[go: up one dir, main page]

JP3630298B2 - Bonding method of resin molded products - Google Patents

Bonding method of resin molded products Download PDF

Info

Publication number
JP3630298B2
JP3630298B2 JP2000200900A JP2000200900A JP3630298B2 JP 3630298 B2 JP3630298 B2 JP 3630298B2 JP 2000200900 A JP2000200900 A JP 2000200900A JP 2000200900 A JP2000200900 A JP 2000200900A JP 3630298 B2 JP3630298 B2 JP 3630298B2
Authority
JP
Japan
Prior art keywords
resin material
resin
resin member
alloy
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000200900A
Other languages
Japanese (ja)
Other versions
JP2002018961A (en
Inventor
秀生 中村
奈津彦 片平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000200900A priority Critical patent/JP3630298B2/en
Publication of JP2002018961A publication Critical patent/JP2002018961A/en
Application granted granted Critical
Publication of JP3630298B2 publication Critical patent/JP3630298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/341Measures for intermixing the material of the joint interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1244Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue
    • B29C66/12449Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue being asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12469Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/50Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by aesthetic components not otherwise provided for, e.g. decorative trim, partition walls or covers
    • F21S41/55Attachment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1638Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/747Lightning equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To mutually bond resin materials low in compatibility while utilizing the irradiation with laser beam. SOLUTION: A first resin member 11 comprises a transmission resin material having transmissivity to laser beam being a heating source and a second resin member 12 comprises a non-transmission resin material having no transmissivity to laser beam. An alloy resin material 13 consists of a first resin material constituting the first resin member 11 and a second resin material constituting the second resin member 12 and the first and second resin materials are mutually low in compatibility. In such a state that the alloy resin material 13 is arranged between the first and second resin members 11 and 12, the alloy resin material 13 is irradiated with laser beam on the side of the first resin member 11 comprising the transmission resin material to integrally bond the first and second resin members 11 and 12 mutually low in compatibility through the alloy resin material by laser welding while heating and melting the whole of the alloy resin material 13.

Description

【0001】
【発明の属する技術分野】
本発明は樹脂成形品の接合方法に関し、詳しくはレーザ光の照射を利用して、互いに相溶性の小さい樹脂材同士を接合する樹脂成形品の接合方法に関する。
【0002】
【従来の技術】
近年、軽量化及び低コスト化等の観点より、自動車部品等、各種分野の部品を樹脂化して樹脂成形品とすることが頻繁に行われている。また、樹脂成形品の高生産性化等の観点より、樹脂成形品を予め複数に分割して成形し、これらの分割成形品を互いに接合する手段が採られることが多い。
【0003】
このような樹脂よりなる分割成形品を互いに接合する手段として、レーザ溶着を利用する方法が特開昭60−214931号公報に示されている。この接合方法は、レーザ光に対して透過性のある透過性樹脂材と、レーザ光に対して透過性のない非透過性樹脂材とを重ね合わせ、該透過性樹脂材側からレーザ光を照射することにより、透過樹脂材と非透過樹脂材との当接面を加熱溶融させて両者を一体的に接合するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記レーザ溶着による樹脂成形品の接合方法は、互いに相溶性のある樹脂材同士を接合するものである。したがって、上記従来のレーザ溶着方法によっては、互いに相溶性の小さい樹脂材同士を良好に接合することができなかった。
【0005】
本発明は上記実情に鑑みてなされたものであり、レーザ光照射を利用しつつ、互いに相溶性の小さい樹脂材同士を接合することのできる樹脂成形品の接合方法を提供することを解決すべき技術課題とするものである。
【0006】
【課題を解決するための手段】
(1)上記課題を解決する請求項1記載の樹脂成形品の接合方法は、加熱源としてのレーザ光に対して透過性のある透過樹脂材と、該レーザ光に対して透過性のない非透過樹脂材との当接界面を、該透過樹脂材側からの該レーザ光の照射により加熱溶融させて溶着するレーザ溶着を利用して、互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる第1樹脂部材及び第2樹脂部材を一体的に接合する樹脂成形品の接合方法であって、上記第1樹脂部材と上記第2樹脂部材との間に、上記第1樹脂材料及び上記第2樹脂材料よりなるアロイ樹脂材を介在させる配置工程と、上記レーザ光照射により、少なくとも上記第1樹脂部材と上記アロイ樹脂材との第1当接界面及び上記第2樹脂部材と該アロイ樹脂材との第2当接界面を加熱溶融させる照射工程とからなることを特徴とするものである。
好適な態様において、前記第1樹脂部材及び前記第2樹脂部材のうちの一方が透過樹脂材よりなるとともに他方が非透過樹脂材よりなり、かつ、前記アロイ樹脂材が透過樹脂材又は非透過樹脂材よりなる
好適な態様において、前記第1樹脂部材及び前記第2樹脂部材の双方が透過樹脂材及び非透過樹脂材のうちの一方よりなり、かつ、前記アロイ樹脂材が透過樹脂材及び非透過樹脂材のうちの他方よりなる
好適な態様において、前記アロイ樹脂材はシート状、粉末状又はペースト状である
好適な態様において、前記アロイ樹脂材は断面略三角形の略三角柱形状であり、この略三角形状を構成する三面のうちの二面が前記際1樹脂部材とのテーパ状第1当接界面及び第2樹脂部材とのテーパ状第2当接界面である。
【0009】
【発明の実施の形態】
(1)請求項1記載の樹脂成形品の接合方法は、加熱源としてのレーザ光に対して透過性のある透過樹脂材と、該レーザ光に対して透過性のない非透過樹脂材との当接界面を、該透過樹脂材側からの該レーザ光の照射により加熱溶融させて溶着するレーザ溶着を利用して、互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる第1樹脂部材及び第2樹脂材を一体的に接合するもので、配置工程と、照射工程とからなる。
【0010】
配置工程では、第1樹脂部材と第2樹脂部材との間に、第1樹脂材料及び第2樹脂材料よりなるアロイ樹脂材を介在させる。
【0011】
照射工程では、レーザ光照射により、少なくとも第1樹脂部材とアロイ樹脂材との第1当接界面及び第2樹脂部材とアロイ樹脂材との第2当接界面を加熱溶融させる。アロイ樹脂材は第1樹脂材料及び第2樹脂材料よりなるので、第1樹脂部材とアロイ樹脂材との第1当接界面が加熱溶融されれば、この第1当接界面では互いに相溶性のあるアロイ樹脂材中の第1樹脂材料と第1樹脂部材とを溶着させることができ、一方第2樹脂部材とアロイ樹脂材との第2当接界面が加熱溶融されれば、この第2当接界面では互いに相溶性のあるアロイ樹脂材中の第2樹脂材料と第2樹脂部材とを溶着させることができる。
【0012】
こうして、第1樹脂材料及び第2樹脂材料よりなるアロイ樹脂材を介して、互いに相溶性の小さい第1樹脂部材及び第2樹脂部材をレーザ溶着により一体的に接合することが可能となる。
【0013】
上記透過樹脂材の種類としては、熱可塑性を有し、加熱源としてのレーザ光を所定の透過率以上で透過させうるものであれば特に限定されない。例えば、ナイロン6(PA6)やナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)等を挙げることができる。なお、必要に応じて、着色したものを用いてもよい。
【0014】
上記非透過樹脂材の種類としては、熱可塑性を有し、加熱源としてのレーザ光を透過させずに吸収しうるものであれば特に限定されない。例えば、ナイロン6(PA6)やナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、PPS等に、カーボンブラック、染料や顔料等の所定の着色材を混入したものを挙げることができる。
【0015】
上記したような透過樹脂材及び非透過樹脂材のうちから、適宜互いに相溶性の小さい樹脂材料同士の組み合わせを選んで、第1樹脂部材及び第2樹脂部材を構成する第1樹脂材料及び第2樹脂材料とするとともに、該第1樹脂材料及び該第2樹脂材料によりアロイ樹脂材を構成することができる。
【0016】
互いに相溶性の小さい樹脂材料同士の組み合わせとして、具体的にはPCとPA6やPA66等のPAとの組み合わせ、PCとPPとの組み合わせ、PCとPETとの組み合わせ、PCとABSとの組み合わせ、PCとPBTとの組み合わせ、PPとPA6やPA66等のPAとの組み合わせ、PPとPBTとの組み合わせ、PBTとPA6やPA66等のPAとの組み合わせ、PAとPPSとの組合せ等を挙げることができる。
【0017】
アロイ樹脂材における第1樹脂材料と第2樹脂材料との配合割合は、10:90〜90:10程度とすることができるが、25:75〜75:25程度とすることが好ましく、50:50とすることが最適である。
【0018】
なお、アロイ樹脂材は、相溶化剤等又は架橋材を添加したり、あるいは相溶化剤及び架橋材を添加したりすることにより製造することができる。
【0019】
そして、請求項1記載の樹脂成形品の接合方法において、上記第1樹脂部材、上記第2樹脂部材及び上記アロイ樹脂材は、三者のうち少なくとも一つを加熱源としてのレーザ光に対して透過性のある透過樹脂材とし、かつ、三者のうち少なくとも一つを該レーザ光に対して透過性のない非透過樹脂材とすることができる。具体的には、▲1▼第1樹脂部材及び第2樹脂部材のうちの一方が透過樹脂材よりなるとともに他方が非透過樹脂材よりなり、かつ、アロイ樹脂材が透過樹脂材又は非透過樹脂材よりなる第1の態様と、▲2▼第1樹脂部材及び第2樹脂部材の双方が透過樹脂材及び非透過樹脂材のうちの一方よりなり、かつ、アロイ樹脂材が透過樹脂材及び非透過樹脂材のうちの他方よりなる第2の態様とすることができる。
【0020】
ここに、上記レーザ溶着は、加熱源としてのレーザ光を透過樹脂材側から照射して、該透過樹脂材内を透過したレーザ光を非透過樹脂材の該透過樹脂材との当接界面に到達、吸収させ、該非透過樹脂材の当接界面にエネルギーとして蓄積させることにより、該非透過樹脂材の当接界面を加熱溶融させるとともに、この非透過樹脂材の当接界面からの熱伝達により透過樹脂材の当接界面を加熱溶融させて、両者を溶着するものである。
【0021】
▲1▼上記第1の態様においては、第1樹脂部材及び第2樹脂部材のうちの一方とアロイ樹脂材との当接界面が透過樹脂材同士又は非透過樹脂材同士の当接界面となり、かつ、第1樹脂部材及び第2樹脂部材のうちの他方とアロイ樹脂材との当接界面が透過樹脂材及び非透過樹脂材同士の当接界面となる。これらのうち透過樹脂材及び非透過樹脂材同士の当接界面は、上述したように透過樹脂材側からのレーザ光照射によりレーザ溶着することができる。しかし、透過樹脂材同士の当接界面や非透過樹脂材同士の当接界面は、上述したレーザ溶着の作用のみによって溶着することができない。このとき、アロイ樹脂材が非透過樹脂材の場合は、透過樹脂材側から照射されたレーザ光が透過樹脂材及び非透過樹脂材同士の当接界面側からアロイ樹脂材に吸収されることにより、該アロイ樹脂材の全体が加熱溶融されれば、反対側の非透過樹脂材同士の当接界面も加熱溶融させることができる。一方、アロイ樹脂材が透過樹脂材の場合は、上述したレーザ溶着の作用により、まず透過樹脂材及び非透過樹脂材同士の当接界面側において該非透過樹脂材を加熱溶融させ、この当接界面からの熱伝導によりアロイ樹脂材の全体を加熱溶融させることができれば、反対側の透過樹脂材同士の当接界面も加熱溶融させることができる。
【0022】
すなわち、上記第1の態様の場合は、透過樹脂材側からのレーザ光照射によりアロイ樹脂材の全体を加熱溶融させる必要があり、このようにアロイ樹脂材の全体が加熱溶融されれば、該アロイ樹脂材を介して、互いに相溶性の小さい第1樹脂部材と第2樹脂部材とを一体的に接合させることができる。
【0023】
そこで、上記第1の態様においては、アロイ樹脂材の厚さを0.5mm以下とすることが好ましく、0.2mm以下とすることがより好ましい。アロイ樹脂材の厚さが0.5mmを超えると、透過樹脂材側からのレーザ光照射によりアロイ樹脂材の全体を加熱溶融させることが著しく困難となり、またたとえアロイ樹脂材の全体を加熱溶融させることができたとしても、レーザ光の照射時間等、エネルギー的に非効率となる。一方、アロイ樹脂材の厚さが薄すぎると、アロイ樹脂材を介して互いに相溶性の小さい第1樹脂部材及び第2樹脂部材を接合させるというアロイ樹脂材本来の作用効果を期待できなくなることから、アロイ樹脂材の厚さは0.05mm以上とすることが好ましく、0.1mm以上とすることがより好ましい。
【0024】
また、上記第1の態様におけるアロイ樹脂材の形状は、取り扱いの容易性等を考慮すればシート状とすることが好ましいが、粉末状又はペースト状であってもよい。
【0025】
さらに、上記第1の態様においては、アロイ樹脂材を非透過樹脂材とすることが好ましい。アロイ樹脂材が非透過樹脂材であれば、透過樹脂材側から照射されたレーザ光が直接アロイ樹脂材に吸収されるため、アロイ樹脂材の全体を加熱溶融させるのに時間的に有利になると考えられるからである。
【0026】
▲2▼上記第2の態様においては、第1樹脂部材とアロイ樹脂材との当接界面及び第2樹脂部材とアロイ樹脂材との当接界面がいずれも透過樹脂材及び非透過樹脂材同士の当接界面となることから、上述したレーザ溶着の作用により、第1樹脂部材とアロイ樹脂材との当接界面及び第2樹脂部材とアロイ樹脂材との当接界面を溶着することができる。このため、上記第2の態様の場合は、必ずしもアロイ樹脂材の全体を加熱溶融させる必要はない。ただし、上記第2の態様の場合であっても、接合強度の向上の観点より、アロイ樹脂材の全体を加熱溶融させる方が望ましい。
【0027】
そこで、上記第2の態様において、アロイ樹脂材の全体を加熱溶融させる場合は、上記第1の態様と同様、アロイ樹脂材の厚さを0.05〜0.5mmとすることが好ましく(より好ましくは0.1〜0.2mm)、アロイ樹脂材の形状をシート状、粉末状又はペースト状とすることが好ましい。
【0028】
一方、上記第2の態様において、アロイ樹脂材の全体を加熱溶融させない場合は、アロイ樹脂材を断面略三角形の略三角柱形状とし、この略三角柱形状を構成する三面のうちの二面を、第1樹脂部材とのテーパ状第1当接界面及び第2樹脂部材とのテーパ状第2当接界面とすることが好ましい。
【0029】
こうすることで、アロイ樹脂材が透過樹脂材よりなるとともに第1樹脂部材及び第2樹脂部材が非透過樹脂材よりなる場合は、非透過樹脂材よりなる第1樹脂部材及び第2樹脂部材のテーパ状第1当接界面及びテーパ状第2当接界面が向く側の一方向のみからレーザ光を照射することにより、透過樹脂材よりなるアロイ樹脂材中を透過したレーザ光を第1樹脂部材及び第2樹脂部材のテーパ状第1当接界面及びテーパ状第2当接界面の双方に到達、吸収させて、該テーパ状第1当接界面及び該テーパ状第2当接界面におけるレーザ溶着を行うことが可能となる。また、アロイ樹脂材が非透過樹脂材よりなるとともに第1樹脂部材及び第2樹脂部材が透過樹脂材よりなる場合は、非透過樹脂材よりなるアロイ樹脂材のテーパ状第1当接界面及びテーパ状第2当接界面が向く側の一方向からレーザ光を照射することにより、透過樹脂材よりなる第1樹脂部材中を透過したレーザ光をアロイ樹脂材のテーパ状第1当接界面に到達、吸収させるとともに、透過樹脂材よりなる第2樹脂部材中を透過したレーザ光をアロイ樹脂材のテーパ状第2当接界面に到達、吸収させて、該テーパ状第1当接界面及び該テーパ状第2当接界面におけるレーザ溶着を行うことが可能となる。ただし、アロイ樹脂材を透過樹脂材とするとともに第1樹脂部材及び第2樹脂部材を非透過樹脂材とする前者の態様によれば、非透過樹脂材よりなる第1樹脂部材及び第2樹脂部材のテーパ状第1当接界面及びテーパ状第2当接界面のうち一方のテーパ状当接界面におけるレーザ光の反射を利用して他方のテーパ状当接界面へのレーザ光吸収を促進させることができ、レーザ照射時間の短縮化等を図ることが可能となるため、好ましい。
【0030】
なお、上記一方向のみからのレーザ光照射とは、レーザ光の照射途中で一つの当接界面に対する照射角を変更したり、又は二つの当接界面のそれぞれに対して同一若しくは異なる照射角でレザー光を照射したりすることなく、二つの当接界面のうちから任意に選ばれた一つの当接界面に対して一定の照射角で照射するある一方向からの一のレーザ光により二つの接合面を同時に照射することを意味する。
【0031】
また、加熱源として用いるレーザ光の種類としては、レーザ光を透過させる透過樹脂材の吸収スペクトルや板厚(透過長)等との関係で、透過樹脂材内での透過率が所定値以上となるような波長を有するものが適宜選定される。例えば、YAG:Nd3+レーザ(レーザ光の波長:1060nm)や半導体レーザ(レーザ光の波長:500〜1000nm)を用いることができる。
【0032】
なお、レーザの出力、照射密度や加工速度(移動速度)等の照射条件は、樹脂の種類等に応じて適宜設定可能である。
【0056】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0057】
(実施例1)
本実施例は、請求項1、2又は4記載の樹脂成形品の接合方法を具現化したもので、レーザ溶着を利用しつつ、アロイ樹脂材を介して互いに相溶性の小さい第1樹脂部材及び第2樹脂部材を一体的に接合するものである。また、この実施例は、第1樹脂部材及び第2樹脂部材のうちの一方が透過樹脂材よりなるとともに他方が非透過樹脂材よりなり、かつ、アロイ樹脂材が透過樹脂材又は非透過樹脂材よりなる第1の態様を具現化したものである。
【0058】
図1は、自動車用ヘッドライトを切断した斜視図であり、図2は接合構造を示す要部断面図である。
【0059】
このヘッドライトは、左右に2分割されていて、左側分割体である第1樹脂部材11と右側分割体である第2樹脂部材12とから外郭が構成された中空体である。第1樹脂部材11及び第2樹脂部材12は、互いに整合して嵌合し合う当接端部11a及び12aをそれぞれ有し、この当接端部11a及び12a同士がアロイ樹脂材13を介してレーザ溶着により一体的に接合されている。
【0060】
第1樹脂部材11を構成する第1樹脂材料はポリカーボネート(PC)よりなり、またこの第1樹脂部材11は加熱源としてのレーザ光に対して透過性のある透過樹脂材である。
【0061】
第2樹脂部材12を構成する第2樹脂材料はガラス繊維が30wt%、着色剤としてのカーボンブラックが適宜量添加されたABSよりなり、またこの第2樹脂部材12は加熱源としてのレーザ光に対して透過性のない非透過樹脂材である。
【0062】
なお、上記第1樹脂部材11はヘッドライトのレンズを構成し、上記第2樹脂部材12はヘッドライトのカバーを構成する。また、上記第1樹脂材料としてのPCと第2樹脂材料としてのABSは互いに相溶性の小さいものである。
【0063】
また、第1樹脂部材11の底壁11bの内面には、PCよりなるエクステンション14が配設され、第2樹脂部材12の内面には、エポキシ(BMC)よりなるリフレクター(反射鏡)15が配設されている。そして、第2樹脂部材12及びリフレクター15の後方壁にそれぞれ貫設された貫孔12b及び15aにはランプ16が配設されるとともに、第2樹脂材12の貫孔12bがカバー17で塞がれている。
【0064】
図2に示すように、第1樹脂部材11の当接端部11aには、中空体の内側(図2の下側)の基端側(図2の左端側)に段部を残しつつ内側及び外側がテーパ状に切り欠かれるととものその先端部が切り落とされ、先端側へ漸次縮小して突出する形状に形成された嵌合凸部11cが設けられている。この嵌合凸部11cは、先端接合端面11c1 と、外側及び内側の各テーパ状接合面11c2 と、内側のテーパ状接合面11c2 の基端に交差する内側の段状接合端面11c3 とを有している。
【0065】
一方、第2樹脂部材12の当接端部12aには、先端側(図2の左端側)へ漸次拡開して突出する形状に形成され、上記嵌合凸部11cと嵌合可能な嵌合凹部12cが設けられている。この嵌合凹部12cは、上記先端接合端面11c1 と互いに整合する底接合端面12c1 と、各上記テーパ状接合面11c2 とそれぞれ互いに整合する外側及び内側の各テーパ状接合面12c2 と、内側のテーパ状接合面12c2 の先端に交差し、上記段状接合端面11c3 と互いに整合する先端接合端面12c3 とを有している。
【0066】
そして、第1樹脂部材11の嵌合凸部11c及び第2樹脂部材12の嵌合凹部12c同士が上記アロイ樹脂材13を介して嵌合されるとともに、先端接合端面11c1 及び底接合端面12c1 同士と、外側のテーパ状接合面11c2 及び12c2 同士と、内側のテーパ状接合面11c2 及び12c2 同士と、段状接合端面11c3 及び先端接合端面12c3 同士とが、上記アロイ樹脂材13を介してそれぞれレーザ溶着により一体的に接合されている。
【0067】
このアロイ樹脂材13は、上記第1樹脂材料としてのPCと上記第2樹脂材料としてのABSとからなる。このアロイ樹脂材13は相溶化剤、架橋材が添加された材料を圧縮成形することにより所定形状に成形した厚さが0.2mmのシート状のもので、第1樹脂材料と第2樹脂材料との配合割合は50:50とされている。また、このアロイ樹脂材13には着色剤としてのカーボンブラックが適宜量添加されており、アロイ樹脂材13は加熱源としてのレーザ光に対して透過性のない非透過樹脂材とされている。
【0068】
上記構成を有する本実施例の樹脂成形品は、以下のようにして製造した。まず、第1樹脂部材11及び第2樹脂部材12を射出成形によりそれぞれ所定形状に形成した後、第1樹脂部材11の内面にエクステンションを配設するとともに、第2樹脂材12の内面にリフレクターを配設した。そして、第1樹脂部材11の嵌合凸部11cと第2樹脂部材12の嵌合凸部12cとをアロイ樹脂材13を介して嵌合し、第1樹脂部材11と第2樹脂部材12との間にアロイ樹脂材13を介在させた。この状態で、透過樹脂材としての第1樹脂部材11側から第2樹脂部材12の底接合端面12c1 、両テーパ状接合面12c2 及び先端接合端面12c3 に向けてレーザ光を照射した。なお、レーザ光としてはYAG−ネオジウムレーザ光(波長1060nm)を用いた。照射条件は、出力:200〜400W、加工速度:5m/minとした。
【0069】
このレーザ光照射により、アロイ樹脂材13の全体を加熱溶融するとともに、第1樹脂部材11とアロイ樹脂材13との第1当接界面及び第2樹脂部材12とアロイ樹脂部材13との第2当接界面を加熱溶融して溶着し、アロイ樹脂材13を介して、第1樹脂部材11と第2樹脂部材12とをレーザ溶着により一体的に接合した。
【0070】
このように互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる第1樹脂部材11及び第2樹脂部材12を、レーザ溶着により接合する場合であっても、両者の間にアロイ樹脂材13を介在させることにより、良好に接合することができた。
【0071】
また、こうして得られた接合部では、先端接合端面11c1 及び底接合端面12c1 同士、外側のテーパ状接合面11c2 及び12c2 同士、内側のテーパ状接合面11c2 及び12c2 同士、並びに段状接合端面11c3 及び先端接合端面12c3 同士のレーザ溶着による接合に加えて、第1樹脂部材11の嵌合凸部11cと第2樹脂部材12の嵌合凹部12cとの嵌合、及び第1樹脂部材11の段状接合端面11c3 と第2樹脂部材12の先端接合端面12c3 との係合により構造的にも強固な接合部となっているので、より高い接合強度及び耐圧強度を有している。
【0072】
また、本実施例の樹脂成形品では、透過性樹脂よりなる第1樹脂部材11の当接端部11aに嵌合凸部11cを設けるとともに、非透過性樹脂よりなる第2樹脂部材12の当接端部12aに嵌合凹部12cを設けている。このため、第1樹脂部材11の透過性樹脂内におけるレーザ光の散乱に加えて、第2樹脂部材12の嵌合凹部12cの内面(底接合端面12c1 及び各テーパ状接合面12c2 )におけるレーザ光の反射を利用することができるので、レーザ光を一方向のみから照射する場合であっても、嵌合凸部11cの外面及び嵌合凹部12cの内面同士を全面的に、かつ、略均等にレーザ溶着することが可能となる。
【0073】
(実施例2)
本実施例は、請求項1、2又は4記載の樹脂成形品の接合方法を具現化したもので、レーザ溶着を利用しつつ、アロイ樹脂材を介して互いに相溶性の小さい第1樹脂部材及び第2樹脂部材を一体的に接合するものである。また、この実施例は、第1樹脂部材及び第2樹脂部材のうちの一方が透過樹脂材よりなるとともに他方が非透過樹脂材よりなり、かつ、アロイ樹脂材が透過樹脂材又は非透過樹脂材よりなる第1の態様を具現化したものである。
【0074】
図3は自動車用の電子制御装置(ECU)の斜視図であり、図4はこの電子制御装置の断面図である。
【0075】
この電子制御装置は、ハウジングを構成する第1樹脂部材21と、蓋を構成する第2樹脂部材22とから外郭が構成された中空体である。第1樹脂部材21の側壁の上端面及び第2樹脂部材22の周縁部には、互いに整合して嵌合し合う環状凹部21a及び環状凸部22aがそれぞれ設けられており、この環状凹部21a及び環状凸部22a同士がアロイ樹脂材23を介してレーザ溶着により一体的に接合されている。
【0076】
第1樹脂部材21を構成する第1樹脂材料はポリブチレンテレフタレート(PBT)よりなり、またこの第1樹脂部材21は加熱源としてのレーザ光に対して透過性のない非透過樹脂材である。なお、PBTは、結晶構造により材料固有値としての光透過性が低いことから、非透過樹脂材として用いた方が良い材料である。
【0077】
第2樹脂部材22を構成する第2樹脂材料22はナイロン6(PA6)よりなり、またこの第2樹脂部材22は加熱源としてのレーザ光に対して透過性のある透過樹脂材である。なお、第2樹脂材料22としてPA6の他にPC又はABSを採用してもよい。
【0078】
なお、上記第1樹脂部材21の側壁には、低コスト化の観点よりコネクタ24が一体に形成されており(図3参照)、また第1樹脂部材21内にはこのコネクタ24に接続された電気回路25が配設されている(図4参照)。また、上記第1樹脂材料としてのPBTと第2樹脂材料としてのPA6とは互いに相溶性の小さいものである。
【0079】
上記アロイ樹脂材23は、上記第1樹脂材料としてのPBTと上記第2樹脂材料としてのPA6とからなる。このアロイ樹脂材23は相溶化剤、架橋材が添加された材料を圧縮成形することにより所定形状に成形した厚さが0.2mmのシート状のもので、第1樹脂材料と第2樹脂材料との配合割合は50:50とされている。また、このアロイ樹脂材13は加熱源としてのレーザ光に対して透過性のない非透過樹脂材とされている。
【0080】
上記構成を有する本実施例の樹脂成形品は、以下のようにして製造した。まず、第1樹脂部材21及び第2樹脂部材22を射出成形によりそれぞれ所定形状に形成した後、第1樹脂部材21の内面に電気回路25を配設した。そして、第1樹脂部材21の環状凹部21aと第2樹脂部材22の環状凸部22aとをアロイ樹脂材23を介して嵌合し、第1樹脂部材21と第2樹脂部材22との間にアロイ樹脂材23を介在させた。この状態で、透過樹脂材としての第2樹脂部材22側から第1樹脂部材21の環状凹部21aに向けてレーザ光を照射した。なお、レーザ光としてはYAG−ネオジウムレーザ光(波長1060nm)を用いた。照射条件は、出力:200〜400W、加工速度:5m/minとした。
【0081】
このレーザ光照射により、アロイ樹脂材23の全体を加熱溶融するとともに、第1樹脂部材21とアロイ樹脂材23との第1当接界面及び第2樹脂部材22とアロイ樹脂部材23との第2当接界面を加熱溶融して溶着し、アロイ樹脂材23を介して、第1樹脂部材21と第2樹脂部材23とをレーザ溶着により一体的に接合した。
【0082】
このように互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる第1樹脂部材21及び第2樹脂部材22を、レーザ溶着により接合する場合であっても、両者の間にアロイ樹脂材23を介在させることにより、良好に接合することができた。
【0083】
また、本実施例によれば、以下に示す作用効果も期待できる。
【0084】
自動車用の電子制御装置においては、装置内への水の侵入を防ぐべく密封性が求められる。このため、従来、ハウジングと蓋との接合は、熱硬化性接着剤により接着したり、あるいは高価なフッ素ゴム系のOリングを介してボルト及び埋め込みナットで締結したりすることにより行われている。しかし、熱硬化性接着剤を利用する場合は、炉内でのバッジ加熱処理時に電気回路25のはんだ接合部等に熱影響が発生し易く、また生産性も悪い。また、Oリングを介するボルト及び埋め込みナットの締結手段を利用する場合は、部品点数の増加と工程増加で高コストにある。この点、レーザ溶着を利用する本実施例によれば、熱影響により電気回路25に悪影響が発生したり、部品点数が増加したりすることがないことから、上記従来の問題を解消することができる。
【0085】
また、自動車用の電子制御装置におけるコネクタ24には吸水に対する寸法安定性が求められる。このため、コネクタ24の材料には従来より耐吸水性に優れるPBT等が採用されている。そして、本実施例のように低コスト化を図るべくコネクタ24をハウジングとしての第1樹脂部材21と一体成形しようとすると、第1樹脂部材21の樹脂材料も当然にPBTとなる。ところが、上述したようにPBTは材料固有値としての光透過性が低く、非透過樹脂材としてしか用いることができない。そして、このPBTと相溶性があり、かつ、レーザ光に対して透過性のある適当な樹脂材料は、一般的には見あたらない。このため、ハウジングの樹脂材料にPBTを採用した場合、従来のレーザ溶着によっては、蓋部材を接合することができない。この点、本実施例によれば、PBTよりなるハウジングとしての第1樹脂部材21に対して、互いに相溶性が小さく、かつ、レーザ光に対して透過性のあるPA6よりなる蓋としての第2樹脂部材22を、アロイ樹脂材23を介することレーザ溶着することができる。ハウジングとしての第1樹脂部材21とコネクタ24とを一体成形して低コスト化を図りつつ、コネクタ24における吸水に対する寸法安定性を向上させることが可能となる。
【0086】
なお、上記実施例2において、蓋としての第2樹脂部材22を構成する第2樹脂材料をPAよりも安価なポリプロピレン(PP)として、より低コスト化を図ることも可能である。
【0087】
(実施例3)
本実施例は、請求項1、3又は5記載の樹脂成形品の接合方法を具現化したもので、レーザ溶着を利用しつつ、アロイ樹脂材を介して互いに相溶性の小さい第1樹脂部材及び第2樹脂部材を一体的に接合するものである。また、この実施例は、第1樹脂部材及び第2樹脂部材の双方が透過樹脂材及び非透過樹脂材のうちの一方よりなり、かつ、アロイ樹脂材が透過樹脂材及び非透過樹脂材のうちの他方よりなる第2の態様を具現化したものである。
【0088】
本実施例に係る樹脂成形品は、自動車用インテークマニホールドを構成する第1樹脂部材31と、エアークリーナーを構成する第2樹脂部材32とをアロイ樹脂材33を介してレーザ溶着により一体的に接合したものである。
【0089】
図5に示すように、本実施例におけるアロイ樹脂材33は、断面三角形の三角柱形状を呈している。この三角形状を構成する三面のうちの一面及び該一面に当接する第1樹脂部材31の当接端面は、互いに整合して当接し合うテーパ状第1当接界面33a及び31aをなし、また該三面のうちの他の一面及び該一面に当接する第2樹脂部材32の当接端面は、互いに整合して当接し合うテーパ状第2当接界面33b及び32aをなしている。そして、第1樹脂部材31のテーパ状第1当接界面31a及びアロイ樹脂材33のテーパ状第1当接界面33a同士がレーザ溶着により一体的に接合されるとともに、第2樹脂部材32のテーパ状第2当接界面32a及びアロイ樹脂材33のテーパ状第2当接界面33b同士がレーザ溶着により一体的に接合されている。
【0090】
上記第1樹脂部材31を構成する第1樹脂材料は、ガラス繊維が30wt%、着色材としてのカーボンブラックが適宜量添加されたナイロン6(PA6)よりなり、またこの第1樹脂部材11は加熱源としてのレーザ光に対して透過性のない非過樹脂材である。
【0091】
また、上記第2樹脂部材32を構成する第2樹脂材料は、ガラス繊維が30wt%、着色剤としてのカーボンブラックが適宜量添加されたポリプロピレン(PP)よりなり、またこの第2樹脂部材32は加熱源としてのレーザ光に対して透過性のない非透過樹脂材である。
【0092】
なお、上記第1樹脂材料としてのPA6と第2樹脂材料としてのPPは互いに相溶性の小さいものである。
【0093】
また、上記アロイ樹脂材33は、上記第1樹脂材料としてのPA6と上記第2樹脂材料としてのPPとからなる。このアロイ樹脂材23は圧縮成形により所定形状に成形したもので、第1樹脂材料と第2樹脂材料との配合割合は50:50とされている。また、このアロイ樹脂材33には着色剤としてのカーボンブラックが添加されておらず、アロイ樹脂材33は加熱源としてのレーザ光に対して透過性のある透過樹脂材とされている。
【0094】
なお、上記第1樹脂部材31及び上記第2樹脂部材32の板厚は3mm程度であり、上記アロイ樹脂材33の幅(断面三角形の一辺の長さ)は4mm程度である。
【0095】
上記構成を有する本実施例の樹脂成形品は、以下のようにして製造した。まず、第1樹脂部材31及び第2樹脂部材32を射出成形によりそれぞれ所定形状に形成した後、第1樹脂部材31と第2樹脂部材32との間にアロイ樹脂材33を配設した。そして、透過樹脂材としてのアロイ樹脂材33側から第1樹脂材31のテーパ状第1当接界面31a及び第2樹脂部材32のテーパ状第2当接界面32aに向けてレーザ光を照射した。なお、レーザ光としてはYAG−ネオジウムレーザ光(波長1060nm)を用いた。照射条件は、出力:200〜400W、加工速度:5m/minとした。
【0096】
このレーザ光照射により、第1樹脂部材31及びアロイ樹脂材33のテーパ状第1当接界面31a及び33a同士を加熱溶融して溶着するとともに、第2樹脂材32及びアロイ樹脂材33のテーパ状第2当接界面32a及び33b同士を加熱溶融して溶着し、アロイ樹脂材33を介して、第1樹脂部材31と第2樹脂部材32とをレーザ溶着により一体的に接合した。
【0097】
なお、本実施例では、アロイ樹脂材33は、テーパ状第1当接界面33a付近及びテーパ状第2当接界面33b付近のみを加熱溶融してアロイ樹脂材33の全体を加熱溶融させない態様としたが、接合強度の向上等の観点よりアロイ樹脂材33の全体を加熱溶融することもできる。
【0098】
このように互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる第1樹脂部材31及び第2樹脂部材32を、レーザ溶着により接合する場合であっても、両者の間にアロイ樹脂材33を介在させることにより、良好に接合することができた。
【0099】
また、本実施例においては、アロイ樹脂材33の断面形状を略三角形状にするとともに、アロイ樹脂材33を透過樹脂材としていることから、非透過樹脂材よりなる第1樹脂部材31及び第2樹脂部材32のテーパ状第1当接界面31a及びテーパ状第2当接界面32aが向く側の一方向のみからレーザ光を照射することにより、透過樹脂材よりなるアロイ樹脂材33中を透過したレーザ光を第1樹脂部材31及び第2樹脂部材32のテーパ状第1当接界面31a及びテーパ状第2当接界面32aの双方に到達、吸収させて、該第1テーパ状当接界面31a及び該第2テーパ状当接界面32aにおけるレーザ溶着を行うことが可能となる。さらに、レーザ光の照射時には、非透過樹脂材よりなる第1樹脂部材31及び第2樹脂部材32のテーパ状第1当接界面31a及びテーパ状第2当接界面32aのうち一方のテーパ状当接界面におけるレーザ光の反射を利用して他方のテーパ状当接界面へのレーザ光吸収を促進させることができ、レーザ照射時間の短縮化等を図ることが可能となる。
【0100】
参考例1
参考例は、レーザ光照射を利用しつつ、補強繊維を介して互いに相溶性の小さい第1樹脂部材及び第2樹脂部材を一体的に接合するものである。
【0101】
射出成形法により、板厚が3mmの第1樹脂部材41及び第2樹脂部材42を準備した。
【0102】
この第1樹脂部材41は、母材樹脂としてのPA6(融点:225℃)にガラス繊維(GF)よりなる補強繊維43を30mass%添加したもので、加熱源としてのレーザ光に対して透過性のあるものである。一方、第2樹脂部材42は、母材樹脂としてのPBT(融点:225℃)に補強繊維43を30mass%添加するとともに、着色材としてのカーボンブラックを適宜量添加したもので、加熱源としてのレーザ光に対して透過性のないものである。
【0103】
なお、第1樹脂部材41を構成する第1樹脂材料としてのPA6と、第2樹脂部材42を構成する第2樹脂材料としてのPBTとは、互いに相溶性の小さいものである。
【0104】
また、上記補強繊維43は、いずれも長さ分布が50〜400μmの範囲であり、平均長さが200μmのものである。補強繊維43のうち後述する溶融部44の幅(200μm)よりも短いものの占める割合は、第1樹脂部材41又は第2樹脂部材42中に添加される補強繊維43全体を100mass%としたとき、50mass%である。
【0105】
そして、この補強繊維43の表面には、補強繊維43と第1樹脂部材41及び第2樹脂部材42の双方と化学結合可能な官能基を有するカップリング剤よりなる図示しない結合助長層(厚さ2μm程度)が予め形成されている。なお、本実施例では、カップリング剤として、官能基としてアミノ基を有するシランカップリング剤を用いた。
【0106】
一方、波長が1.06μmのYAG:Nd3+レーザ光を発するレーザトーチ45を準備した。
【0107】
そして、図6に示すように、第2樹脂部材42の上に第1樹脂部材41を重ね合わせるように両者を当接させるとともに、第1樹脂部材41及び第2樹脂部材42を図示しないクランプ手段でクランプした。この状態で、レーザトーチ45から発射されるレーザ光を透過樹脂材としての第1樹脂部材41側から照射し、第1樹脂部材41及び第2樹脂部材42の当接界面を加熱溶融させて溶融部44とした。
【0108】
ここに、上記レーザ光照射は、レーザ光照射により溶融した溶融部44の温度を測定しながら行った。そして、この溶融部44の温度が、上記第1樹脂材料及び上記第2樹脂材料のうち融点の低い方の樹脂材料の融点(225℃)よりも60℃高い温度となるように、レーザ出力、照射密度や加工速度を調整し、これにより溶融部44の幅を200μm程度とした。こうして溶融部44において、図7に示すように、母材樹脂に保持されていた補強繊維43を母材樹脂の溶融により該母材樹脂から開放して浮き立たせ無配向状態とした。
【0109】
その後、溶融部44を冷却、固化して、第1樹脂部材41と第2樹脂部材42との接合を完了した。
【0110】
こうして、第1樹脂部材41と第2樹脂部材42との当接界面が補強繊維43により橋渡しされて機械結合されるとともに、該補強繊維と該第1樹脂部材41及び該第2樹脂部材42との材料界面が上記結合助長層中の官能基を介して化学結合させることにより、互いに相溶性の小さい該1樹脂部材41及び第2樹脂部材42をレーザ光照射を利用して一体的に接合することができた。
【0111】
参考例2
実施例は、レーザ光照射を利用しつつ、補強繊維を介して互いに相溶性の小さい第1樹脂部材及び第2樹脂部材を一体的に接合するものである。
【0112】
参考例は、上記参考例1において、第1樹脂部材41及び第2樹脂部材42の当接界面にも、第1樹脂部材41及び第2樹脂部材42の双方と化学結合可能な官能基を有するカップリング剤よりなる結合助長層(厚さ2μm程度)を予め形成しておくもので、その他の構成は上記参考例1と同様である。
【0113】
なお、本参考例で用いたカップリング剤は、官能基としてアミノ基を有するシラン系カップリング剤である。
【0114】
したがって、本参考例によれば、第1樹脂部材41及び第2樹脂部材42同士の材料界面においても化学的結合力を付与せしめることができ、両者の接合強度を向上させることが可能となる。
【0115】
【発明の効果】
以上詳述したように請求項1乃至5記載の樹脂成形品の接合方法によれば、互いに相溶性の小さい第1樹脂部材及び第2樹脂部材同士を、アロイ樹脂材を両者間に介在させることで、極めて生産性の高いレーザ溶着を利用して一体的に接合することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る樹脂成形品を部分的に切断した斜視図である。
【図2】上記実施例1に係る樹脂成形品の要部断面図である。
【図3】本発明の実施例2に係る樹脂成形品の斜視図である。
【図4】上記実施例2に係る樹脂成形品の断面図である。
【図5】本発明の実施例3に係る樹脂成形品の要部断面図である。
【図6】参考例1に係る樹脂成形品の接合方法を説明する断面図である。
【図7】上記参考例1に係る樹脂成形品の接合部を模式的に示す断面図である。
【符号の説明】
11,21,31、41…第1樹脂部材
12,22,32,42…第2樹脂部材
13,23,33…アロイ樹脂材
43…補強繊維
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for bonding resin molded products, and more particularly to a method for bonding resin molded products in which resin materials having low compatibility are bonded to each other using laser light irradiation.
[0002]
[Prior art]
In recent years, from the viewpoints of weight reduction and cost reduction, it has been frequently performed to resin parts of various fields such as automobile parts to form resin molded products. Further, from the viewpoint of increasing the productivity of resin molded products, it is often the case that a resin molded product is divided into a plurality of parts and molded, and these divided molded products are joined together.
[0003]
Japanese Patent Application Laid-Open No. 60-214931 discloses a method using laser welding as means for joining divided molded products made of such resin. In this bonding method, a transparent resin material that is transparent to laser light and a non-transparent resin material that is not transparent to laser light are overlapped, and laser light is irradiated from the transparent resin material side. By doing so, the contact surface between the permeable resin material and the non-permeable resin material is heated and melted to integrally bond the two.
[0004]
[Problems to be solved by the invention]
However, the method for joining resin molded products by laser welding is to join resin materials having compatibility with each other. Therefore, depending on the conventional laser welding method, resin materials having low compatibility with each other cannot be satisfactorily bonded.
[0005]
This invention is made | formed in view of the said situation, and should solve the bonding method of the resin molded product which can join the resin materials with low compatibility mutually, utilizing a laser beam irradiation. It is a technical issue.
[0006]
[Means for Solving the Problems]
(1) A method for joining resin molded products according to claim 1 for solving the above-mentioned problems is a transmissive resin material that is transmissive to laser light as a heating source and a non-transmissive material that is not transmissive to the laser light A first resin material and a second resin material that are less compatible with each other by utilizing laser welding in which the contact interface with the transparent resin material is heated and melted by irradiation with the laser light from the transparent resin material side. A resin molded product joining method for integrally joining a first resin member and a second resin member, wherein the first resin material and the second resin member are interposed between the first resin member and the second resin member. An arrangement step of interposing an alloy resin material made of a second resin material, and at least a first contact interface between the first resin member and the alloy resin material and the second resin member and the alloy resin by the laser light irradiation. The second contact interface with the material is melted by heating And it is characterized in that comprising the irradiation step that.
In a preferred embodiment, one of the first resin member and the second resin member is made of a permeable resin material and the other is made of a non-permeable resin material, and the alloy resin material is a permeable resin material or a non-permeable resin. Made of wood.
In a preferred embodiment, both the first resin member and the second resin member are made of one of a permeable resin material and a non-permeable resin material, and the alloy resin material is made of a permeable resin material and a non-permeable resin material. Made up of the other.
In a preferred embodiment, the alloy resin material is in the form of a sheet, powder or paste..
In a preferred aspect, the alloy resin material has a substantially triangular prism shape with a substantially triangular cross section, and two of the three surfaces constituting the substantially triangular shape are a tapered first contact interface with the first resin member and a first surface. It is a taper-like 2nd contact interface with 2 resin members.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(1) A method of joining resin molded products according to claim 1 is a method of joining a transmissive resin material that is transmissive to laser light as a heating source and a non-transmissive resin material that is not transmissive to the laser light. A first resin composed of a first resin material and a second resin material that are less compatible with each other by utilizing laser welding in which the contact interface is heated and melted by irradiation with the laser light from the transparent resin material side. The member and the second resin material are integrally joined, and includes an arrangement process and an irradiation process.
[0010]
In the arranging step, an alloy resin material made of the first resin material and the second resin material is interposed between the first resin member and the second resin member.
[0011]
In the irradiation step, at least a first contact interface between the first resin member and the alloy resin material and a second contact interface between the second resin member and the alloy resin material are heated and melted by laser light irradiation. Since the alloy resin material is composed of the first resin material and the second resin material, if the first contact interface between the first resin member and the alloy resin material is heated and melted, the first contact interface is compatible with each other. The first resin material and the first resin member in a certain alloy resin material can be welded, while the second contact interface between the second resin member and the alloy resin material is heated and melted. At the contact interface, the second resin material and the second resin member in the alloy resin material compatible with each other can be welded.
[0012]
Thus, it becomes possible to integrally bond the first resin member and the second resin member having low compatibility with each other by laser welding through the alloy resin material made of the first resin material and the second resin material.
[0013]
The kind of the transmissive resin material is not particularly limited as long as it has thermoplasticity and can transmit laser light as a heating source at a predetermined transmittance or higher. For example, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA) ), Polycarbonate (PC), polybutylene terephthalate (PBT), and the like. In addition, you may use what was colored as needed.
[0014]
The kind of the non-transparent resin material is not particularly limited as long as it has thermoplasticity and can absorb the laser beam as a heating source without transmitting it. For example, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA) ), Polycarbonate (PC), polybutylene terephthalate (PBT), PPS, and the like, and carbon black, a predetermined colorant such as a dye or pigment, and the like.
[0015]
A first resin material and a second resin material constituting the first resin member and the second resin member are selected by appropriately selecting a combination of resin materials having low compatibility with each other from the above-described permeable resin material and non-permeable resin material. In addition to the resin material, the first resin material and the second resin material can constitute an alloy resin material.
[0016]
As a combination of resin materials having low compatibility, specifically, a combination of PC and PA such as PA6 or PA66, a combination of PC and PP, a combination of PC and PET, a combination of PC and ABS, PC And a combination of PBT, a combination of PP and a PA such as PA6 and PA66, a combination of PP and PBT, a combination of PBT and a PA such as PA6 and PA66, and a combination of PA and PPS.
[0017]
The blending ratio of the first resin material and the second resin material in the alloy resin material can be about 10:90 to 90:10, preferably about 25:75 to 75:25, and 50: A value of 50 is optimal.
[0018]
In addition, an alloy resin material can be manufactured by adding a compatibilizing agent or the like or a cross-linking material, or adding a compatibilizing agent and a cross-linking material.
[0019]
And in the joining method of the resin molded product according to claim 1, said 1st resin member, said 2nd resin member, and said alloy resin material are with respect to a laser beam which uses at least one among three as a heat source. A transmissive resin material having transparency and at least one of the three materials can be a non-transmissive resin material that is not transmissive to the laser beam. Specifically, (1) one of the first resin member and the second resin member is made of a permeable resin material and the other is made of a non-permeable resin material, and the alloy resin material is a permeable resin material or non-permeable resin. And (2) both the first resin member and the second resin member are made of one of a permeable resin material and a non-permeable resin material, and the alloy resin material is made of a permeable resin material and a non-permeable resin material. It can be set as the 2nd aspect which consists of the other of the permeable resin materials.
[0020]
Here, the laser welding is performed by irradiating a laser beam as a heating source from the transmissive resin material side, and transmitting the laser beam transmitted through the transmissive resin material to the contact interface of the non-transmissive resin material with the transmissive resin material. By reaching and absorbing and accumulating energy at the contact interface of the non-permeable resin material, the contact interface of the non-permeable resin material is heated and melted, and heat is transferred from the contact interface of the non-permeable resin material.ThroughThe contact interface of the over-resin material is heated and melted to weld both.
[0021]
(1) In the first aspect, the contact interface between one of the first resin member and the second resin member and the alloy resin material becomes a contact interface between the permeable resin materials or between the non-permeable resin materials, Further, the contact interface between the other of the first resin member and the second resin member and the alloy resin material is the contact interface between the permeable resin material and the non-permeable resin material. Of these, the contact interface between the transmissive resin material and the non-transmissive resin material can be laser-welded by laser light irradiation from the transmissive resin material side as described above. However, the contact interface between the transmissive resin materials and the contact interface between the non-transmissive resin materials cannot be welded only by the action of the laser welding described above. At this time, when the alloy resin material is a non-transmissive resin material, the laser light irradiated from the transmissive resin material side is absorbed by the alloy resin material from the contact interface side between the transmissive resin material and the non-transmissive resin material. If the entire alloy resin material is heated and melted, the contact interface between the non-permeable resin materials on the opposite side can also be heated and melted. On the other hand, when the alloy resin material is a transmissive resin material, the non-permeable resin material is first heated and melted on the contact interface side between the transmissive resin material and the non-transmissive resin material by the above-described laser welding action. If the whole of the alloy resin material can be heated and melted by heat conduction from, the contact interface between the opposite permeable resin materials can also be heated and melted.
[0022]
That is, in the case of the first aspect, it is necessary to heat and melt the entire alloy resin material by laser light irradiation from the transmissive resin material side. The first resin member and the second resin member, which are less compatible with each other, can be integrally joined via the alloy resin material.
[0023]
Therefore, in the first aspect, the thickness of the alloy resin material is preferably 0.5 mm or less, and more preferably 0.2 mm or less. If the thickness of the alloy resin material exceeds 0.5 mm, it becomes extremely difficult to heat and melt the entire alloy resin material by laser light irradiation from the transmission resin material side, and even to heat and melt the entire alloy resin material. Even if it can be done, it becomes inefficient in terms of energy such as the irradiation time of the laser beam. On the other hand, if the thickness of the alloy resin material is too thin, it is impossible to expect the original effect of the alloy resin material of joining the first resin member and the second resin member having low compatibility through the alloy resin material. The thickness of the alloy resin material is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
[0024]
The shape of the alloy resin material in the first aspect is preferably a sheet shape in consideration of ease of handling and the like, but may be a powder shape or a paste shape.
[0025]
Furthermore, in the first aspect, the alloy resin material is preferably a non-permeable resin material. If the alloy resin material is a non-transmissive resin material, the laser light irradiated from the transmissive resin material side is directly absorbed by the alloy resin material, so that it is advantageous in terms of time to heat and melt the entire alloy resin material. It is possible.
[0026]
(2) In the second aspect described above, the contact interface between the first resin member and the alloy resin material and the contact interface between the second resin member and the alloy resin material are both the transparent resin material and the non-permeable resin material. Therefore, the contact interface between the first resin member and the alloy resin material and the contact interface between the second resin member and the alloy resin material can be welded by the above-described laser welding action. . For this reason, in the case of the second aspect, it is not always necessary to heat and melt the entire alloy resin material. However, even in the case of the second aspect, it is desirable to heat and melt the entire alloy resin material from the viewpoint of improving the bonding strength.
[0027]
Therefore, in the second aspect, when the entire alloy resin material is heated and melted, the thickness of the alloy resin material is preferably 0.05 to 0.5 mm, as in the first aspect (more Preferably, the shape of the alloy resin material is preferably a sheet, powder or paste.
[0028]
On the other hand, in the second aspect, when the entire alloy resin material is not heated and melted, the alloy resin material has a substantially triangular prism shape with a substantially triangular cross section, and two of the three surfaces constituting the substantially triangular prism shape are It is preferable to use a tapered first contact interface with one resin member and a tapered second contact interface with the second resin member.
[0029]
By doing so, when the alloy resin material is made of a permeable resin material and the first resin member and the second resin member are made of a non-permeable resin material, the first resin member and the second resin member made of the non-permeable resin material are used. By irradiating the laser beam only from one direction where the tapered first abutting interface and the tapered second abutting interface face, the first resin member transmits the laser beam transmitted through the alloy resin material made of a transmissive resin material. And reach and absorb both the tapered first contact interface and the tapered second contact interface of the second resin member,Tapered firstAbutting interface andTapered secondLaser welding at the contact interface can be performed. When the alloy resin material is made of a non-permeable resin material and the first resin member and the second resin member are made of a permeable resin material, the tapered first contact interface and taper of the alloy resin material made of the non-permeable resin material are used. The laser light transmitted through the first resin member made of a transmissive resin material is irradiated with laser light from one direction on the side where the second contact interface faces.Tapered firstThe laser light that reaches and abuts the abutting interface and passes through the second resin member made of the transmissive resin material is transmitted to the alloy resin material.Tapered secondReach and absorb the contact interface,Tapered firstAbutting interface andTapered secondLaser welding at the contact interface can be performed. However, according to the former aspect in which the alloy resin material is a permeable resin material and the first resin member and the second resin member are non-permeable resin materials, the first resin member and the second resin member made of the non-permeable resin material are used. Using reflection of laser light at one of the tapered first contact interface and the tapered second contact interfaceThe otherThe laser beam absorption to the taper contact interface can be promoted, and the laser irradiation time can be shortened.
[0030]
In addition, the laser beam irradiation from only one direction means changing the irradiation angle with respect to one contact interface during the laser beam irradiation, ortwoWithout irradiating laser light at the same or different irradiation angles on each of the abutting interfaces, a constant irradiation angle with respect to one abutting interface arbitrarily selected from the two abutting interfaces By one laser beam from one direction to irradiatetwoIt means that the joint surface is irradiated simultaneously.
[0031]
In addition, as the type of laser light used as a heating source, the transmittance in the transmissive resin material is not less than a predetermined value in relation to the absorption spectrum and thickness (transmission length) of the transmissive resin material that transmits the laser light. Those having such wavelengths are appropriately selected. For example, YAG: Nd3+A laser (wavelength of laser light: 1060 nm) or a semiconductor laser (wavelength of laser light: 500 to 1000 nm) can be used.
[0032]
Irradiation conditions such as laser output, irradiation density, and processing speed (moving speed) can be set as appropriate according to the type of resin.
[0056]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0057]
Example 1
This embodiment is claimed in claim 1.2 or 4This is an embodiment of the bonding method for resin molded products as described above.resinThe first resin member and the second resin member, which are less compatible with each other, are integrally joined via the material. Also, this exampleFirstOne of the resin member and the second resin member is made of a permeable resin material, the other is made of a non-permeable resin material, and the alloy resin material is made of a permeable resin material or a non-permeable resin material. It is a thing.
[0058]
FIG. 1 is a perspective view of a car headlight cut, and FIG.
[0059]
This headlight is divided into left and right parts, and a first resin member 11 that is a left side divided body andRight sideThis is a hollow body whose outer shell is configured from the second resin member 12 which is a divided body. The first resin member 11 and the second resin member 12 have contact end portions 11a and 12a that are aligned and fitted to each other, and the contact end portions 11a and 12a are connected to each other via the alloy resin material 13. They are joined together by laser welding.
[0060]
The first resin material constituting the first resin member 11 is made of polycarbonate (PC), and the first resin member 11 is a transmissive resin material that is transmissive to laser light as a heating source.
[0061]
The second resin material constituting the second resin member 12 is made of ABS to which glass fiber is added at 30 wt% and carbon black as a colorant is added in an appropriate amount, and the second resin member 12 is used for laser light as a heating source. On the other hand, it is a non-permeable resin material having no permeability.
[0062]
The first resin member 11 constitutes a headlight lens, and the second resin member 12 constitutes a headlight cover. Also, the PC as the first resin material and the second resin material asABSAre less compatible with each other.
[0063]
An extension 14 made of PC is disposed on the inner surface of the bottom wall 11b of the first resin member 11, and a reflector (reflecting mirror) 15 made of epoxy (BMC) is disposed on the inner surface of the second resin member 12. It is installed. The lamps 16 are disposed in the through holes 12b and 15a provided in the rear walls of the second resin member 12 and the reflector 15, respectively, and the through holes 12b of the second resin material 12 are closed by the cover 17. It is.
[0064]
As shown in FIG. 2, the contact end 11a of the first resin member 11 has an inner side while leaving a step on the base end side (left end side in FIG. 2) inside the hollow body (lower side in FIG. 2). In addition, the outer end is cut out in a tapered shape, and the leading end portion is cut off, and a fitting convex portion 11 c formed in a shape that gradually shrinks and protrudes toward the leading end side is provided. The fitting convex portion 11c has a distal end joining end face 11c1, outer and inner tapered joining faces 11c2, and an inner stepped joining end face 11c3 intersecting with the proximal end of the inner tapered joining face 11c2. ing.
[0065]
On the other hand, the contact end portion 12a of the second resin member 12 is formed in a shape that gradually expands and protrudes toward the distal end side (left end side in FIG. 2), and can be fitted to the fitting convex portion 11c. A concavity 12c is provided. The fitting recess 12c includes a bottom joint end face 12c1 aligned with the tip joint end face 11c1, outer and inner tapered joint faces 12c2 aligned with the tapered joint faces 11c2, and an inner tapered shape. It has a tip joint end face 12c3 that intersects the tip of the joint face 12c2 and is aligned with the stepped joint end face 11c3.
[0066]
And the fitting convex part 11c of the 1st resin member 11 and the fitting recessed part 12c of the 2nd resin member 12 are fitted through the said alloy resin material 13, and the front-end | tip joining end surface 11c1 and bottom joining end surface 12c1 are mutually And the outer tapered bonding surfaces 11c2 and 12c2, the inner tapered bonding surfaces 11c2 and 12c2, and the stepped bonding end surface 11c3 and the tip bonding end surface 12c3 are respectively lasered via the alloy resin material 13. They are joined together by welding.
[0067]
The alloy resin material 13 is composed of PC as the first resin material and ABS as the second resin material. The alloy resin material 13 is a sheet-like material having a thickness of 0.2 mm formed by compression molding a material to which a compatibilizing agent and a cross-linking material are added. The first resin material and the second resin material The blending ratio is 50:50. Further, an appropriate amount of carbon black as a colorant is added to the alloy resin material 13, and the alloy resin material 13 is a non-transparent resin material that is not transmissive to laser light as a heating source.
[0068]
The resin molded product of the present example having the above-described configuration was manufactured as follows. First, after the first resin member 11 and the second resin member 12 are formed into predetermined shapes by injection molding, an extension is disposed on the inner surface of the first resin member 11, and a reflector is disposed on the inner surface of the second resin material 12. Arranged. And the fitting convex part 11c of the 1st resin member 11 and the fitting convex part 12c of the 2nd resin member 12 are fitted via the alloy resin material 13, and the 1st resin member 11 and the 2nd resin member 12 and An alloy resin material 13 was interposed between the two. In this state, laser light was irradiated from the first resin member 11 side as the transmissive resin material toward the bottom joint end surface 12c1, the two taper joint surfaces 12c2 and the tip joint end surface 12c3 of the second resin member 12. Note that a YAG-neodymium laser beam (wavelength 1060 nm) was used as the laser beam. Irradiation conditions were: output: 200 to 400 W, processing speed: 5 m / min.
[0069]
By this laser beam irradiation, the entire alloy resin material 13 is heated and melted, and the first resin member 11 and the alloy resin material 13 areContactInterface and second resin member 12 and alloy resin member 13ContactThe interface was heated and melted and welded, and the first resin member 11 and the second resin member 12 were integrally joined by laser welding via the alloy resin material 13.
[0070]
Even when the first resin member 11 and the second resin member 12 made of the first resin material and the second resin material having low compatibility with each other are joined by laser welding, the alloy resin material is interposed between them. By interposing 13, it was possible to bond well.
[0071]
Further, in the joint portion thus obtained, the tip joint end surface 11c1 and the bottom joint end surface 12c1, the outer tapered joint surfaces 11c2 and 12c2, the inner tapered joint surfaces 11c2 and 12c2, and the stepped joint end surface 11c3 and In addition to the joining by laser welding of the tip joining end faces 12c3, the fitting of the fitting convex part 11c of the first resin member 11 and the fitting concave part 12c of the second resin member 12, and the step shape of the first resin member 11 Since the joint end surface 11c3 and the tip joint end surface 12c3 of the second resin member 12 are engaged to form a structurally strong joint portion, the joint end surface 11c3 has higher joint strength and pressure strength.
[0072]
Further, in the resin molded product of the present embodiment, the fitting convex portion 11c is provided at the contact end portion 11a of the first resin member 11 made of permeable resin, and the second resin member 12 made of non-permeable resin is applied. A fitting recess 12c is provided in the contact end portion 12a. For this reason, in addition to the scattering of the laser beam in the transparent resin of the first resin member 11, the laser beam on the inner surface (the bottom bonded end surface 12c1 and each tapered bonded surface 12c2) of the fitting recess 12c of the second resin member 12. Therefore, even when the laser beam is irradiated from only one direction, the outer surface of the fitting convex portion 11c and the inner surface of the fitting concave portion 12c are entirely and substantially even. Laser welding can be performed.
[0073]
(Example 2)
This embodiment is claimed in claim 1.2 or 4This is an embodiment of the bonding method for resin molded products as described above.resinThe first resin member and the second resin member, which are less compatible with each other, are integrally joined via the material. Also, this exampleFirstOne of the resin member and the second resin member is made of a permeable resin material, the other is made of a non-permeable resin material, and the alloy resin material is made of a permeable resin material or a non-permeable resin material. It is a thing.
[0074]
FIG. 3 is a perspective view of an electronic control unit (ECU) for an automobile, and FIG. 4 is a cross-sectional view of the electronic control unit.
[0075]
This electronic control device is a hollow body having an outer shell composed of a first resin member 21 constituting a housing and a second resin member 22 constituting a lid. The upper end surface of the side wall of the first resin member 21 and the peripheral edge portion of the second resin member 22 are respectively provided with an annular recess 21a and an annular protrusion 22a that are aligned and fitted with each other. The annular protrusions 22a are integrally joined to each other by laser welding via the alloy resin material 23.
[0076]
The first resin material constituting the first resin member 21 is made of polybutylene terephthalate (PBT), and the first resin member 21 is a non-transmissive resin material that is not transmissive to laser light as a heating source. PBT is a better material to use as a non-transparent resin material because of its low light transmission as a material eigenvalue due to its crystal structure.
[0077]
The second resin material 22 constituting the second resin member 22 is made of nylon 6 (PA6), and the second resin member 22 is a transmissive resin material that is transmissive to laser light as a heating source. Note that PC or ABS may be adopted as the second resin material 22 in addition to PA6.
[0078]
A connector 24 is integrally formed on the side wall of the first resin member 21 from the viewpoint of cost reduction (see FIG. 3), and is connected to the connector 24 in the first resin member 21. An electric circuit 25 is provided (see FIG. 4). The PBT as the first resin material and PA6 as the second resin material have low compatibility with each other.
[0079]
The alloy resin material 23 is composed of PBT as the first resin material and PA6 as the second resin material. This alloy resin material 23 is a sheet-like material having a thickness of 0.2 mm formed by compression molding a material to which a compatibilizing agent and a crosslinking material are added. The first resin material and the second resin material The blending ratio is 50:50. The alloy resin material 13 is a non-transmissive resin material that does not transmit laser light as a heating source.
[0080]
The resin molded product of the present example having the above-described configuration was manufactured as follows. First, the first resin member 21 and the second resin member 22 were each formed into a predetermined shape by injection molding, and then the electric circuit 25 was disposed on the inner surface of the first resin member 21. And the annular recessed part 21a of the 1st resin member 21 and the annular convex part 22a of the 2nd resin member 22 are fitted via the alloy resin material 23, Between the 1st resin member 21 and the 2nd resin member 22 An alloy resin material 23 was interposed. In this state, laser light was irradiated from the second resin member 22 side as the transmissive resin material toward the annular recess 21 a of the first resin member 21. Note that a YAG-neodymium laser beam (wavelength 1060 nm) was used as the laser beam. Irradiation conditions were: output: 200 to 400 W, processing speed: 5 m / min.
[0081]
By this laser light irradiation, the entire alloy resin material 23 is heated and melted, and the first resin member 21 and the first alloy resin material 23 are joined together.ContactInterface and second resin member 22 and alloy resin member 23ContactThe interface was heated and melted and welded, and the first resin member 21 and the second resin member 23 were integrally joined by laser welding via the alloy resin material 23.
[0082]
Even when the first resin member 21 and the second resin member 22 made of the first resin material and the second resin material having low compatibility with each other are joined by laser welding, an alloy resin material is interposed between them. By interposing 23, good bonding could be achieved.
[0083]
Moreover, according to the present Example, the effect shown below can also be anticipated.
[0084]
In an electronic control device for automobiles, sealing performance is required to prevent water from entering the device. For this reason, conventionally, the housing and the lid are joined by thermosetting adhesive or by fastening with bolts and embedded nuts through an expensive fluororubber-based O-ring. . However, when a thermosetting adhesive is used, a thermal effect is likely to occur in the solder joints of the electric circuit 25 during the badge heating process in the furnace, and the productivity is poor. Moreover, when using the fastening means of the volt | bolt and embedded nut through an O-ring, it is high-cost by the increase in a number of parts and an increase in a process. In this respect, according to the present embodiment using laser welding, the electric circuit 25 is not adversely affected by the heat effect, and the number of parts is not increased. it can.
[0085]
Further, the connector 24 in the automobile electronic control device is required to have dimensional stability against water absorption. For this reason, PBT etc. which are excellent in water absorption resistance are conventionally used as the material of the connector 24. If the connector 24 is to be integrally formed with the first resin member 21 as a housing in order to reduce the cost as in this embodiment, the resin material of the first resin member 21 is naturally PBT. However, as described above, PBT has low light transmittance as a material intrinsic value, and can only be used as a non-transparent resin material. In general, no suitable resin material that is compatible with the PBT and is transmissive to the laser beam is found. For this reason, when PBT is adopted as the resin material of the housing, the lid member cannot be joined by conventional laser welding. In this regard, according to the present embodiment, the second resin lid 21 made of PA6 has low compatibility with the first resin member 21 as the housing made of PBT and is permeable to laser light. The resin member 22 can be laser welded through the alloy resin material 23. It is possible to improve the dimensional stability against water absorption in the connector 24 while reducing the cost by integrally forming the first resin member 21 and the connector 24 as a housing.
[0086]
In the second embodiment, the second resin material constituting the second resin member 22 as the lid can be made of polypropylene (PP) that is less expensive than PA, and the cost can be further reduced.
[0087]
(Example 3)
This embodiment is claimed in claim 1.3 or 5This is an embodiment of the bonding method for resin molded products as described above.resinThe first resin member and the second resin member, which are less compatible with each other, are integrally joined via the material. In this embodiment, both the first resin member and the second resin member are made of one of a permeable resin material and a non-permeable resin material, and the alloy resin material is a permeable resin material or a non-permeable resin material. It embodies the 2nd mode which consists of the other.
[0088]
In the resin molded product according to the present embodiment, the first resin member 31 constituting the intake manifold for the automobile and the second resin member 32 constituting the air cleaner are integrally joined by laser welding via the alloy resin material 33. It is a thing.
[0089]
As shown in FIG. 5, the alloy resin material 33 in this embodiment has a triangular prism shape with a triangular cross section. One surface of the three surfaces constituting the triangular shape and the contact end surface of the first resin member 31 that contacts the one surface form tapered first contact interfaces 33a and 31a that align and contact each other, and The other one of the three surfaces and the contact end surface of the second resin member 32 that contacts the one surface form tapered second contact interfaces 33b and 32a that align and contact each other. The tapered first contact interface 31a of the first resin member 31 and the tapered first contact interface 33a of the alloy resin material 33 are integrally joined together by laser welding, and the taper of the second resin member 32 is obtained. The second contact interface 32a and the tapered second contact interface 33b of the alloy resin material 33 are integrally joined by laser welding.
[0090]
The first resin material constituting the first resin member 31 is made of nylon 6 (PA6) to which glass fiber is added at 30 wt% and carbon black as a colorant is added in an appropriate amount, and the first resin member 11 is heated. It is a non-over-resin material that is not transparent to the laser beam as the source.
[0091]
The second resin material constituting the second resin member 32 is made of polypropylene (PP) to which glass fiber is added in an amount of 30 wt% and carbon black as a colorant is appropriately added. It is a non-transmissive resin material that is not transmissive to laser light as a heating source.
[0092]
Note that PA6 as the first resin material and PP as the second resin material have low compatibility with each other.
[0093]
The alloy resin material 33 is made of PA6 as the first resin material and PP as the second resin material. The alloy resin material 23 is molded into a predetermined shape by compression molding, and the blending ratio of the first resin material and the second resin material is 50:50. Also, carbon black as a colorant is not added to the alloy resin material 33, and the alloy resin material 33 is a transmissive resin material that is transmissive to laser light as a heating source.
[0094]
The plate thickness of the first resin member 31 and the second resin member 32 is about 3 mm, and the width of the alloy resin material 33 (the length of one side of the cross-sectional triangle) is about 4 mm.
[0095]
The resin molded product of the present example having the above-described configuration was manufactured as follows. First, the first resin member 31 and the second resin member 32 were each formed into a predetermined shape by injection molding, and then the alloy resin material 33 was disposed between the first resin member 31 and the second resin member 32. Then, laser light was irradiated from the alloy resin material 33 side as the transmissive resin material toward the tapered first contact interface 31 a of the first resin material 31 and the tapered second contact interface 32 a of the second resin member 32. . Note that a YAG-neodymium laser beam (wavelength 1060 nm) was used as the laser beam. Irradiation conditions were: output: 200 to 400 W, processing speed: 5 m / min.
[0096]
By this laser light irradiation, the tapered first contact interfaces 31a and 33a of the first resin member 31 and the alloy resin material 33 are heated and melted together, and the tapered shape of the second resin material 32 and the alloy resin material 33 is also obtained. The second contact interfaces 32a and 33b were heated and melted to be welded together, and the first resin member 31 and the second resin member 32 were integrally joined by laser welding via the alloy resin material 33.
[0097]
In this embodiment, the alloy resin material 33 has a mode in which only the vicinity of the tapered first contact interface 33a and the vicinity of the tapered second contact interface 33b are heated and melted and the entire alloy resin material 33 is not heated and melted. However, the entire alloy resin material 33 can be heated and melted from the viewpoint of improving the bonding strength.
[0098]
Even when the first resin member 31 and the second resin member 32 made of the first resin material and the second resin material having low compatibility with each other are joined by laser welding, the alloy resin material is interposed between them. By interposing 33, good bonding could be achieved.
[0099]
In the present embodiment, the cross-sectional shape of the alloy resin material 33 is substantially triangular, and the alloy resin material 33 is a transmissive resin material. Therefore, the first resin member 31 and the second resin member 31 made of a non-permeable resin material are used. By irradiating the laser beam from only one direction of the resin member 32 on the side where the tapered first abutting interface 31a and the tapered second abutting interface 32a face, the alloy member 33 made of a permeable resin material is transmitted. The laser light reaches and absorbs both the tapered first contact interface 31a and the tapered second contact interface 32a of the first resin member 31 and the second resin member 32, and the first tapered contact interface 31a. Further, laser welding can be performed at the second tapered contact interface 32a. Furthermore, at the time of laser light irradiation, one of the tapered first abutting interface 31a and the tapered second abutting interface 32a of the first resin member 31 and the second resin member 32 made of a non-transmissive resin material is applied. The reflection of the laser beam at the contact interface can be used to promote the absorption of the laser beam to the other tapered contact interface, and the laser irradiation time can be shortened.
[0100]
(Reference example 1)
BookreferenceAn example is, LesThe first resin member and the second resin member, which are less compatible with each other, are integrally joined through the reinforcing fiber while utilizing the laser light irradiation.
[0101]
A first resin member 41 and a second resin member 42 having a plate thickness of 3 mm were prepared by an injection molding method.
[0102]
The first resin member 41 is obtained by adding 30 mass% of a reinforcing fiber 43 made of glass fiber (GF) to PA6 (melting point: 225 ° C.) as a base material resin, and is transparent to laser light as a heating source. There is something. On the other hand, the second resin member 42 is obtained by adding 30 mass% of reinforcing fibers 43 to PBT (melting point: 225 ° C.) as a base resin and adding an appropriate amount of carbon black as a coloring material. It is not transparent to laser light.
[0103]
Note that PA 6 as the first resin material constituting the first resin member 41 and PBT as the second resin material constituting the second resin member 42 have low compatibility with each other.
[0104]
The reinforcing fibers 43 have a length distribution in the range of 50 to 400 μm and an average length of 200 μm. The proportion of the reinforcing fiber 43 that is shorter than the width (200 μm) of the melted portion 44 described later is 100 mass% when the entire reinforcing fiber 43 added to the first resin member 41 or the second resin member 42 is 100 mass%. 50 mass%.
[0105]
Further, on the surface of the reinforcing fiber 43, a bonding promoting layer (thickness not shown) made of a coupling agent having a functional group capable of chemically bonding with the reinforcing fiber 43 and both the first resin member 41 and the second resin member 42 is formed. About 2 μm) is formed in advance. In this example, a silane coupling agent having an amino group as a functional group was used as the coupling agent.
[0106]
On the other hand, YAG: Nd having a wavelength of 1.06 μm3+A laser torch 45 that emits laser light was prepared.
[0107]
Then, as shown in FIG. 6, the first resin member 41 and the second resin member 42 are brought into contact with each other so as to overlap the second resin member 42, and the first resin member 41 and the second resin member 42 are not shown in the drawing. Clamped with. In this state, the laser light emitted from the laser torch 45 is irradiated from the first resin member 41 side as a transmissive resin material, and the contact interface between the first resin member 41 and the second resin member 42 is heated and melted to melt the molten portion. 44.
[0108]
Here, the laser beam irradiation was performed while measuring the temperature of the melted portion 44 melted by the laser beam irradiation. The laser output is such that the temperature of the melting portion 44 is 60 ° C. higher than the melting point (225 ° C.) of the resin material having the lower melting point of the first resin material and the second resin material. The irradiation density and processing speed were adjusted so that the width of the melted portion 44 was about 200 μm. In this way, in the melting part 44, as shown in FIG. 7, the reinforcing fibers 43 held in the base material resin are released from the base material resin by the melting of the base material resin and are brought into a non-oriented state.
[0109]
Thereafter, the melting part 44 was cooled and solidified, and the joining of the first resin member 41 and the second resin member 42 was completed.
[0110]
Thus, the abutting interface between the first resin member 41 and the second resin member 42 is bridged and mechanically coupled by the reinforcing fiber 43, and the reinforcing fiber, the first resin member 41, and the second resin member 42 The first resin member 41 and the second resin member 42, which are less compatible with each other, are integrally bonded using laser light irradiation by chemically bonding the material interface via the functional group in the bond promoting layer. I was able to.
[0111]
(Reference example 2)
BookImplementationAn example is, LesThe first resin member and the second resin member, which are less compatible with each other, are integrally joined through the reinforcing fiber while utilizing the laser light irradiation.
[0112]
BookreferenceThe example aboveReference example 1In the above, a bond promoting layer made of a coupling agent having a functional group capable of chemically bonding to both the first resin member 41 and the second resin member 42 at the contact interface between the first resin member 41 and the second resin member 42. (Thickness of about 2 μm) is formed in advance.Reference example 1It is the same.
[0113]
BookreferenceThe coupling agent used in the examples is a silane coupling agent having an amino group as a functional group.
[0114]
So bookreferenceAccording to the example, a chemical bonding force can be applied even at the material interface between the first resin member 41 and the second resin member 42, and the bonding strength between the two can be improved.
[0115]
【The invention's effect】
Claim 1 as detailed above5According to the method for joining resin molded articles described above, the first resin member and the second resin member having low compatibility with each other, and the alloy resin material is interposed between the two, thereby utilizing laser welding with extremely high productivity. And can be joined together.
[Brief description of the drawings]
FIG. 1 is a perspective view in which a resin molded product according to Example 1 of the present invention is partially cut.
FIG. 2 is a cross-sectional view of a principal part of a resin molded product according to the first embodiment.
FIG. 3 is a perspective view of a resin molded product according to Embodiment 2 of the present invention.
4 is a cross-sectional view of a resin molded product according to Example 2. FIG.
FIG. 5 is a cross-sectional view of a main part of a resin molded product according to Example 3 of the present invention.
[Fig. 6]Reference example 1It is sectional drawing explaining the joining method of the resin molded product which concerns on this.
FIG. 7 AboveReference example 1It is sectional drawing which shows typically the junction part of the resin molded product which concerns on this.
[Explanation of symbols]
11, 21, 31, 41 ... 1st resin member
12, 22, 32, 42 ... second resin member
13, 23, 33 ... Alloy resin material
43 ... Reinforcing fiber

Claims (5)

加熱源としてのレーザ光に対して透過性のある透過樹脂材と、該レーザ光に対して透過性のない非透過樹脂材との当接界面を、該透過樹脂材側からの該レーザ光の照射により加熱溶融させて溶着するレーザ溶着を利用して、互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる第1樹脂部材及び第2樹脂部材を一体的に接合する樹脂成形品の接合方法であって、
上記第1樹脂部材と上記第2樹脂部材との間に、上記第1樹脂材料及び上記第2樹脂材料よりなるアロイ樹脂材を介在させる配置工程と、
上記レーザ光照射により、少なくとも上記第1樹脂部材と上記アロイ樹脂材との第1当接界面及び上記第2樹脂部材と該アロイ樹脂材との第2当接界面を加熱溶融させる照射工程とからなることを特徴とする樹脂成形品の接合方法。
A contact interface between a transparent resin material that is transmissive to the laser beam as a heating source and a non-transmissive resin material that is not transmissive to the laser beam is formed between the laser beam from the transmissive resin material side. A resin molded product that integrally joins the first resin member and the second resin member made of the first resin material and the second resin material having low compatibility with each other by using laser welding that is heated and melted by irradiation and welding. A joining method,
An arrangement step of interposing an alloy resin material made of the first resin material and the second resin material between the first resin member and the second resin member;
From the irradiation step of heating and melting at least the first contact interface between the first resin member and the alloy resin material and the second contact interface between the second resin member and the alloy resin material by the laser light irradiation. A method for joining resin molded products.
前記第1樹脂部材及び前記第2樹脂部材のうちの一方が透過樹脂材よりなるとともに他方が非透過樹脂材よりなり、かつ、前記アロイ樹脂材が透過樹脂材又は非透過樹脂材よりなることを特徴とする請求項1記載の樹脂成形品の接合方法。One of the first resin member and the second resin member is made of a permeable resin material, the other is made of a non-permeable resin material, and the alloy resin material is made of a permeable resin material or a non-permeable resin material. The method for joining resin molded products according to claim 1, characterized in that: 前記第1樹脂部材及び前記第2樹脂部材の双方が透過樹脂材及び非透過樹脂材のうちの一方よりなり、かつ、前記アロイ樹脂材が透過樹脂材及び非透過樹脂材のうちの他方よりなることを特徴とする請求項1記載の樹脂成形品の接合方法。Both the first resin member and the second resin member are made of one of a permeable resin material and a non-permeable resin material, and the alloy resin material is made of the other of the permeable resin material and the non-permeable resin material. The method for joining resin molded products according to claim 1. 前記アロイ樹脂材はシート状、粉末状又はペースト状であることを特徴とする請求項1、2又は3記載の樹脂成形品の接合方法。4. The method for joining resin molded products according to claim 1, 2 or 3, wherein the alloy resin material is in the form of a sheet, powder or paste. 前記アロイ樹脂材は断面略三角形の略三角柱形状であり、この略三角形状を構成する三面のうちの二面が前記際1樹脂部材とのテーパ状第1当接界面及び第2樹脂部材とのテーパ状第2当接界面であることを特徴とする請求項1又は3記載の樹脂成形品の接合方法 The alloy resin material has a substantially triangular prism shape with a substantially triangular cross-section, and two of the three surfaces constituting the substantially triangular shape are a tapered first contact interface with the first resin member and the second resin member. 4. The method for joining resin molded products according to claim 1, wherein the second contact interface is a tapered second contact interface .
JP2000200900A 2000-07-03 2000-07-03 Bonding method of resin molded products Expired - Lifetime JP3630298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200900A JP3630298B2 (en) 2000-07-03 2000-07-03 Bonding method of resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200900A JP3630298B2 (en) 2000-07-03 2000-07-03 Bonding method of resin molded products

Publications (2)

Publication Number Publication Date
JP2002018961A JP2002018961A (en) 2002-01-22
JP3630298B2 true JP3630298B2 (en) 2005-03-16

Family

ID=18698690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200900A Expired - Lifetime JP3630298B2 (en) 2000-07-03 2000-07-03 Bonding method of resin molded products

Country Status (1)

Country Link
JP (1) JP3630298B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042439B2 (en) * 2002-03-18 2008-02-06 トヨタ自動車株式会社 Laser welded assembly
US7718271B2 (en) 2003-10-02 2010-05-18 Ube Industries, Ltd. Material for laser welding and laser welding method
JP4910265B2 (en) * 2004-02-03 2012-04-04 東レ株式会社 Hollow container made of thermoplastic resin and method for producing the same
JP2005339873A (en) * 2004-05-25 2005-12-08 Koito Mfg Co Ltd Manufacturing method of vehicular lamp
JP4600745B2 (en) * 2004-10-26 2010-12-15 Dic株式会社 Polycarbonate resin molded product
JP4724527B2 (en) * 2005-10-19 2011-07-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Manufacturing method of resin molded product using laser welding method
US7718106B2 (en) * 2006-05-30 2010-05-18 Boston Scientific Scimed, Inc. Medical devices and related systems and methods
JP5327937B2 (en) * 2007-12-25 2013-10-30 旭化成ケミカルズ株式会社 Adhesive for laser welding
FR2952316B1 (en) * 2009-11-06 2012-03-02 Valeo Vision LASER WELDING PROCESS
JP5603652B2 (en) * 2010-05-14 2014-10-08 早川ゴム株式会社 Joining method using laser light
JP5603653B2 (en) * 2010-05-14 2014-10-08 早川ゴム株式会社 Joining method using laser light
JP5595799B2 (en) * 2010-06-11 2014-09-24 株式会社小糸製作所 Laser welding structure
JP6025629B2 (en) * 2013-03-21 2016-11-16 本田技研工業株式会社 Method of welding resin parts
JPWO2016047332A1 (en) * 2014-09-24 2017-07-06 テルモ株式会社 Centrifugal pump manufacturing method and centrifugal pump
EP3156213A1 (en) * 2015-10-16 2017-04-19 Henkel AG & Co. KGaA Method for the substance-to-substance bonding of two workpieces
EP3156210A1 (en) * 2015-10-16 2017-04-19 Henkel AG & Co. KGaA Method for welding two different plastic materials
EP3156211B1 (en) 2015-10-16 2018-09-26 Henkel AG & Co. KGaA Method of welding the plastics polyamide and poly (meth) acrylate
CH713554A1 (en) * 2017-03-09 2018-09-14 Alpla Werke Alwin Lehner Gmbh & Co Kg Method for establishing a connection between components made of plastic materials which are different from one another and containers with pouring attachment in relation thereto.

Also Published As

Publication number Publication date
JP2002018961A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
JP3630298B2 (en) Bonding method of resin molded products
JP2005339873A (en) Manufacturing method of vehicular lamp
WO2007046536A1 (en) Material for laser fusion bonding
KR20130049215A (en) Laser welded material
CN104943159B (en) Method for producing a motor vehicle lamp and corresponding motor vehicle lamp
JP4731040B2 (en) Laser welding method
JP3551157B2 (en) Laser welding method for resin parts
JP2007260957A (en) Laser welded joint for pipe-shaped products and laser welding method for pipe-shaped products
JP3610917B2 (en) Plastic molded product
JP4009432B2 (en) Laser welding method for vehicular lamp
US7287877B2 (en) Vehicular lighting device and beam welding method
JP2007523763A (en) Joint design for laser welding of thermoplastics
Kagan Innovations in laser welding of thermoplastics: This advanced technology is ready to be commercialized
JP3674479B2 (en) Plastic molded product
KR101387641B1 (en) Head lamp device with two-color type lens and manufacturing method thereof
JP3630293B2 (en) Laser welding method of resin material
JP2004209916A (en) Resin joining method and resin parts
JP4192859B2 (en) Dissimilar resin member joining method
JP2004188802A (en) Laser welding method for resin members
JP2004050835A (en) Method of connecting plastic constituting member using laser radiation
JP2007210203A (en) Laser welding method and laser welded resin member
JP3596456B2 (en) Method for manufacturing resin molded products
JP4439290B2 (en) Manufacturing method of thermoplastic resin part
JP4010757B2 (en) Resin molded product and manufacturing method thereof
JP5825758B2 (en) 3-layer adhesive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Ref document number: 3630298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term