[go: up one dir, main page]

JP3630019B2 - 2-wire wiring device - Google Patents

2-wire wiring device Download PDF

Info

Publication number
JP3630019B2
JP3630019B2 JP17912099A JP17912099A JP3630019B2 JP 3630019 B2 JP3630019 B2 JP 3630019B2 JP 17912099 A JP17912099 A JP 17912099A JP 17912099 A JP17912099 A JP 17912099A JP 3630019 B2 JP3630019 B2 JP 3630019B2
Authority
JP
Japan
Prior art keywords
voltage
load
power supply
unit
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17912099A
Other languages
Japanese (ja)
Other versions
JP2001016804A (en
Inventor
英喜 河原
亮 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17912099A priority Critical patent/JP3630019B2/en
Publication of JP2001016804A publication Critical patent/JP2001016804A/en
Application granted granted Critical
Publication of JP3630019B2 publication Critical patent/JP3630019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/246Home appliances the system involving the remote operation of lamps or lighting equipment

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Burglar Alarm Systems (AREA)
  • Keying Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform always stable voltage supply to an operating means, independently of the kinds of loads. SOLUTION: A switching element control unit 12e turns on a first switching element 12a in synchronization with the rise in a zero-cross detection signal Vz of a zero-cross detecting element 17 and starts timing operation for a charging limit time t1, and a capacitor element 12d is charged by the pulsating output of a rectifier 11. It is possible to charge and discharge the capacitor element 12d at each half period of a commercial power source 1 even when configuration is simple, and stable power supply to a final control element 13 becomes attainable, by discharging the charge of the capacitor element 12d, when a time interval of the charging limit time t1 which is not larger than half the period of the commercial power source 1 elapses, even if a pulsating output outputted from the rectifier 11 changes, or a level difference is generated at every other half wave, and the charged voltage Vc of the capacitor element 12d does not reach a threshold voltage Vth of a voltage detector 12c, since the impedance of a load 2 changes by the polarity of an AC voltage supplied from the commercial power source.

Description

【0001】
【発明の属する技術分野】
本発明は、2線式配線器具に関するものである。
【0002】
【従来の技術】
従来から、図10に示すような、人が近づくと自動的に負荷開閉部43をオンすることにより負荷に相当する照明器具2に商用電源1を供給して点灯するとともに、人が遠ざかると自動的に負荷開閉部43をオフすることにより照明器具2に商用電源1の供給を遮断して消灯するようにした、照明器具の自動点灯制御に用いる人体検出機能付負荷開閉装置40がある。この人体検出機能付負荷開閉装置40は、電源部41と、操作部42と、負荷開閉部43とを備える。操作部42は、負荷開閉部43を駆動操作する部分であり、開閉制御部42aと、赤外線センサ部42bと、明るさセンサ部42cとを含んで構成される。
【0003】
電源部41は、商用電源1から電源供給されて、操作部42(すなわち開閉制御部42a、赤外線センサ部42bおよび明るさセンサ部42c)に対し、常に電源供給する。操作部42(すなわち開閉制御部42a、赤外線センサ部42bおよび明るさセンサ部42c)は、電源部41からの電源供給を常に受けて動作している。
【0004】
赤外線センサ部42bは、電源部41からの電源供給を常に受けて動作しており、所定の感知領域(図示せず)を有し、この感知領域内を通過する人体の放射する赤外線を検出して人体検出信号を開閉制御部42aへ出力するものであり、図11に示すように、光学系42bと、焦電素子42bと、増幅回路42bと、フィルタ回路42bと、比較回路42bと、出力回路42bとを備える。光学系42bは、ポリエチレン樹脂にて形成した集光レンズや反射鏡などにて構成する。焦電素子42bは、光学系42bの集光する赤外線の変化に応じた電圧を出力する。増幅回路42bは、焦電素子42bの出力する電圧を増幅して出力する。フィルタ回路42bは、増幅回路42bの出力からノイズ成分を除去して、所定周波数帯域成分のみを出力する。比較回路42bは、フィルタ回路42bからの出力を所定の閾値と比較し、フィルタ回路42bからの出力が所定の閾値より大きいときに、出力回路42bに信号を出力する。出力回路42bは、比較回路42bからの信号を受けると、人体検出信号を開閉制御部42aへ出力する。
【0005】
明るさセンサ部42cは、電源部41からの電源供給を常に受けて動作しており、周囲の明るさである周囲照度を常に検出していて、予め定められる所定照度値よりも周囲照度の方が暗い場合に、予め定められる所定照度値よりも周囲照度の方が暗い旨を告げる暗信号を、開閉制御部42aへ出力する。
【0006】
開閉制御部42aは、電源部41からの電源供給を常に受けて動作しており、前記暗信号と前記人体検出信号との論理積(AND)を以て、負荷開閉部43に対してオンを指示し、負荷開閉部43のオンを所定時間継続した上で、再び負荷開閉部43に対してオフを指示する。
【0007】
従って、上述のような人体検出機能付負荷開閉装置40にあっては、商用電源1→負荷開閉部43→負荷2の閉回路の他に、商用電源1→電源部41→操作部42の閉回路を確保しなければならず、4個の電線接続端子を備える必要があり、人体検出機能付負荷開閉装置40の設置に際して、配線の増加を招くという問題点があった。
【0008】
そこで、上記のような問題点を解決するために、2個の電線接続端子を備えるのみで、上述の人体検出機能付負荷開閉装置40における電源部41と操作部42と負荷開閉部43とを内蔵できる、特開平1−133535号公報に示される2線式配線器具が知られている。
【0009】
この特開平1−133535号公報に示される2線式配線器具は図12に示すようなリモコンアダプタ50である。このリモコンアダプタ50は、2個の電線接続端子T1,T2を備えるとともに、内部に、電源部51と操作部52と負荷開閉部53と補助回路54とを備える。操作部52は、開閉制御部52aとリモコン信号受信部52bとを含んで構成される。
【0010】
図12に示すリモコンアダプタ50にあっては、補助回路54は、負荷開閉部53に対して並列をなす状態で負荷2を含む回路に接続し、且つ負荷開閉部53がオフのときに負荷電圧を負荷2の駆動に至らないレベルに低減できるインピーダンスを備える。また、電源部51は、負荷開閉部53と補助回路54とのそれぞれに対して直列をなす状態で負荷2を含む回路に接続し、負荷開閉部53のオン/オフに係わりなく、操作部52(開閉制御部52aおよびリモコン信号受信部52b)に電源供給する。
【0011】
しかしながら、前述の従来の2線式配線器具にあっては、負荷開閉部53のオン/オフに係わらずに常に電源部51を機能するために、電源部51を、負荷2を含む回路に直列に挿入している。しかも、このように接続する電源部51から常に安定に定電圧を出力するために、定電圧ダイオードなどの定電圧素子を利用しているものの、負荷2が負荷開閉部53のオフのときに駆動しないように、負荷開閉部53に並列に接続する補助回路54のインピーダンスを大きくしてあるがために、負荷開閉部53のオン/オフによって、電源部51を通して流れる電流は大幅に異なる。
【0012】
このことは、電源部51の出力電圧が不安定になるとともに、負荷の投入(負荷開閉部53のオン)時の突入電流に耐え得るようにするために、大電流容量の素子を用いなければならず、発熱対策も必要となり、大型化とコスト高とを招く。また、近年省エネを背景に普及してきているインバータ式蛍光灯照明器具は、従来の白熱灯照明器具や銅鉄タイプの安定器を用いた蛍光灯照明器具に比べて、負荷の投入時に非常に大きな突入電流が流れ、電源部51の定電圧ダイオードなどの素子が容易に破壊され、その破壊防止のための回路構成が非常に複雑になるという問題点があった。
【0013】
そこで、上記のような問題点を解決するために、本発明者らは、負荷のインピーダンスの変化や負荷開閉部のオン/オフ状態に関わりなく操作部へ安定して電源供給できる2線式配線器具を既に提案している(特開平11−55877号公報参照)。この公報に開示された2線式配線器具は、図13に示すような人体検出機能付負荷開閉装置60である。この人体検出機能付負荷開閉装置60は、2個の電線接続端子T1,T2を備えるもので、整流回路部61と、電源部62と、補助電源回路63と、操作部64と、負荷開閉部65とを内部に備える。操作部64は、開閉制御部64aと赤外線センサ部64bと明るさセンサ部64cとを含んで構成される。
【0014】
また、図14に示す2線式配線器具は、図13に示す人体検出機能付負荷開閉装置60の補助電源回路63がない場合で、新たに電源供給手段66を備えたものである。
【0015】
図13に示す人体検出機能付負荷開閉装置60にあっては、電源部62は負荷開閉部65に対して並列に接続し、且つ負荷開閉部65がオフ状態のときに負荷電圧を負荷2が駆動するに至らないレベルに低減できるインピーダンスを備える。また、補助電源回路63は、負荷2のインピーダンス変化や負荷開閉部65のオン/オフ状態に関わりなく操作部64へ安定して供給する。また、図14に示す人体検出激能付負荷開閉装置60にあっては、電源供給手段66は負荷開閉部65が長時間にわたって連続的にオン状態とすることを可能とするものである。
【0016】
しかしながら、前述の従来の2線式配線器具にあっては、電源部62は負荷開閉部65に対して並列に接続し、且つ負荷開閉部65がオフ状態のときに負荷電圧を負荷2が駆動するに至らないレベルに低減できるインピーダンスに設定され、また、操作部64への入力電圧を低電圧化するために直列に高抵抗(1MΩ程度)が接続されている。さらに電源部62を介して操作部64へ供給可能な回路電流は前記負荷2にも流れており、待機時にその電流値はグロースタータ式の低力率型蛍光灯のグロースタータを放電させないために、グロースタータの放電開始電圧時(AC65V程度)に流れる電流値未満に抑えなければならず、回路電流を150〜180μA程度の範囲内に抑える必要があり、その結果、操作部64の消費電流は前記回路電流150〜180μA程度の範囲内でしか設定できず、操作部64に使用可能な回路が限定されてしまうという問題点がある。
【0017】
そこで、上記のような問題点を解決するために、本発明者らは、操作部で必要な電流を定常電流として商用電源−電源部−操作部の直列回路に流すことなく、操作部で必要な電力を供給可能な電源部を備えた2線式配線器具を提案している。この2線式配線器具は、図15に示すような人体検出搬能付負荷開閉装置10であって、電源部12双び整流器11を介して負荷2に直列に接続された商用電源1に接続され、人体の有無を検出し、駆動回路16を駆動するための検出信号を出力する操作部13と、この駆動回路16により開閉され、負荷2の駆動制御を行うスイッチング素子を有する負荷開閉部15と、負荷2の駆動時に操作部13に電圧を供給する電圧供給回路14と、整流器11の脈流出力電圧の立ち上がりを検出するゼロクロス検出部17とを有し、電源部12が、整流器11の脈流出力端と接続され、操作部13側の線路に直列に介在された第1のスイッチ要素12aと、この第1のスイッチ要素12aの他方側に電流制限素子12hと、電流制限素子12hの他方側に電荷の充電機能を有する蓄電素子12dと、第1のスイッチ要素12aと蓄電素子12dの接続点よりも操作部13側の線路に直列に介在された第2のスイッチ要素12bと、蓄電素子12dの電圧値を監視し、この電圧値が予め設定された電圧値に達したかどうかを検出する電圧検出回路12cと、この電圧検出回路12cの検出信号を受けて、第1及び第2のスイッチ要素12a,12bのオンオフ状態を切換可能なスイッチ要素制御部12eとを備え、スイッチ要素制御部12eは、蓄電素子12dの電圧値が予め設定された電圧値以下のとき、第1のスイッチ要素12aをオン状態、かつ第2のスイッチ要素12bをオフ状態とし、また、蓄電素子12dの電圧値が予め設定された電圧値を越えたとき、第1のスイッチ要素12aをオフ状態、かつ第2のスイッチ要素12bをオン状態とするものである。
【0018】
【発明が解決しようとする課題】
しかしながら、上記従来の2線式配線器具にあっては、照明負荷が電子スタータ式蛍光灯のように半波ごとに回路インピーダンスが異なるものである場合、蓄電素子12dに充電可能な電圧値が半波ごとに異なり、全波とも放電させる必要がある場合、予め設定する充電電圧を低い側の半波の電圧に設定する必要があり、信号処理系用の電圧・電流が確保できないという問題がある。
【0019】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、負荷の種類に依らず、操作手段に対して常に安定した電圧供給が行える2線式配線器具を提供することにある。
【0020】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、商用電源と負荷が直列に接続される一対の接続端子と、接続端子間を略短絡状態とするか否かにより商用電源から負荷への電源供給を制御して負荷をオン・オフする負荷制御手段と、負荷制御手段を操作する操作手段と、負荷オン時に商用電源からの電源供給を受けて操作手段の動作電源を作成する第1の電源作成手段と、商用電源により接続端子間に印加される交流電圧を全波整流する整流手段と、少なくとも負荷オフ時に整流手段の脈流出力により操作手段の動作電源を作成する第2の電源作成手段とを備えた2線式配線器具において、第2の電源作成手段は、整流手段の脈流出力によって充電される蓄電素子と、整流手段から蓄電素子への充電経路を開閉する第1のスイッチ要素と、蓄電素子の放電経路を開閉する第2のスイッチ要素と、蓄電素子の充電電圧が所定のしきい値電圧を超えているか否かを検出する電圧検出部と、脈流出力のゼロクロスを検出するゼロクロス検出部と、電圧検出部及びゼロクロス検出部の検出結果に基づいて第1及び第2のスイッチ要素をオンオフ制御するスイッチ要素制御部とを具備して蓄電素子から放電される電荷により操作手段の動作電源を作成して成り、スイッチ要素制御部は、ゼロクロス検出部にて脈流出力の立ち上がりが検出された時点で第1のスイッチ要素をオンし且つ第2のスイッチ要素をオフするとともに商用電源の半周期よりも長くない所定の充電制限時間の時限を開始し、電圧検出部によって蓄電素子の充電電圧がしきい値を超えていることが検出された時点、あるいは充電制限時間の時限が終了した時点の何れか早い時点で第1のスイッチ要素をオフし且つ第2のスイッチ要素をオンすることを特徴とし、負荷のインピーダンスが商用電源から供給される交流電圧の極性によって変化するために整流手段から出力される脈流出力が変動又は半波おきにレベル差が生じて、蓄電素子の充電電圧が電圧検出部のしきい値電圧に達しない場合であっても、商用電源の半周期よりも長くない充電制限時間の時限終了時に蓄電素子の電荷を放電させているから、簡単な構成でありながら、商用電源の半周期毎に蓄電素子の充放電を確実に行い、操作部に対して安定した電源供給が行える。
【0021】
請求項2の発明は、請求項1の発明において、蓄電素子の充電電荷が充電経路側に逆流するのを防止する逆流防止素子を第1のスイッチ要素と蓄電素子との間の充電経路に挿入したことを特徴とし、請求項1の発明の作用に加えて、充電制限時間が脈流出力の立ち上がり時点から脈流出力がピーク値に達するまでの時間よりも長く設定される場合であっても、一旦蓄電素子に充電された電荷が充電経路側に逆流することがなく、脈流出力のピーク値近傍の充電電圧を確保することが可能となり、操作部に対してさらに安定した電源供給が行える。
【0022】
請求項3の発明は、請求項2の発明において、充電制限時間を5ミリ秒以上且つ8.3ミリ秒未満に設定したことを特徴とし、請求項2の発明の作用に加えて、商用電源の電源周波数の違いに関わらず、脈流出力のほぼピーク値近傍の充電電圧を確保することが可能となり、操作部に対してさらに安定した電源供給が行える。
【0023】
【発明の実施の形態】
以下、従来例で説明したような人体検出機能付負荷開閉装置を例に本発明の実施形態を詳細に説明する。但し、本発明はこれに限定する趣旨ではなく、商用電源と負荷に直列に接続されて商用電源から負荷への電源供給を制御する2線式配線器具全般について本発明の技術思想を適用することができる。
【0024】
(実施形態1)
図1に本実施形態における人体検出機能付負荷開閉装置(以下、「負荷開閉装置」と略す)Aのブロック図を示す。この負荷開閉装置Aは、交流100Vの商用電源1と照明器具のような負荷2が直列に接続される一対の接続端子T1,T2と、接続端子T1,T2間を略短絡状態とするか否かにより商用電源1から負荷2への電源供給を制御して負荷2を開閉(オン・オフ)する負荷制御手段と、負荷制御手段を操作する操作部13と、負荷2のオン時に商用電源1からの電源供給を受けて操作部13の動作電源を作成する第1の電源作成手段と、商用電源1により接続端子T1,T2間に印加される交流電圧を全波整流する整流器(ダイオードブリッジ)11と、少なくとも負荷2のオフ時に整流器11の脈流出力により操作部13の動作電源を作成する第2の電源作成手段とを備える。
【0025】
負荷制御手段は、接続端子T1,T2間に挿入されるトライアック等の半導体スイッチング素子を備えた負荷開閉部15と、操作部13の出力信号Voとゼロクロス検出部17の検出信号Vzの論理積に基づいて負荷開閉部15の半導体スイッチング素子をオン・オフ駆動する駆動回路部16とで構成される。なお、接続端子T1,T2間には負荷開閉部15と並列に整流器11の交流入力端が接続されている。
【0026】
また第1の電源作成手段は、例えば1次側が接続端子T1と負荷開閉部15との間に挿入されたカレントトランスの2次側出力を整流するなどして直流電圧を取り出す電圧供給回路14と、3端子レギュレータ等で構成され電圧供給回路14から供給される直流電圧を安定化する定電圧回路12gとから成り、負荷2のオン時に負荷開閉部15を介して接続端子T1,T2間に流れる電流から電圧供給回路14で取り出される直流電圧を定電圧回路12gで安定化し、動作電源として操作部13に供給するものである。
【0027】
第2の電源作成手段は、ゼロクロス検出部17及び電源部12で構成され、整流器11の脈流電圧からリップルを除去して平滑するとともに所定のレベルの直流電圧に変換するものである。ゼロクロス検出部17は、例えば、整流器11の脈流電圧を分圧抵抗により分圧した電圧をコンパレータにおいて0V近傍に設定された基準電圧Vrと比較し、基準電圧Vrよりも高い場合にHレベル、基準電圧Vrよりも低い場合にLレベルとなる検出信号Vzを出力するものである。また電源部12は、整流器11の脈流出力端間に接続され整流器11の脈流出力によって充電される蓄電素子(電解コンデンサ)12dと、整流器11から蓄電素子12dへの充電経路を開閉する第1のスイッチ要素12aと、蓄電素子12dの放電経路を開閉する第2のスイッチ要素12bと、蓄電素子12dの充電電圧Vcが所定のしきい値電圧Vthを超えているか否かを検出して電圧検出信号Vdを出力する電圧検出部12cと、電圧検出部12cの電圧検出信号Vd及びゼロクロス検出部17の検出信号Vzに基づいて第1及び第2のスイッチ要素12a,12bをオンオフ制御するスイッチ要素制御部12eと、第1のスイッチ要素12aと蓄電素子12dとの間に挿入された抵抗等から成る電流制限用素子12hと、第2のスイッチ要素12bと定電圧回路12gの間に挿入される電圧変換回路12fとを具備する。
【0028】
ここで、蓄電素子12dの容量値は、負荷2をグロースタータ方式の蛍光灯照明器具としたときにこの照明器具に内蔵されている雑音防止用コンデンサの容量値(約0.006〜0.01μF)と略同一の値に設定される。これにより、グロースタータの両端に印加される電圧をその放電開始電圧未満に抑えることができる。また、蓄電素子12dの充電電圧Vcは、操作部13で必要とする電力を、(蓄電素子12dの容量値)×Vc/2として十分確保可能な電圧値に設定される。なお、充電電圧Vcに達するまでに流れる充電電流によってグロースタータが放電を開始しないように電流制限用素子(抵抗)12hの抵抗値並びに充電電圧Vcを設定する必要がある。
【0029】
また、電圧変換回路12fは、第2のスイッチ要素12bの一端にカソードが接続されるとともに整流器11の低電位側の脈流出力端にアノードが接続されるダイオードD1と、一端がダイオードD1のカソードに接続されるとともに他端が定電圧回路12gの入力端に接続されたコイルL1と、定電圧回路12gの入力端と整流器11の低電位側の脈流出力端の間に接続されたコンデンサC1とで構成され、蓄電素子12dに充電されているエネルギ(=(蓄電素子12dの容量値)×Vc/2)が放電される際に定電圧回路12gの入力電圧範囲の低電圧に変換するとともに、次回の放電が行われるまでの間、定電圧回路12gに供給可能な電力を蓄えるものである。すなわち、第2のスイッチ要素12bがオンすると、蓄電素子12dから放電される電荷がコイルL1を介して瞬時にコンデンサC1に充電され、例えば蓄電素子12dの容量値を0.01μF、充電電圧Vcを60V、コイルL1のインダクタンスを20mH、コンデンサC1の容量値を22μF、操作部13の入力インピーダンスを10kΩとすれば、コンデンサC1の充電電圧として約3.5V程度が得られ、定電圧回路12gを介して操作部13へは平均約350μAの電流を供給することができる。
【0030】
一方、操作部13は、人体から放射される熱線を検出する焦電型赤外線センサを備える赤外線センサ部13bと、周囲の明るさを検出する明るさセンサ部13cと、赤外線センサ部13bと明るさセンサ部13cとの出力の組み合わせによって負荷開閉部15の開閉を判断する判断処理部13aとにより構成され、負荷2のオン・オフに関わらず、常に動作電源が供給されて動作状態にある。なお、判断処理部13aは、例えば電源部12のスイッチ要素制御部12eとともに制御用ICにより実現される。
【0031】
赤外線センサ部13bは、焦電型赤外線センサ(以下、赤外線センサと称する)を備え、検知エリア内における人の存否に応じた人体検出信号(検知エリア内で人が動いている場合にHレベル、人が居ない又は動いていない場合にLレベルとなる信号)Vsを出力するものであるが、従来技術で説明した赤外線センサ部42bと同一の構成を有することから詳しい説明は省略する。
【0032】
一方、明るさセンサ部13cはCdSあるいはフォトダイオードよりなる明るさセンサを備え、周囲の明るさに対応した明るさセンサの出力値を所定のしきい値と比較し、周囲の明るさがしきい値に対応した所定レベルよりも明るい場合にLレベル、暗い場合にHレベルとなる明るさ検出信号Vaを出力するものである。判断処理部13aでは、人体検出信号Vsと明るさ検出信号Vaの論理積に応じた出力信号Voを駆動回路部16に出力している。具体的には、明るさセンサ部13cからの明るさ検出信号VaがLレベルのとき(周囲の明るさが所定レベルよりも明るいとき)には、赤外線センサ部13bからの人体検出信号Vsにかかわらず、つまり検知エリア内に人が検知されるか否かにかかわらず出力信号VoをLレベルとし、負荷2をオフ状態(消灯状態)に保たせる。また、明るさセンサ部13cからの明るさ検出信号VaがHレベルのとき(周囲の明るさが所定レベルよりも暗いとき)には、赤外線センサ部13bで人が検知されるか否かに応じて、すなわち人体検出信号VsがHレベルのときに出力信号VoをHレベルとして駆動回路部16によって負荷開閉部15をオン駆動して負荷2をオン(点灯)させる。また判断処理部13aは、人体検出信号VsがLレベルとなった時点から所定の動作保持時間(例えば、1分間程度)taの時限を開始し、動作保持時間taの時限終了まで出力信号VoをHレベルに維持している。要するに、周囲が明るいときには一般には負荷2を点灯させる必要がないから、赤外線センサ部13bによる人の検知の有無にかかわらず負荷2を消灯させておくのである。
【0033】
次に、図2及び図3のタイムチャートを参照して、負荷2のオフ時に操作部13へ動作電源を供給する電源部12の動作を説明する。なお、図2は、負荷2が白熱灯照明器具のように商用電源1の半周期毎でインピーダンスが異ならないような場合、図3は、負荷2が電子スタータ式蛍光灯照明器具のように商用電源1の半周期毎でインピーダンスが異なるような場合をそれぞれ示している。
【0034】
まず、商用電源1の半周期毎でインピーダンスが異ならない負荷2であって、図2に示すように整流器11の脈流電圧が半波(半周期)毎で殆ど変動しない場合について説明する。
【0035】
スイッチ要素制御部12eでは、第1及び第2のスイッチ要素12a,12bをオフしている状態から、ゼロクロス検出部17のゼロクロス検出信号Vzの立ち上がりに同期して第1のスイッチ要素12aをオンするとともに所定の充電制限時間t1の時限動作を開始し、整流器11の脈流出力によって蓄電素子12dを充電する。ここで、蓄電素子12dに流れる充電電流のレベルは、電流制限素子12hによって、負荷2がオン、すなわちグロースタータ式の蛍光灯照明器具の場合にグロースタータが放電を起こさないようなレベルに抑えられている。そして、蓄電素子12dの両端電圧(充電電圧)Vcがしきい値電圧Vthを超えて電圧検出信号VdがLレベルからHレベルに立ち上がると、第1のスイッチ要素12aをオフし、さらに第1のスイッチ要素12aをオフしてから所定のデッドタイムt2が経過した後に第2のスイッチ要素12bをオンして蓄電素子12dの充電電荷を電圧変換回路12fへ放電する。ここで、上記デッドタイムt2は、第1及び第2のスイッチ要素12a、12bが同時にオンすることで整流器11の脈流出力が直接電圧変換部12fに入力されないようにするために設けられている。また、しきい値電圧Vthは、蓄電素子12dの充電電圧Vcが定電圧回路12gを正常に動作し得る電圧レベルとなるように適当な値に設定される。
【0036】
そして、スイッチ要素制御部12eでは、ゼロクロス検出信号Vzの立ち下がりに同期して第2のスイッチ要素2bをオフし、その間に蓄電素子12dから放電されたエネルギで定電圧回路12gを動作させ、以後、商用電源1の半周期毎(脈流出力の半波毎)に上記動作を行うことで蓄電素子12dの充放電を繰り返して操作部13に安定した動作電源を供給することができる。
【0037】
次に、商用電源1の半周期毎でインピーダンスが異なる負荷2であって、図3に示すように整流器11の脈流電圧が、電源電圧の正の半周期に比較して負の半周期で小さくなり、半波(半周期)毎で変動する場合について説明する。
【0038】
スイッチ要素制御部12eでは、第1及び第2のスイッチ要素12a,12bをオフしている状態から、ゼロクロス検出部17のゼロクロス検出信号Vzの立ち上がりに同期して第1のスイッチ要素12aをオンするとともに所定の充電制限時間t1の時限動作を開始し、整流器11の脈流出力によって蓄電素子12dを充電する。そして、電源電圧の正の半周期においては、蓄電素子12dの両端電圧(充電電圧)Vcがしきい値電圧Vthを超えて電圧検出信号VdがLレベルからHレベルに立ち上がると、第1のスイッチ要素12aをオフし、さらに第1のスイッチ要素12aをオフしてから所定のデッドタイムt2が経過した後に第2のスイッチ要素12bをオンして蓄電素子12dの充電電荷を電圧変換回路12fへ放電する。スイッチ要素制御部12eでは、ゼロクロス検出信号Vzの立ち下がりに同期して第2のスイッチ要素2bをオフし、その間に蓄電素子12dから放電されたエネルギで定電圧回路12gを動作させる。
【0039】
一方、電源電圧の負の半周期では脈流出力のピーク値が低いために充電電圧Vcがしきい値電圧Vthにまで到達しないが、スイッチ要素制御部12eがゼロクロス検出信号Vzの立ち上がりに同期して所定の充電制限時間t1の時限を行っており、この充電制限時間t1の時限が終了した時点で第1のスイッチ要素12aをオフし、さらに第1のスイッチ要素12aをオフしてから所定のデッドタイムt2が経過した後に第2のスイッチ要素12bをオンする。そして、スイッチ要素制御部12eがゼロクロス検出信号Vzの立ち下がりに同期して第2のスイッチ要素2bをオフし、その間に蓄電素子12dから放電されたエネルギで定電圧回路12gを動作させる。
【0040】
上述のように本実施形態によれば、負荷2のインピーダンスが商用電源1から供給される交流電圧の極性によって変化するために整流器11から出力される脈流出力が変動又は半波おきにレベル差が生じて、蓄電素子12dの充電電圧Vcが電圧検出回路12cのしきい値電圧Vthに達しない場合であっても、商用電源1の半周期よりも長くない充電制限時間t1の時限終了時に蓄電素子12dの電荷を放電させることにより、簡単な構成でありながら、商用電源1の半周期毎に蓄電素子12dの充放電を確実に行い、操作部13に対して安定した電源供給が行えるものである。
【0041】
最後に、本実施形態の負荷開閉装置Aの動作を図4を参照して説明する。
【0042】
まず、日中などの周囲が明るいときに負荷開閉装置Aの電線接続端子T1,T2を負荷2及び商用電源1に直列に接続すると、所定時間内(例えば5秒程度)に操作部13及び電源部12が動作電圧に達するように、数秒間程度、負荷開閉部15をオン駆動して負荷2を強制点灯させ、電圧供給回路14から定電圧回路12gに電圧供給する。定電圧回路12gの出力が安定すると、判断処理部13aが駆動回路部16を介して負荷開閉部15をオフ駆動することで負荷2をオフし、電圧供給回路14からの電圧供給を停止する。このとき、整流器11の脈流出力が電源部12に入力される。電源部12のスイッチ要素制御部12eが第1のスイッチ要素12aと第2のスイッチ要素12bとを制御し、整流回路部11の脈流電圧の半波毎に蓄電素子12dの充放電を行い、電圧変換回路12fの出力が所定電圧に達するようになって定電圧回路12gから操作部13へ動作電源が安定して供給されることになる。この間、定電圧回路12gの出力電圧は電解コンデンサなどの蓄電素子により電圧供給するものとする。このように、負荷開閉装置Aの電源部12は操作部13に電源供給を行うのであるが、電圧検出回路12c、スイッチ要素制御部12e並びにゼロクロス検出部17に電源供給を行うように構成する場合もある。
【0043】
そして、周囲が明るいために明るさセンサ部13cの明るさ検出信号VaがLレベルとなっている間は、例え赤外線センサ部13bの人体検出信号VsがHレベルとなっても2つの信号Vs,Vaの論理積である判断処理部13aの出力信号がHレベルとならず、負荷開閉部15はオフ状態のままとなる。
【0044】
一方、夜になるなどして周囲が暗くなると、明るさセンサ部13cの明るさ検出信号VaがHレベルとなり、その間に玄関先などに設けられた赤外線センサ部13bの検知エリア内に来訪者が進入すると、赤外線センサ部13bの人体検出信号VsがHレベルとなる。すると、判断処理部13aは2つの信号Va,Vsの論理積である出力信号VoをLレベルからHレベルとし、その時点から所定の動作保持時間(例えば1分問程度)taの間だけ出力信号VoをHレベルに維持する。ここで、整流回路部11の脈流電圧が基準電圧Vrに達してゼロクロス検出部17からのゼロクロス検出信号VzがHレベルとなると、駆動回路部16が操作部13の出力信号Voとゼロクロス検出信号Vzとの論理積からなる駆動信号をHレベルとし、負荷開閉部15をオン駆動して負荷2をオン(点灯)する。なお、負荷開閉部15を構成するトライアックのような半導体スイッチング素子は、商用電源1の電源電圧が所定レベルよりも低下するとオン状態が維持されなくなるため、ゼロクロス検出部17によって電源電圧のゼロクロスを検出する度に駆動回路部16からの駆動信号をHレベルとしてトリガをかける必要があり、負荷開閉部15は負荷2をオンする際に連続的にオンになるのではなく略オンになるのである。そして、動作保持時間が経過したときに操作部13の出力信号VoがLレベルとなり、駆動回路部16からは次にゼロクロス検出信号VzがHレベルになったときに駆動信号が出力されず、負荷開閉部15がオフとなって負荷2がオフ(消灯)する。
【0045】
ところで、負荷開閉部15が略オン状態のときは、電源部12の入力電圧は殆ど零ボルトになり、電源部12では操作部13に十分な電源供給を行えない状態になるものの、このときには、商用電源1と負荷2に直列に接続された電圧供給回路14が負荷2に流れる電流(点灯電流)を用いて定電圧回路12gに電圧を供給しているから、定電圧回路12gで安定化された電圧が操作部13に供給されて、操作部13の判断処理部13a、赤外線センサ部13b及び明るさセンサ部13cが常に停止することなく動作し続けることができる。
【0046】
つまり、このように構成される本実施形態の負荷開閉装置Aによれば、電源投入時には電圧供給回路14から定電圧回路12gを介して操作部13に電源供給を行うとともに、負荷開閉装置Aを速やかに動作可能な状態にすることができる。また、上述のように負荷2のインピーダンスが半波毎に異なる場合においては、スイッチ要素制御部12eにより確実に半波おきに蓄電素子12dの充放電を行って定電圧回路12gを介して操作部13へ必要な電力を供給することができる。
【0047】
また、待機時においては、電源部12は蓄電素子12dの充放電と電圧変換回路12fによる電圧変換により、操作部13にグロースタータの放電開始時の電流に相当するレベル、またはそれ以上のレベルの電流を供給し、且つ負荷2がグロースタータ式の蛍光灯照明器具の場合、グロースタータの端子電圧を放電開始電圧未満に抑えることができる。つまり、待機時におけるグロースタータの微放電を防止し、グロースタータの寿命劣化を防止することが可能である。さらに、動作時においては、電圧供給回路14を介して定電圧回路12gと操作部13への電源供給と負荷2の点灯の両立が可能となる。なお、負荷2が例えば蛍光灯照明器具から白熱灯照明器具へ変更されるなどして負荷2のインピーダンスが変化しても、他の照明器具のインピーダンスに比べて回路インピーダンスが十分に高いので、操作部13に安定して電源供給できる。
【0048】
(実施形態2)
図5に本実施形態における負荷開閉装置Aのブロック図を示す。なお、本実施形態の基本構成並びに動作は実施形態1と共通するので、共通する構成については同一の符号を付して説明を省略し、本実施形態の特徴となる部分についてのみ説明する。
【0049】
本実施形態は、蓄電素子12dの充電電荷が充電経路側に逆流するのを防止する逆流防止素子たるダイオード12iを第1のスイッチ要素12aと蓄電素子12dとの間の充電経路に挿入した点に特徴があり、ダイオード12iのアノードを電流制限素子12hの一端に接続し、カソードを蓄電素子12dと第2のスイッチ要素12bとの接続点に接続してある。
【0050】
実施形態1で説明したように、スイッチ要素制御部12eは電圧検出回路12cの検出電圧Vdがしきい値電圧Vthを超えるか、あるいは第1のスイッチ要素12aをオンしてから所定の充電制御時間t1が経過したときの何れか早い時点で第1のスイッチ要素12aをオフし、その後に第2のスイッチ要素12bをオンして充電素子12dの電荷を放電させる。ここで、実施形態1においては、商用電源1の電源周波数が50Hzの場合にゼロクロスから脈流電圧がピーク値に達するまでの時間(約5ms)に充電制限時間t1を設定していると、商用電源1が60Hzの場合に、図6に示すように脈流電圧がピーク値を過ぎた後で第1のスイッチ要素12aがオンされて充電が終了するために充電電力をロスしてしまうことになる。
【0051】
それに対して本実施形態では蓄電素子12dの充電電荷の逆流を防止するダイオード12iを設けているので、上述のような状況においても、図7に示すように蓄電素子12dの充電電圧Vcが脈流電圧のピーク値を過ぎてから第1のスイッチ要素12aがオフするまでの間はピーク値のままで保持することができる。
【0052】
而して、本実施形態においては、充電制限時間t1が脈流出力の立ち上がり時点から脈流出力がピーク値に達するまでの時間よりも長く設定される場合であっても、一旦蓄電素子12dに充電された電荷が充電経路側に逆流することがなく、脈流出力のピーク値近傍の充電電圧Vcを確保することが可能となり、操作部13に対してさらに安定した電源供給が行えるという利点がある。
【0053】
ところで、充電制限時間t1を、図8に示すように商用電源1の電源周波数が50Hzである場合の4分の1周期、つまりゼロクロスから半波のピークに達するまでの時間(約5ms)以上であって、図9に示すように商用電源1の電源周波数が60Hzである場合の半周期(約8.3ms)よりも短い時間に設定すれば、電源周波数が50Hz又は60Hzの何れの場合であっても常に脈流電圧のピーク値近傍の充電電圧Vcで蓄電素子12dの充電を終了することが可能となり、操作部13に対してさらに安定した電源供給が行えるという利点がある。
【0054】
【発明の効果】
請求項1の発明は、商用電源と負荷が直列に接続される一対の接続端子と、接続端子間を略短絡状態とするか否かにより商用電源から負荷への電源供給を制御して負荷をオン・オフする負荷制御手段と、負荷制御手段を操作する操作手段と、負荷オン時に商用電源からの電源供給を受けて操作手段の動作電源を作成する第1の電源作成手段と、商用電源により接続端子間に印加される交流電圧を全波整流する整流手段と、少なくとも負荷オフ時に整流手段の脈流出力により操作手段の動作電源を作成する第2の電源作成手段とを備えた2線式配線器具において、第2の電源作成手段は、整流手段の脈流出力によって充電される蓄電素子と、整流手段から蓄電素子への充電経路を開閉する第1のスイッチ要素と、蓄電素子の放電経路を開閉する第2のスイッチ要素と、蓄電素子の充電電圧が所定のしきい値電圧を超えているか否かを検出する電圧検出部と、脈流出力のゼロクロスを検出するゼロクロス検出部と、電圧検出部及びゼロクロス検出部の検出結果に基づいて第1及び第2のスイッチ要素をオンオフ制御するスイッチ要素制御部とを具備して蓄電素子から放電される電荷により操作手段の動作電源を作成して成り、スイッチ要素制御部は、ゼロクロス検出部にて脈流出力の立ち上がりが検出された時点で第1のスイッチ要素をオンし且つ第2のスイッチ要素をオフするとともに商用電源の半周期よりも長くない所定の充電制限時間の時限を開始し、電圧検出部によって蓄電素子の充電電圧がしきい値を超えていることが検出された時点、あるいは充電制限時間の時限が終了した時点の何れか早い時点で第1のスイッチ要素をオフし且つ第2のスイッチ要素をオンするので、負荷のインピーダンスが商用電源から供給される交流電圧の極性によって変化するために整流手段から出力される脈流出力が変動又は半波おきにレベル差が生じて、蓄電素子の充電電圧が電圧検出部のしきい値電圧に達しない場合であっても、商用電源の半周期よりも長くない充電制限時間の時限終了時に蓄電素子の電荷を放電させ、簡単な構成でありながら、商用電源の半周期毎に蓄電素子の充放電を確実に行い、操作部に対して安定した電源供給が行えるという効果がある。
【0055】
請求項2の発明は、蓄電素子の充電電荷が充電経路側に逆流するのを防止する逆流防止素子を第1のスイッチ要素と蓄電素子との間の充電経路に挿入したので、請求項1の発明の効果に加えて、充電制限時間が脈流出力の立ち上がり時点から脈流出力がピーク値に達するまでの時間よりも長く設定される場合であっても、一旦蓄電素子に充電された電荷が充電経路側に逆流することがなく、脈流出力のピーク値近傍の充電電圧を確保することが可能となり、操作部に対してさらに安定した電源供給が行えるという効果がある。
【0056】
請求項3の発明は、充電制限時間を5ミリ秒以上且つ8.3ミリ秒未満に設定したので、請求項2の発明の効果に加えて、商用電源の電源周波数の違いに関わらず、脈流出力のほぼピーク値近傍の充電電圧を確保することが可能となり、操作部に対してさらに安定した電源供給が行えるという効果がある。
【図面の簡単な説明】
【図1】実施形態1を示すブロック図である。
【図2】同上の動作説明用の波形図である。
【図3】同上の動作説明用の波形図である。
【図4】同上の動作説明用の波形図である。
【図5】実施形態2を示すブロック図である。
【図6】同上の動作説明用の波形図である。
【図7】同上の動作説明用の波形図である。
【図8】同上の動作説明用の波形図である。
【図9】同上の動作説明用の波形図である。
【図10】従来の4線式の配線器具の一例である人体検出機能付負荷開閉装置を示すブロック図である。
【図11】同上における赤外線センサ部を示すブロック図である。
【図12】従来の2線式配線器具の一例を示すブロック図である。
【図13】従来の2線式配線器具の他の例を示すブロック図である。
【図14】従来の2線式配線器具のさらに他の例を示すブロック図である。
【図15】従来の2線式配線器具のさらにまた他の例を示すブロック図である。
【符号の説明】
1 商用電源
2 負荷
A 人体検出機能付負荷開閉装置
11 整流器
12 電源部
12a 第1のスイッチ要素
12b 第2のスイッチ要素
12c 電圧検出回路
12d 蓄電素子
12e スイッチ要素制御部
13 操作部
14 電圧供給回路
15 負荷開閉部
16 駆動回路部
17 ゼロクロス検出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-wire wiring device.
[0002]
[Prior art]
Conventionally, as shown in FIG. 10, when a person approaches, the load opening / closing unit 43 is automatically turned on to supply the commercial power source 1 to the lighting fixture 2 corresponding to the load to turn on, and automatically when the person moves away. There is a load opening / closing device 40 with a human body detection function used for automatic lighting control of the lighting fixture, in which the load opening / closing section 43 is turned off to cut off the supply of the commercial power source 1 to the lighting fixture 2 and turn off the lighting fixture 2. The load opening / closing device 40 with a human body detection function includes a power supply unit 41, an operation unit 42, and a load opening / closing unit 43. The operation unit 42 is a part that drives and operates the load opening / closing unit 43, and includes an opening / closing control unit 42a, an infrared sensor unit 42b, and a brightness sensor unit 42c.
[0003]
The power supply unit 41 is supplied with power from the commercial power supply 1 and always supplies power to the operation unit 42 (that is, the open / close control unit 42a, the infrared sensor unit 42b, and the brightness sensor unit 42c). The operation unit 42 (that is, the open / close control unit 42a, the infrared sensor unit 42b, and the brightness sensor unit 42c) is always operated by receiving power supply from the power supply unit 41.
[0004]
The infrared sensor unit 42b operates by always receiving power supply from the power supply unit 41, has a predetermined sensing area (not shown), and detects infrared rays radiated by the human body passing through the sensing area. The human body detection signal is output to the open / close control unit 42a, and as shown in FIG. 1 And pyroelectric element 42b 2 And an amplifier circuit 42b 3 And the filter circuit 42b 4 And the comparison circuit 42b 5 Output circuit 42b 6 With. Optical system 42b 1 Is constituted by a condensing lens or a reflecting mirror formed of polyethylene resin. Pyroelectric element 42b 2 Is the optical system 42b. 1 A voltage corresponding to the change in the infrared rays collected is output. Amplifier circuit 42b 3 Is the pyroelectric element 42b. 2 Amplifies the voltage output from and outputs. Filter circuit 42b 4 Is the amplifier circuit 42b. 3 The noise component is removed from the output and only the predetermined frequency band component is output. Comparison circuit 42b 5 The filter circuit 42b 4 Is compared with a predetermined threshold value, and the filter circuit 42b 4 When the output from the output circuit 42b is larger than a predetermined threshold value, the output circuit 42b 6 To output a signal. Output circuit 42b 6 The comparison circuit 42b 5 When the signal is received, the human body detection signal is output to the open / close control unit 42a.
[0005]
The brightness sensor unit 42c is always operated by receiving power supply from the power supply unit 41, and always detects ambient illuminance, which is ambient brightness, and the ambient illuminance is higher than a predetermined illuminance value. Is dark, it outputs to the open / close control unit 42a a dark signal indicating that the ambient illuminance is darker than a predetermined illuminance value.
[0006]
The open / close control unit 42a is always operated by receiving power supply from the power supply unit 41, and instructs the load open / close unit 43 to be turned on by a logical product (AND) of the dark signal and the human body detection signal. Then, after the load opening / closing unit 43 is turned on for a predetermined time, the load opening / closing unit 43 is instructed to turn off again.
[0007]
Therefore, in the load switching device 40 with the human body detection function as described above, in addition to the closed circuit of the commercial power source 1 → the load switching unit 43 → the load 2, the commercial power source 1 → the power source unit 41 → the operation unit 42 is closed. A circuit must be ensured, and it is necessary to provide four electric wire connection terminals. When the load switchgear with a human body detection function 40 is installed, there is a problem in that the wiring is increased.
[0008]
Therefore, in order to solve the above problems, the power supply unit 41, the operation unit 42, and the load switching unit 43 in the load switching device 40 with human body detection function described above are provided only by providing two wire connection terminals. A two-wire wiring device disclosed in Japanese Patent Laid-Open No. 1-133535, which can be built in, is known.
[0009]
The two-wire wiring apparatus disclosed in Japanese Patent Laid-Open No. 1-133535 is a remote control adapter 50 as shown in FIG. The remote controller adapter 50 includes two electric wire connection terminals T1 and T2, and includes a power supply unit 51, an operation unit 52, a load switching unit 53, and an auxiliary circuit 54 therein. The operation unit 52 includes an opening / closing control unit 52a and a remote control signal receiving unit 52b.
[0010]
In the remote control adapter 50 shown in FIG. 12, the auxiliary circuit 54 is connected to a circuit including the load 2 in parallel with the load switching unit 53, and the load voltage when the load switching unit 53 is off. Is provided with an impedance that can be reduced to a level that does not lead to driving of the load 2. The power supply unit 51 is connected to a circuit including the load 2 in series with each of the load switching unit 53 and the auxiliary circuit 54, and the operation unit 52 regardless of whether the load switching unit 53 is on or off. Power is supplied to (opening / closing control unit 52a and remote control signal receiving unit 52b).
[0011]
However, in the above-described conventional two-wire wiring device, the power supply unit 51 is connected in series with a circuit including the load 2 in order to always function the power supply unit 51 regardless of whether the load switching unit 53 is on or off. Is inserted. In addition, although a constant voltage element such as a constant voltage diode is used in order to constantly output a constant voltage stably from the power supply unit 51 connected in this way, the load 2 is driven when the load switching unit 53 is off. The impedance of the auxiliary circuit 54 connected in parallel to the load switching unit 53 is increased so that the current flowing through the power source unit 51 varies greatly depending on whether the load switching unit 53 is on or off.
[0012]
This means that the output voltage of the power supply unit 51 becomes unstable, and an element having a large current capacity must be used in order to withstand an inrush current when a load is applied (load switching unit 53 is turned on). In addition, heat generation measures are required, which leads to an increase in size and cost. Moreover, inverter-type fluorescent lamp luminaires that have become popular in recent years due to energy conservation are much larger when a load is applied than conventional incandescent lamp luminaires and fluorescent lamp luminaires that use copper-iron type ballasts. There is a problem that an inrush current flows, elements such as a constant voltage diode of the power supply unit 51 are easily destroyed, and a circuit configuration for preventing the destruction becomes very complicated.
[0013]
Therefore, in order to solve the above-described problems, the present inventors have provided a two-wire wiring that can stably supply power to the operation unit regardless of changes in the impedance of the load and the on / off state of the load switching unit. An instrument has already been proposed (see JP-A-11-55877). The two-wire wiring apparatus disclosed in this publication is a load switching device 60 with a human body detection function as shown in FIG. This load opening / closing device 60 with a human body detection function includes two electric wire connection terminals T1, T2, and includes a rectifier circuit portion 61, a power supply portion 62, an auxiliary power supply circuit 63, an operation portion 64, and a load opening / closing portion. 65 is provided inside. The operation unit 64 includes an open / close control unit 64a, an infrared sensor unit 64b, and a brightness sensor unit 64c.
[0014]
Further, the two-wire wiring device shown in FIG. 14 is provided with a power supply means 66 in the case where the auxiliary power supply circuit 63 of the load switching device 60 with the human body detection function shown in FIG. 13 is not provided.
[0015]
In the load switching device 60 with the human body detection function shown in FIG. 13, the power supply unit 62 is connected in parallel to the load switching unit 65, and the load voltage is applied to the load 2 when the load switching unit 65 is off. Impedance can be reduced to a level that does not lead to driving. Further, the auxiliary power supply circuit 63 stably supplies the operation unit 64 regardless of the impedance change of the load 2 and the on / off state of the load switching unit 65. Further, in the load detecting device 60 with human body detection intensification shown in FIG. 14, the power supply means 66 allows the load opening and closing unit 65 to be continuously turned on for a long time.
[0016]
However, in the above-described conventional two-wire wiring device, the power supply unit 62 is connected in parallel to the load switching unit 65, and the load 2 drives the load voltage when the load switching unit 65 is off. It is set to an impedance that can be reduced to a level that does not lead to a high level, and a high resistance (about 1 MΩ) is connected in series to reduce the input voltage to the operation unit 64. Further, the circuit current that can be supplied to the operation unit 64 via the power supply unit 62 also flows in the load 2, so that the current value during standby does not discharge the glow starter of the glow starter type low power factor fluorescent lamp. Therefore, it is necessary to suppress the current value that flows at the discharge start voltage of the glow starter (AC65V or so) to less than about 150 to 180 μA. As a result, the current consumption of the operation unit 64 is as follows. The circuit current can be set only within a range of about 150 to 180 μA, and there is a problem that a circuit that can be used for the operation unit 64 is limited.
[0017]
Therefore, in order to solve the above-described problems, the present inventors need the operation unit without flowing the current necessary for the operation unit as a steady current through the series circuit of the commercial power source, the power source unit, and the operation unit. Has proposed a two-wire wiring device having a power supply unit capable of supplying a large amount of power. This two-wire wiring device is a load switching device 10 with human body detection and carrying capability as shown in FIG. 15, and is connected to a commercial power source 1 connected in series to a load 2 via a power source 12 and a rectifier 11. The operation unit 13 that detects the presence or absence of a human body and outputs a detection signal for driving the drive circuit 16, and the load opening / closing unit 15 that is opened and closed by the drive circuit 16 and has a switching element that controls driving of the load 2. And a voltage supply circuit 14 that supplies a voltage to the operation unit 13 when the load 2 is driven, and a zero-cross detection unit 17 that detects the rising of the pulsating output voltage of the rectifier 11. A first switch element 12a connected to the pulsating current output end and interposed in series on the line on the operation unit 13 side, a current limiting element 12h on the other side of the first switch element 12a, and a current limiting element 12h other A storage element 12d having a charge charging function on the side, a second switch element 12b interposed in series on a line closer to the operation unit 13 than a connection point between the first switch element 12a and the storage element 12d, and the storage element A voltage detection circuit 12c that monitors the voltage value of 12d and detects whether or not the voltage value has reached a preset voltage value, and a detection signal of the voltage detection circuit 12c, receives the first and second A switch element control unit 12e capable of switching on / off states of the switch elements 12a and 12b. The switch element control unit 12e is configured to switch the first switch element when the voltage value of the power storage element 12d is equal to or lower than a preset voltage value. When the 12a is turned on and the second switch element 12b is turned off, and the voltage value of the power storage element 12d exceeds a preset voltage value, the first switch element 1 a OFF state and the second switching element 12b is intended to be turned on.
[0018]
[Problems to be solved by the invention]
However, in the above-described conventional two-wire wiring apparatus, when the lighting load has a different circuit impedance for each half wave like an electronic starter type fluorescent lamp, the voltage value that can be charged to the storage element 12d is half. When it is necessary to discharge all the waves, it is necessary to set the charging voltage set in advance to the lower half-wave voltage, and there is a problem that the voltage and current for the signal processing system cannot be secured. .
[0019]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a two-wire wiring apparatus that can always supply a stable voltage to the operation means regardless of the type of load. There is.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the first aspect of the present invention provides a pair of connection terminals in which the commercial power source and the load are connected in series, and whether the commercial power source is connected to the load depending on whether or not the connection terminals are substantially short-circuited. A load control means for controlling power supply to turn on / off the load, an operating means for operating the load control means, and a first power source for generating operating power for the operating means upon receiving power supply from a commercial power supply when the load is on A power source creating means, a rectifying means for full-wave rectification of an AC voltage applied between connection terminals by a commercial power source, and a second power source creating an operating power source for the operating means by at least a pulsating output of the rectifying means when the load is off A second switch for opening and closing a charging path from the rectifying means to the storage element, the storage element being charged by the pulsating flow output of the rectifying means; Elements and storage A second switch element that opens and closes a discharge path of the element, a voltage detection unit that detects whether or not a charging voltage of the storage element exceeds a predetermined threshold voltage, and a zero cross detection that detects a zero cross of the pulsating current output And a switch element control unit that controls on and off of the first and second switch elements based on the detection results of the voltage detection unit and the zero cross detection unit, and the operation power source of the operating means by the electric charge discharged from the storage element The switch element control unit turns on the first switch element and turns off the second switch element at the time when the rising of the pulsating flow output is detected by the zero-cross detection unit, and the commercial power supply half Starting a time limit of a predetermined charging time limit that is not longer than the cycle, and when the voltage detection unit detects that the charging voltage of the storage element exceeds the threshold value, or The first switch element is turned off and the second switch element is turned on at the earliest point of time when the time limit of the power limit time ends, and the impedance of the load is the AC voltage supplied from the commercial power supply. Even when the pulsating output output from the rectifying means fluctuates or changes in level every half wave due to the change depending on the polarity, the charge voltage of the storage element does not reach the threshold voltage of the voltage detector Because the charge of the electricity storage element is discharged at the end of the time limit of the charge limit time that is not longer than the half cycle of the commercial power supply, it is possible to reliably charge and discharge the electricity storage element every half cycle of the commercial power supply while having a simple configuration And stable power supply to the operation unit can be performed.
[0021]
According to a second aspect of the invention, in the first aspect of the invention, a backflow prevention element for preventing the charge of the power storage element from flowing back to the charge path side is inserted into the charge path between the first switch element and the power storage element. In addition to the operation of the invention of claim 1, the charging limit time may be set longer than the time from when the pulsating flow output rises until the pulsating flow output reaches the peak value. The charge once charged in the storage element does not flow backward to the charging path side, it is possible to secure a charging voltage near the peak value of the pulsating output, and more stable power supply to the operation unit can be achieved. .
[0022]
The invention of claim 3 is characterized in that, in the invention of claim 2, the charging time limit is set to 5 milliseconds or more and less than 8.3 milliseconds, in addition to the operation of the invention of claim 2, Regardless of the difference in power supply frequency, it is possible to secure a charging voltage in the vicinity of the peak value of the pulsating flow output, and a more stable power supply can be performed to the operation unit.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail by taking a load switching device with a human body detection function as described in the conventional example as an example. However, the present invention is not limited to this, and the technical idea of the present invention is applied to general two-wire wiring devices that are connected in series to a commercial power source and a load and control power supply from the commercial power source to the load. Can do.
[0024]
(Embodiment 1)
FIG. 1 shows a block diagram of a load switching device with a human body detection function (hereinafter abbreviated as “load switching device”) A in the present embodiment. This load switchgear A makes a substantially short-circuited state between a pair of connection terminals T1, T2 to which a commercial power supply 1 of AC 100V and a load 2 such as a lighting fixture are connected in series, and the connection terminals T1, T2. The load control means for controlling the power supply from the commercial power supply 1 to the load 2 to open and close the load 2 (ON / OFF), the operation unit 13 for operating the load control means, and the commercial power supply 1 when the load 2 is turned on First power generation means for generating an operating power supply for the operation unit 13 in response to power supply from the rectifier, and a rectifier (diode bridge) for full-wave rectification of the AC voltage applied between the connection terminals T1 and T2 by the commercial power supply 1 11 and second power generation means for generating an operating power supply for the operation unit 13 by the pulsating flow output of the rectifier 11 at least when the load 2 is off.
[0025]
The load control means is a logical product of the load switching unit 15 including a semiconductor switching element such as a triac inserted between the connection terminals T1 and T2, and the output signal Vo of the operation unit 13 and the detection signal Vz of the zero cross detection unit 17. The drive circuit unit 16 is configured to drive the semiconductor switching element of the load switching unit 15 on and off. An AC input terminal of the rectifier 11 is connected between the connection terminals T1 and T2 in parallel with the load switching unit 15.
[0026]
Further, the first power generation means includes, for example, a voltage supply circuit 14 that extracts a DC voltage by, for example, rectifying the secondary output of a current transformer whose primary side is inserted between the connection terminal T1 and the load switching unit 15; It comprises a constant voltage circuit 12g which is composed of a three-terminal regulator and stabilizes the DC voltage supplied from the voltage supply circuit 14, and flows between the connection terminals T1 and T2 via the load switching unit 15 when the load 2 is on. The DC voltage extracted from the current by the voltage supply circuit 14 is stabilized by the constant voltage circuit 12g and supplied to the operation unit 13 as an operating power source.
[0027]
The second power generation means is composed of a zero-cross detection unit 17 and a power supply unit 12, and removes a ripple from the pulsating voltage of the rectifier 11 to smooth it and convert it to a DC voltage of a predetermined level. For example, the zero-cross detection unit 17 compares a voltage obtained by dividing the pulsating voltage of the rectifier 11 with a voltage dividing resistor with a reference voltage Vr set in the vicinity of 0 V in the comparator, and when the voltage is higher than the reference voltage Vr, When the voltage is lower than the reference voltage Vr, a detection signal Vz that is L level is output. The power supply unit 12 is connected between the pulsating flow output terminals of the rectifier 11 and is charged with the pulsating flow output of the rectifier 11, and the charging path from the rectifier 11 to the accumulating element 12d is opened and closed. 1 switch element 12a, second switch element 12b that opens and closes the discharge path of power storage element 12d, and whether or not charge voltage Vc of power storage element 12d exceeds a predetermined threshold voltage Vth A voltage detector 12c that outputs a detection signal Vd, and a switch element that controls on / off of the first and second switch elements 12a and 12b based on the voltage detection signal Vd of the voltage detector 12c and the detection signal Vz of the zero-cross detector 17 A control unit 12e, a current limiting element 12h formed of a resistor or the like inserted between the first switch element 12a and the power storage element 12d, and a second switch. Comprising a voltage converting circuit 12f to be inserted between the pitch component 12b and a constant voltage circuit 12g.
[0028]
Here, when the load 2 is a glow starter type fluorescent lamp lighting fixture, the capacitance value of the storage element 12d is a capacitance value of a noise prevention capacitor (about 0.006 to 0.01 μF) built in the lighting fixture. ) And substantially the same value. Thereby, the voltage applied to both ends of the glow starter can be suppressed to less than the discharge start voltage. In addition, the charging voltage Vc of the storage element 12d is obtained by calculating the power required by the operation unit 13 by (capacitance value of the storage element 12d) × Vc. 2 / 2 is set to a voltage value that can be sufficiently secured. It is necessary to set the resistance value of the current limiting element (resistance) 12h and the charging voltage Vc so that the glow starter does not start discharging due to the charging current flowing until the charging voltage Vc is reached.
[0029]
The voltage conversion circuit 12f includes a diode D1 having a cathode connected to one end of the second switch element 12b and an anode connected to the pulsating output terminal on the low potential side of the rectifier 11, and one end being a cathode of the diode D1. And the other end of the coil L1 connected to the input terminal of the constant voltage circuit 12g, and the capacitor C1 connected between the input terminal of the constant voltage circuit 12g and the pulsating output terminal on the low potential side of the rectifier 11. Energy stored in the storage element 12d (= (capacitance value of the storage element 12d) × Vc) 2 / 2) is converted to a low voltage in the input voltage range of the constant voltage circuit 12g when discharged, and power that can be supplied to the constant voltage circuit 12g is stored until the next discharge is performed. That is, when the second switch element 12b is turned on, the electric charge discharged from the electric storage element 12d is instantaneously charged to the capacitor C1 via the coil L1, and for example, the capacitance value of the electric storage element 12d is 0.01 μF, and the charging voltage Vc is If 60V, the inductance of the coil L1 is 20 mH, the capacitance value of the capacitor C1 is 22 μF, and the input impedance of the operation unit 13 is 10 kΩ, the charging voltage of the capacitor C1 is about 3.5V, which is obtained via the constant voltage circuit 12g. Thus, an average current of about 350 μA can be supplied to the operation unit 13.
[0030]
On the other hand, the operation unit 13 includes an infrared sensor unit 13b including a pyroelectric infrared sensor that detects heat rays radiated from a human body, a brightness sensor unit 13c that detects ambient brightness, and an infrared sensor unit 13b. A judgment processing unit 13a that judges opening / closing of the load switching unit 15 by a combination of outputs with the sensor unit 13c, regardless of whether the load 2 is on or off, is always supplied with operating power and is in an operating state. The determination processing unit 13a is realized by a control IC together with the switch element control unit 12e of the power supply unit 12, for example.
[0031]
The infrared sensor unit 13b includes a pyroelectric infrared sensor (hereinafter referred to as an infrared sensor), and a human body detection signal corresponding to the presence or absence of a person in the detection area (when the person is moving in the detection area, the H level, The signal Vs is output when the person is not present or is not moving, but the detailed description is omitted because it has the same configuration as the infrared sensor unit 42b described in the prior art.
[0032]
On the other hand, the brightness sensor unit 13c includes a brightness sensor composed of CdS or a photodiode, compares the output value of the brightness sensor corresponding to the ambient brightness with a predetermined threshold value, and the ambient brightness becomes the threshold value. The brightness detection signal Va is output when the brightness is lower than the corresponding predetermined level and becomes H level when dark. The determination processing unit 13 a outputs an output signal Vo corresponding to the logical product of the human body detection signal Vs and the brightness detection signal Va to the drive circuit unit 16. Specifically, when the brightness detection signal Va from the brightness sensor unit 13c is at the L level (when the surrounding brightness is brighter than a predetermined level), the human body detection signal Vs from the infrared sensor unit 13b is involved. In other words, regardless of whether or not a person is detected in the detection area, the output signal Vo is set to the L level, and the load 2 is kept in the off state (light-off state). When the brightness detection signal Va from the brightness sensor unit 13c is at the H level (when the ambient brightness is darker than the predetermined level), it is determined whether or not a person is detected by the infrared sensor unit 13b. That is, when the human body detection signal Vs is at the H level, the output signal Vo is set to the H level, and the load opening / closing unit 15 is turned on by the drive circuit unit 16 to turn on (light up) the load 2. Further, the determination processing unit 13a starts a time limit of a predetermined operation holding time (for example, about 1 minute) ta from the time when the human body detection signal Vs becomes L level, and outputs the output signal Vo until the time limit of the operation holding time ta ends. It is maintained at the H level. In short, since it is generally not necessary to turn on the load 2 when the surroundings are bright, the load 2 is turned off regardless of whether the infrared sensor unit 13b detects a person.
[0033]
Next, the operation of the power supply unit 12 that supplies operation power to the operation unit 13 when the load 2 is turned off will be described with reference to the time charts of FIGS. 2 shows a case where the load 2 does not differ in impedance every half cycle of the commercial power source 1 as in the case of an incandescent lamp illuminator, and FIG. 3 shows that the load 2 is commercially available as in an electronic starter type fluorescent lamp luminaire. The cases where the impedance is different for each half cycle of the power supply 1 are shown.
[0034]
First, a description will be given of a case in which the load 2 has an impedance that does not vary for each half cycle of the commercial power supply 1 and the pulsating voltage of the rectifier 11 hardly varies for each half wave (half cycle) as shown in FIG.
[0035]
In the switch element control unit 12e, the first switch element 12a is turned on in synchronization with the rising of the zero cross detection signal Vz of the zero cross detection unit 17 from the state where the first and second switch elements 12a and 12b are turned off. At the same time, a time limit operation for a predetermined charging time limit t1 is started, and the storage element 12d is charged by the pulsating flow output of the rectifier 11. Here, the level of the charging current flowing through the electric storage element 12d is suppressed by the current limiting element 12h to such a level that the glow starter does not cause a discharge when the load 2 is turned on, that is, in the case of a glow starter type fluorescent lamp lighting fixture. ing. When the voltage (charge voltage) Vc across the storage element 12d exceeds the threshold voltage Vth and the voltage detection signal Vd rises from the L level to the H level, the first switch element 12a is turned off, and further the first After a predetermined dead time t2 elapses after the switch element 12a is turned off, the second switch element 12b is turned on to discharge the charged charge of the storage element 12d to the voltage conversion circuit 12f. Here, the dead time t2 is provided in order to prevent the pulsating current output of the rectifier 11 from being directly input to the voltage conversion unit 12f by simultaneously turning on the first and second switch elements 12a and 12b. . Threshold voltage Vth is set to an appropriate value so that charging voltage Vc of power storage element 12d is at a voltage level at which constant voltage circuit 12g can operate normally.
[0036]
Then, the switch element control unit 12e turns off the second switch element 2b in synchronization with the falling edge of the zero-cross detection signal Vz, and operates the constant voltage circuit 12g with the energy discharged from the power storage element 12d during that time. By performing the above operation every half cycle of the commercial power source 1 (every half wave of the pulsating flow output), it is possible to supply the operation unit 13 with stable operation power by repeatedly charging and discharging the power storage element 12d.
[0037]
Next, the load 2 has a different impedance in every half cycle of the commercial power supply 1, and as shown in FIG. 3, the pulsating voltage of the rectifier 11 has a negative half cycle compared to the positive half cycle of the power supply voltage. The case where it becomes smaller and fluctuates every half wave (half cycle) will be described.
[0038]
In the switch element control unit 12e, the first switch element 12a is turned on in synchronization with the rising of the zero cross detection signal Vz of the zero cross detection unit 17 from the state where the first and second switch elements 12a and 12b are turned off. At the same time, a time limit operation for a predetermined charging time limit t1 is started, and the storage element 12d is charged by the pulsating flow output of the rectifier 11. In the positive half cycle of the power supply voltage, when the voltage (charge voltage) Vc across the storage element 12d exceeds the threshold voltage Vth and the voltage detection signal Vd rises from the L level to the H level, the first switch After the element 12a is turned off and the first switch element 12a is turned off, the second switch element 12b is turned on after a predetermined dead time t2 has elapsed, and the charge of the storage element 12d is discharged to the voltage conversion circuit 12f. To do. The switch element control unit 12e turns off the second switch element 2b in synchronization with the falling of the zero-cross detection signal Vz, and operates the constant voltage circuit 12g with the energy discharged from the power storage element 12d during that time.
[0039]
On the other hand, since the peak value of the pulsating output is low in the negative half cycle of the power supply voltage, the charging voltage Vc does not reach the threshold voltage Vth, but the switch element control unit 12e is synchronized with the rising of the zero-cross detection signal Vz. A predetermined time limit for charging limit time t1 is performed, and when the time limit for charging time limit t1 ends, the first switch element 12a is turned off, and further, the first switch element 12a is turned off and then the predetermined time limit is reached. After the dead time t2 elapses, the second switch element 12b is turned on. Then, the switch element control unit 12e turns off the second switch element 2b in synchronization with the falling edge of the zero cross detection signal Vz, and operates the constant voltage circuit 12g with the energy discharged from the power storage element 12d during that time.
[0040]
As described above, according to the present embodiment, since the impedance of the load 2 varies depending on the polarity of the AC voltage supplied from the commercial power source 1, the pulsating output output from the rectifier 11 varies or has a level difference every half wave. Even when the charging voltage Vc of the power storage element 12d does not reach the threshold voltage Vth of the voltage detection circuit 12c, the power storage is performed at the end of the time limit of the charging time limit t1 which is not longer than the half cycle of the commercial power source 1. By discharging the charge of the element 12d, the power storage element 12d can be reliably charged and discharged every half cycle of the commercial power supply 1 with a simple configuration, and a stable power supply to the operation unit 13 can be performed. is there.
[0041]
Finally, the operation of the load switching device A of the present embodiment will be described with reference to FIG.
[0042]
First, when the surroundings of the load switchgear A are connected in series to the load 2 and the commercial power source 1 when the surroundings are bright such as during the daytime, the operation unit 13 and the power source are within a predetermined time (for example, about 5 seconds). The load switching unit 15 is driven on for several seconds so that the unit 12 reaches the operating voltage, and the load 2 is forcibly lit, and the voltage is supplied from the voltage supply circuit 14 to the constant voltage circuit 12g. When the output of the constant voltage circuit 12g is stabilized, the judgment processing unit 13a turns off the load opening / closing unit 15 via the drive circuit unit 16 to turn off the load 2 and stop the voltage supply from the voltage supply circuit 14. At this time, the pulsating flow output of the rectifier 11 is input to the power supply unit 12. The switch element control unit 12e of the power supply unit 12 controls the first switch element 12a and the second switch element 12b, and charges and discharges the storage element 12d for each half wave of the pulsating voltage of the rectifier circuit unit 11, The output of the voltage conversion circuit 12f reaches a predetermined voltage, and the operation power is stably supplied from the constant voltage circuit 12g to the operation unit 13. During this time, the output voltage of the constant voltage circuit 12g is supplied by a storage element such as an electrolytic capacitor. As described above, the power supply unit 12 of the load switching device A supplies power to the operation unit 13, but the power detection unit 12c is configured to supply power to the voltage detection circuit 12c, the switch element control unit 12e, and the zero cross detection unit 17. There is also.
[0043]
While the surroundings are bright and the brightness detection signal Va of the brightness sensor unit 13c is at the L level, the two signals Vs, even if the human body detection signal Vs of the infrared sensor unit 13b is at the H level. The output signal of the determination processing unit 13a, which is the logical product of Va, does not become H level, and the load switching unit 15 remains off.
[0044]
On the other hand, when the surroundings become dark, such as at night, the brightness detection signal Va of the brightness sensor unit 13c becomes H level, and a visitor enters the detection area of the infrared sensor unit 13b provided at the front door during that time. When entering, the human body detection signal Vs of the infrared sensor part 13b becomes H level. Then, the determination processing unit 13a changes the output signal Vo, which is the logical product of the two signals Va and Vs, from the L level to the H level, and outputs the output signal only for a predetermined operation holding time (for example, about 1 minute) ta from that point. Maintain Vo at H level. Here, when the pulsating voltage of the rectifier circuit unit 11 reaches the reference voltage Vr and the zero cross detection signal Vz from the zero cross detection unit 17 becomes H level, the drive circuit unit 16 outputs the output signal Vo of the operation unit 13 and the zero cross detection signal. A drive signal composed of a logical product with Vz is set to H level, the load opening / closing unit 15 is turned on, and the load 2 is turned on (lit). In addition, since the semiconductor switching element such as the triac constituting the load switching unit 15 is not maintained in the ON state when the power supply voltage of the commercial power supply 1 falls below a predetermined level, the zero cross of the power supply voltage is detected by the zero cross detection unit 17. Each time it is necessary to trigger the drive signal from the drive circuit unit 16 as an H level, the load switching unit 15 is not turned on continuously but turned on when the load 2 is turned on. When the operation holding time has elapsed, the output signal Vo of the operation unit 13 becomes L level, and when the zero cross detection signal Vz becomes H level next time, the drive signal is not output from the drive circuit unit 16, and the load The opening / closing part 15 is turned off and the load 2 is turned off (extinguishes).
[0045]
By the way, when the load switching unit 15 is substantially on, the input voltage of the power supply unit 12 is almost zero volts, and the power supply unit 12 cannot supply sufficient power to the operation unit 13. Since the voltage supply circuit 14 connected in series with the commercial power source 1 and the load 2 supplies the voltage to the constant voltage circuit 12g using the current (lighting current) flowing through the load 2, the voltage is stabilized by the constant voltage circuit 12g. Thus, the determination processing unit 13a, the infrared sensor unit 13b, and the brightness sensor unit 13c of the operation unit 13 can always operate without being stopped.
[0046]
That is, according to the load switching device A of the present embodiment configured as described above, when the power is turned on, power is supplied from the voltage supply circuit 14 to the operation unit 13 via the constant voltage circuit 12g, and the load switching device A is It is possible to quickly make it operable. In addition, when the impedance of the load 2 is different for each half wave as described above, the switch element control unit 12e reliably charges and discharges the storage element 12d every half wave and operates the operation unit via the constant voltage circuit 12g. The necessary power can be supplied to 13.
[0047]
In standby mode, the power supply unit 12 has a level corresponding to the current at the start of discharge of the glow starter in the operation unit 13 or a level higher than that by charging / discharging the storage element 12d and voltage conversion by the voltage conversion circuit 12f. When a current is supplied and the load 2 is a glow starter type fluorescent lamp lighting fixture, the terminal voltage of the glow starter can be suppressed to less than the discharge start voltage. That is, it is possible to prevent the glow starter from being slightly discharged during standby and to prevent the life of the glow starter from being deteriorated. Further, during operation, it is possible to simultaneously supply power to the constant voltage circuit 12g and the operation unit 13 and turn on the load 2 through the voltage supply circuit 14. Even if the impedance of the load 2 changes, for example, when the load 2 is changed from a fluorescent lamp luminaire to an incandescent lamp luminaire, the circuit impedance is sufficiently higher than the impedance of other luminaires. Power can be stably supplied to the unit 13.
[0048]
(Embodiment 2)
FIG. 5 shows a block diagram of the load switching device A in the present embodiment. Since the basic configuration and operation of the present embodiment are common to those of the first embodiment, the common components are denoted by the same reference numerals, description thereof is omitted, and only the features that are characteristic of the present embodiment are described.
[0049]
In the present embodiment, a diode 12i, which is a backflow prevention element that prevents the charge stored in the power storage element 12d from flowing back to the charge path side, is inserted into the charge path between the first switch element 12a and the power storage element 12d. There is a feature that the anode of the diode 12i is connected to one end of the current limiting element 12h, and the cathode is connected to the connection point between the storage element 12d and the second switch element 12b.
[0050]
As described in the first embodiment, the switch element control unit 12e has a predetermined charge control time after the detection voltage Vd of the voltage detection circuit 12c exceeds the threshold voltage Vth or the first switch element 12a is turned on. The first switch element 12a is turned off at the earliest time when t1 has elapsed, and then the second switch element 12b is turned on to discharge the charge of the charging element 12d. Here, in Embodiment 1, when the power supply frequency of the commercial power source 1 is 50 Hz, if the charge limit time t1 is set to the time (about 5 ms) from the zero cross until the pulsating voltage reaches the peak value, When the power supply 1 is 60 Hz, as shown in FIG. 6, the charging power is lost because the first switch element 12a is turned on after the pulsating current voltage has passed the peak value and charging is completed. Become.
[0051]
On the other hand, in the present embodiment, the diode 12i that prevents the backflow of the charge stored in the storage element 12d is provided. Therefore, even in the above situation, the charge voltage Vc of the storage element 12d is pulsating as shown in FIG. From the time when the voltage peak value is passed to the time when the first switch element 12a is turned off, the peak value can be maintained.
[0052]
Thus, in the present embodiment, even if the charging limit time t1 is set longer than the time from when the pulsating flow output rises until the pulsating flow output reaches the peak value, the charging limit time t1 is temporarily stored in the power storage element 12d. The charged electric charge does not flow backward to the charging path side, and it becomes possible to secure the charging voltage Vc near the peak value of the pulsating flow output, and there is an advantage that more stable power supply can be performed to the operation unit 13. is there.
[0053]
By the way, as shown in FIG. 8, the charging limit time t1 is a quarter cycle when the power supply frequency of the commercial power supply 1 is 50 Hz, that is, a time from the zero cross to the half-wave peak (about 5 ms) or more. As shown in FIG. 9, if the power supply frequency of the commercial power supply 1 is set to a time shorter than a half cycle (about 8.3 ms) when the power supply frequency is 60 Hz, the power supply frequency is 50 Hz or 60 Hz. However, it is possible to always end the charging of the storage element 12d with the charging voltage Vc in the vicinity of the peak value of the pulsating voltage, and there is an advantage that more stable power supply can be performed to the operation unit 13.
[0054]
【The invention's effect】
The invention according to claim 1 controls the power supply from the commercial power source to the load depending on whether the commercial power source and the load are connected in series, and whether or not the connection terminals are in a substantially short-circuited state. A load control means for turning on / off; an operation means for operating the load control means; a first power supply creation means for creating an operating power supply for the operation means upon receiving a power supply from the commercial power supply when the load is on; A two-wire system comprising a rectifying means for full-wave rectification of an AC voltage applied between the connection terminals, and a second power supply generating means for generating an operating power supply for the operating means by at least a pulsating output of the rectifying means when the load is off. In the wiring device, the second power generation means includes a power storage element that is charged by a pulsating output of the rectification means, a first switch element that opens and closes a charging path from the rectification means to the power storage element, and a discharge path of the power storage element. Open and close 2 switch elements, a voltage detection unit that detects whether or not the charging voltage of the storage element exceeds a predetermined threshold voltage, a zero cross detection unit that detects a zero cross of a pulsating current output, a voltage detection unit, and a zero cross A switch element control unit for controlling on and off of the first and second switch elements based on the detection result of the detection unit, and creating an operating power source for the operating means by the electric charge discharged from the storage element. The control unit turns on the first switch element and turns off the second switch element at the time when the rising of the pulsating flow output is detected by the zero-cross detection unit and performs predetermined charging that is not longer than a half cycle of the commercial power supply. The time limit for the time limit is started, and when the voltage detector detects that the charging voltage of the storage element exceeds the threshold value, or the time limit for the time limit for charging ends. Since the first switch element is turned off and the second switch element is turned on at an earlier point in time, the impedance of the load is output from the rectifying means in order to change depending on the polarity of the AC voltage supplied from the commercial power source. Even if the pulsating flow output fluctuates or a level difference occurs every half wave, the charging voltage of the storage element does not reach the threshold voltage of the voltage detector, and the charging is not longer than the half cycle of the commercial power supply. The charge of the electricity storage element is discharged at the end of the time limit of the time limit, and while it has a simple configuration, the electricity storage element can be reliably charged and discharged every half cycle of the commercial power supply, enabling stable power supply to the operation unit effective.
[0055]
According to the second aspect of the present invention, since the backflow prevention element for preventing the charge of the power storage element from flowing back to the charge path side is inserted in the charge path between the first switch element and the power storage element, In addition to the effects of the invention, even if the charge limit time is set longer than the time from the rise of the pulsating flow output until the pulsating flow output reaches the peak value, the charge once charged in the storage element is There is no backflow to the charging path side, it is possible to secure a charging voltage near the peak value of the pulsating flow output, and there is an effect that more stable power supply can be performed to the operation unit.
[0056]
In the invention of claim 3, since the charging time limit is set to 5 milliseconds or more and less than 8.3 milliseconds, in addition to the effect of the invention of claim 2, the pulse is not affected regardless of the difference in the power supply frequency of the commercial power supply. It is possible to secure a charging voltage in the vicinity of the peak value of the flow output, and there is an effect that more stable power supply can be performed to the operation unit.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment.
FIG. 2 is a waveform diagram for explaining the operation of the above.
FIG. 3 is a waveform diagram for explaining the operation of the above.
FIG. 4 is a waveform diagram for explaining the operation of the above.
FIG. 5 is a block diagram showing a second embodiment.
FIG. 6 is a waveform diagram for explaining the operation of the above.
FIG. 7 is a waveform diagram for explaining the operation of the above.
FIG. 8 is a waveform diagram for explaining the operation of the above.
FIG. 9 is a waveform diagram for explaining the operation of the above.
FIG. 10 is a block diagram showing a load switching device with a human body detection function, which is an example of a conventional 4-wire wiring device.
FIG. 11 is a block diagram showing an infrared sensor unit of the above.
FIG. 12 is a block diagram showing an example of a conventional two-wire wiring device.
FIG. 13 is a block diagram showing another example of a conventional two-wire wiring device.
FIG. 14 is a block diagram showing still another example of a conventional two-wire wiring device.
FIG. 15 is a block diagram showing still another example of a conventional two-wire wiring device.
[Explanation of symbols]
1 Commercial power supply
2 Load
A Load switchgear with human body detection function
11 Rectifier
12 Power supply
12a First switch element
12b Second switch element
12c Voltage detection circuit
12d storage element
12e Switch element control unit
13 Operation part
14 Voltage supply circuit
15 Load switching part
16 Drive circuit section
17 Zero cross detector

Claims (3)

商用電源と負荷が直列に接続される一対の接続端子と、接続端子間を略短絡状態とするか否かにより商用電源から負荷への電源供給を制御して負荷をオン・オフする負荷制御手段と、負荷制御手段を操作する操作手段と、負荷オン時に商用電源からの電源供給を受けて操作手段の動作電源を作成する第1の電源作成手段と、商用電源により接続端子間に印加される交流電圧を全波整流する整流手段と、少なくとも負荷オフ時に整流手段の脈流出力により操作手段の動作電源を作成する第2の電源作成手段とを備えた2線式配線器具において、第2の電源作成手段は、整流手段の脈流出力によって充電される蓄電素子と、整流手段から蓄電素子への充電経路を開閉する第1のスイッチ要素と、蓄電素子の放電経路を開閉する第2のスイッチ要素と、蓄電素子の充電電圧が所定のしきい値電圧を超えているか否かを検出する電圧検出部と、脈流出力のゼロクロスを検出するゼロクロス検出部と、電圧検出部及びゼロクロス検出部の検出結果に基づいて第1及び第2のスイッチ要素をオンオフ制御するスイッチ要素制御部とを具備して蓄電素子から放電される電荷により操作手段の動作電源を作成して成り、スイッチ要素制御部は、ゼロクロス検出部にて脈流出力の立ち上がりが検出された時点で第1のスイッチ要素をオンし且つ第2のスイッチ要素をオフするとともに商用電源の半周期よりも長くない所定の充電制限時間の時限を開始し、電圧検出部によって蓄電素子の充電電圧がしきい値を超えていることが検出された時点、あるいは充電制限時間の時限が終了した時点の何れか早い時点で第1のスイッチ要素をオフし且つ第2のスイッチ要素をオンすることを特徴とする2線式配線器具。A load control means for controlling the power supply from the commercial power supply to the load by turning on or off the load depending on whether or not the connection terminal is in a substantially short-circuited state, and a pair of connection terminals in which the commercial power supply and the load are connected in series And an operating means for operating the load control means, a first power generating means for generating an operating power for the operating means upon receiving a power supply from the commercial power supply when the load is on, and a commercial power supply applied between the connection terminals. In a two-wire wiring apparatus comprising: a rectifying means for full-wave rectification of an AC voltage; and a second power generation means for generating an operating power supply for the operation means by at least a pulsating output of the rectification means when the load is off. The power generation means includes a storage element charged by the pulsating output of the rectification means, a first switch element that opens and closes a charging path from the rectification means to the storage element, and a second switch that opens and closes a discharge path of the storage element element A voltage detection unit for detecting whether or not the charging voltage of the storage element exceeds a predetermined threshold voltage, a zero cross detection unit for detecting a zero cross of the pulsating flow output, and detection results of the voltage detection unit and the zero cross detection unit And a switch element control unit for controlling on and off of the first and second switch elements, and generating an operating power source for the operating means by the electric charge discharged from the storage element. When the rising edge of the pulsating flow output is detected by the detection unit, the first switch element is turned on and the second switch element is turned off, and the predetermined charging time limit is not longer than a half cycle of the commercial power supply. Start, when the voltage detection unit detects that the charging voltage of the storage element exceeds the threshold, or when the time limit of the charging time limit ends, whichever comes first 2-wire wiring device, wherein the turning on and the second switching element turns off the first switch element at the point. 蓄電素子の充電電荷が充電経路側に逆流するのを防止する逆流防止素子を第1のスイッチ要素と蓄電素子との間の充電経路に挿入したことを特徴とする請求項1記載の2線式配線器具。2. The two-wire system according to claim 1, wherein a backflow prevention element for preventing the charge of the power storage element from flowing back to the charge path side is inserted in a charge path between the first switch element and the power storage element. Wiring equipment. 充電制限時間を5ミリ秒以上且つ8.3ミリ秒未満に設定したことを特徴とする請求項2記載の2線式配線器具。The two-wire wiring apparatus according to claim 2, wherein the charging time limit is set to 5 milliseconds or more and less than 8.3 milliseconds.
JP17912099A 1999-06-25 1999-06-25 2-wire wiring device Expired - Fee Related JP3630019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17912099A JP3630019B2 (en) 1999-06-25 1999-06-25 2-wire wiring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17912099A JP3630019B2 (en) 1999-06-25 1999-06-25 2-wire wiring device

Publications (2)

Publication Number Publication Date
JP2001016804A JP2001016804A (en) 2001-01-19
JP3630019B2 true JP3630019B2 (en) 2005-03-16

Family

ID=16060364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17912099A Expired - Fee Related JP3630019B2 (en) 1999-06-25 1999-06-25 2-wire wiring device

Country Status (1)

Country Link
JP (1) JP3630019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548422A (en) * 2011-03-18 2014-01-29 Lg伊诺特有限公司 Input voltage transfer apparatus for light emitting diode lighting system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748024B2 (en) 2006-10-16 2011-08-17 パナソニック電工株式会社 2-wire switch device
JP4899950B2 (en) * 2007-03-08 2012-03-21 パナソニック電工株式会社 2-wire switch device
JP4706649B2 (en) * 2007-03-08 2011-06-22 パナソニック電工株式会社 2-wire switch device
JP5240774B2 (en) * 2008-12-22 2013-07-17 パナソニック株式会社 Load control device
JP5314413B2 (en) * 2008-12-22 2013-10-16 パナソニック株式会社 Load control device
MY164929A (en) 2008-12-22 2018-02-15 Panasonic Ip Man Co Ltd Load control device
JP5219208B2 (en) * 2008-12-22 2013-06-26 パナソニック株式会社 Load control device
JP5129763B2 (en) * 2009-01-27 2013-01-30 パナソニック株式会社 Load control device
JP5478952B2 (en) * 2009-06-18 2014-04-23 パナソニック株式会社 Load control device
JP5637374B2 (en) * 2010-09-30 2014-12-10 東芝ライテック株式会社 Load control device
JP6195200B2 (en) 2014-04-03 2017-09-13 パナソニックIpマネジメント株式会社 Light control device
ES2849803T3 (en) * 2015-06-08 2021-08-23 Panasonic Ip Man Co Ltd Dimmer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548422A (en) * 2011-03-18 2014-01-29 Lg伊诺特有限公司 Input voltage transfer apparatus for light emitting diode lighting system
US8981659B2 (en) 2011-03-18 2015-03-17 Lg Innotek Co., Ltd. Input voltage transfer apparatus for light emitting diode lighting system
CN103548422B (en) * 2011-03-18 2015-09-30 Lg伊诺特有限公司 The input voltage transmission equipment of LED illumination system

Also Published As

Publication number Publication date
JP2001016804A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
JP3630019B2 (en) 2-wire wiring device
US4727291A (en) Back-up electrical system for lamps
EP0367761A1 (en) Backup electrical system for lamps.
EP1819205B1 (en) Electric discharge lamp operation device and illumination instrument
KR101477158B1 (en) LED converter with two steps dimming function
US6049178A (en) Circuit for controlling operation of an emergency exit lamp
CN101621213A (en) False failure prevention circuit in emergency ballast
JP2018088789A (en) Led power supply device
CN214205895U (en) Switch control circuit and lamp
JP3436158B2 (en) 2-wire wiring device
JP3346230B2 (en) 2-wire wiring device
JP2001237085A (en) Wiring device with human body detection function
JP2005310676A (en) Discharge lamp lighting device and luminaire
JP5307984B2 (en) Discharge lamp lighting device, lighting fixture and lighting system
JP3533928B2 (en) 2-wire wiring device
US6252786B1 (en) Electric power control method and circuit with controlled fadeout of power consumption
JP2005142020A (en) Discharge lamp lighting device
JP3720317B2 (en) Automatic switch with human detection sensor
JP3915156B2 (en) Discharge lamp lighting device and lighting device
JP3197170B2 (en) Lighting circuit of discharge lamp
KR200368409Y1 (en) Emergency light automatically lighting in power failure despite switch open
JP3422146B2 (en) Power supply
JP4899967B2 (en) Discharge lamp lighting device, lighting fixture and lighting system
JP2540953Y2 (en) AC load power control circuit
JP2003304648A (en) Charging device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees