example 1. Using this silica sol, a lowering test was conducted in the same manner as in Example 1. The results are shown in Table 1.
[0014]
Example 4
30 g of a 20 wt% silica sol (catalyst SI-550, manufactured by Catalytic Chemical Industry Co., Ltd.) having an average particle diameter of silica fine particles of 5 nm and a 30 wt% silica sol (catalytic conversion industry Co., Ltd., Cataloid SI-30) 50 g and silica fine particles having an average particle diameter of 25 nm and 30 wt% silica sol (Catalyst Chemical Industries, Ltd., Cataloid SI-50) 50 g were mixed to prepare silica fine particles. A silica sol having a particle size distribution showing three peaks was prepared. The average particle diameter of the silica fine particles in this silica sol was 11 nm.
To 100 g of this silica sol, 20 g of a 1 wt% ZrO 2 concentration zirconyl ammonium carbonate aqueous solution was added at a rate of 1 g / min, and then heated and aged at 90 ° C. for 1 hour to prepare a silica sol for lowering. The silica fine particles in the sol contain 0.7% by weight of zirconia. Moreover, the zeta potential of the silica fine particles in the silica sol having a pH of 5 was -39 mV. Using this silica sol, a lowering test was conducted in the same manner as in Example 1. The results are shown in Table 1.
[0015]
Example 5
50 g of 30 wt% silica sol (catalyst SI-50, manufactured by Catalytic Chemical Industry Co., Ltd.) having an average particle diameter of silica fine particles of 21 nm and 30 wt% silica sol (catalytic conversion industry Co., Ltd.) having an average particle diameter of 10 nm of silica fine particles. ), Cataloid SI-30) 50 g was mixed to prepare a silica sol having an average particle size of silica fine particles of 15 nm. A sodium aluminate aqueous solution was added to the sol in the same manner as in Example 1 to prepare a silica sol containing 0.6% by weight of alumina. The zeta potential of the silica fine particles in the silica sol having a pH of 5 was −45 mV, and a droop test was conducted in the same manner as in Example 1 using this silica sol. The results are shown in Table 1.
[0016]
Example 6
Using the dripping silica sol prepared in Example 5, the dripping test of vinegar was performed under the following conditions.
500 ml of raw vinegar was sampled in a 1 liter beaker equipped with a stirrer, and 1.5 ml of the above silica sol was added while stirring and stirred for 5 minutes. Next, 15 ml of a 5 wt% gelatin aqueous solution was added, and stirring was continued for 10 minutes. Then, the stirrer was stopped and the change in turbidity with elapsed time was measured. The results are shown in Table 1.
[0017]
Example 7
Using the silica sol for lowering prepared in Example 5, the soy sauce lowering test was performed under the following conditions.
500 ml of fired soy sauce was collected in a 1 liter beaker equipped with a stirrer, and 0.6 ml of the above silica sol was added while stirring, and stirred for 5 minutes. Next, 3 ml of a 1% by weight gelatin aqueous solution was added, and stirring was continued for 10 minutes. Thereafter, the stirrer was stopped, and the change in turbidity due to the elapsed time was measured by diluting 20 times with a 10% NaCl aqueous solution. The results are shown in Table 1.
[0018]
Example 8
Using the silica sol for lowering prepared in Example 5, a wine lowering test was performed under the following conditions.
500 ml of raw wine is taken in a 1 liter beaker equipped with a stirrer, 0.08 g of bentonite is added while stirring, and after stirring for 5 minutes, 0.1 ml of silica sol is added, and then 0.3 ml of 1 wt% gelatin aqueous solution is added. Stirring was continued for 10 minutes after the addition. Then, the stirrer was stopped and the change in turbidity with elapsed time was measured with a corona turbidimeter. The results are shown in Table 1.
[0019]
Comparative Example 1
Using a 30 wt% silica sol (catalyst SI-30, manufactured by Catalytic Chemical Industry Co., Ltd.) having an average particle diameter of silica fine particles of 10 nm, a sake brewing test was performed under the following conditions. The zeta potential of the silica fine particles when the sol was pH 5 was −20 mV.
500 ml of raw material sake was collected in a 1 liter beaker equipped with a stirrer, 0.75 g of activated carbon was added with stirring, and after 5 minutes, 0.3 ml of the silica sol was added and stirred for 5 minutes. Subsequently, 1.5 ml of a 1% by weight gelatin aqueous solution was added, and stirring was continued for 10 minutes. Then, the stirrer was stopped and the change in turbidity with elapsed time was measured with a corona turbidimeter. The results are shown in Table 1.
[0020]
Comparative Example 2
Except for using the silica fine particles of Comparative Example 1, a 30 wt% silica sol (catalyst chemical industry, Cataloid SI-45P) having an average particle diameter of 45 nm was used, which was exactly the same as Comparative Example 1. A droop test was conducted. The results are shown in Table 1.
[0021]
Comparative Example 3
In the vinegar lowering test of Example 6, exactly the same as Example 6 except that 30 wt% silica sol (catalyst chemical industry, Cataloid SI-45P) having an average particle diameter of 45 nm was used. Then, a vinegar dripping test was conducted. The results are shown in Table 1.
[0022]
Comparative Example 4
In the soy sauce lowering test of Example 7, the same as Example 7 except that 30 wt% silica sol (catalyst chemical industry Co., Ltd., Cataloid SI-45P) having an average particle size of silica fine particles of 45 nm was used. Then, the soy sauce dripping test was conducted. The results are shown in Table 1.
[0023]
[Table 1]
[0024]
【The invention's effect】
As apparent from the results of the lowering test in Table 1, the lowering agent of the present invention is a silica sol having a negative zeta potential of silica fine particles and an absolute value of 35 mV or more. Therefore, the zeta potential value is from −35 mV. Compared with a normal silica sol whose absolute value is small, the lowering speed is faster, and the time required for lowering can be shortened.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000178029A JP3632751B2 (en) | 2000-06-14 | 2000-06-14 | Lowering agent for fermented liquid food and lowering method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000178029A JP3632751B2 (en) | 2000-06-14 | 2000-06-14 | Lowering agent for fermented liquid food and lowering method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001352966A JP2001352966A (en) | 2001-12-25 |
JP3632751B2 true JP3632751B2 (en) | 2005-03-23 |
Family
ID=18679535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000178029A Expired - Fee Related JP3632751B2 (en) | 2000-06-14 | 2000-06-14 | Lowering agent for fermented liquid food and lowering method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3632751B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005062606A1 (en) * | 2005-12-23 | 2007-07-05 | Deutsche Institute Für Textil- Und Faserforschung Denkendorf | New nano-scale primary particle based on silicon oxide/mixed oxide of silicon oxide and other metal oxide, useful e.g. for hydrophilic coating of hydrophobic textile materials |
JP5137521B2 (en) * | 2006-10-12 | 2013-02-06 | 日揮触媒化成株式会社 | Konpira sugar-like sol and process for producing the same |
JP4907317B2 (en) | 2006-11-30 | 2012-03-28 | 日揮触媒化成株式会社 | Kinpe sugar-like inorganic oxide sol, method for producing the same, and abrasive containing the sol |
CN113186236A (en) * | 2021-05-28 | 2021-07-30 | 汕头大学 | Method for increasing yield of monascus yellow pigment by adding particles into monascus fermentation broth |
-
2000
- 2000-06-14 JP JP2000178029A patent/JP3632751B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001352966A (en) | 2001-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06107409A (en) | Sedimented silicic acid and its preparation | |
JP2008137822A (en) | Kinpe sugar-like inorganic oxide sol, method for producing the same, and abrasive containing the sol | |
FR2589751A1 (en) | PROCESS FOR ADSORPTING PROTEINS FROM FLUIDS | |
EP1098848B1 (en) | Novel dispersible aluminium hydrate, method for preparing same and use for preparing catalysts | |
JP3632751B2 (en) | Lowering agent for fermented liquid food and lowering method using the same | |
EP0287232B1 (en) | Amorphous silicas | |
MX2009001405A (en) | Beer clarification aid based on silica xerogel with high filterability. | |
JPH11157827A (en) | New silicon dioxide | |
CN114249330A (en) | A kind of method for preparing large particle size and narrow distribution silica sol | |
Hwang et al. | Absorption of carbon dioxide into aqueous colloidal silica solution with different sizes of silica particles containing monoethanolamine | |
JP2003520661A (en) | Method for treating aqueous streams containing biosolids | |
JP6260617B2 (en) | Diamond abrasive recovery method | |
JPH0813265B2 (en) | Smelting agent for fermented liquid food and slag reducing method using the same | |
CN113861967B (en) | Sulfur quantum dot with ultrahigh fluorescence quantum yield and preparation method and application thereof | |
JPH09271667A (en) | Production of carbon-containing catalyst carrier | |
JP5598580B2 (en) | Abrasive ingredients containing cerium oxide | |
EP0231897A2 (en) | Aged silica | |
JP6372059B2 (en) | Collection method of cerium abrasive grains | |
JP4164721B2 (en) | Flocculant composition for water treatment and use thereof | |
JP6440638B2 (en) | Process for producing high solids colloidal silica | |
JP2003268354A (en) | Method for manufacturing aqueous dispersion of fumed silica | |
JP2005073679A (en) | Method for lowering fermented liquid food | |
JP2003020419A (en) | Carbon black pigment for water-based ink and water-based ink using it | |
JP2000106863A (en) | Orientation lowering method | |
JP3691639B2 (en) | Liquid purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |