[go: up one dir, main page]

JP3627546B2 - Direct cylinder injection spark ignition engine - Google Patents

Direct cylinder injection spark ignition engine Download PDF

Info

Publication number
JP3627546B2
JP3627546B2 JP35237298A JP35237298A JP3627546B2 JP 3627546 B2 JP3627546 B2 JP 3627546B2 JP 35237298 A JP35237298 A JP 35237298A JP 35237298 A JP35237298 A JP 35237298A JP 3627546 B2 JP3627546 B2 JP 3627546B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection valve
spark
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35237298A
Other languages
Japanese (ja)
Other versions
JP2000179441A (en
Inventor
祐一 入矢
孝伸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP35237298A priority Critical patent/JP3627546B2/en
Publication of JP2000179441A publication Critical patent/JP2000179441A/en
Application granted granted Critical
Publication of JP3627546B2 publication Critical patent/JP3627546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直接筒内噴射式火花点火機関に関する。
【0002】
【従来の技術】
従来の直接筒内噴射式火花点火機関としては、例えば、図10〜図14に示すようなものがある(特開平10−169446号公報)。
この直接筒内噴射式火花点火機関01は、シリンダ内の上部空間を燃焼室07とし、この燃焼室07に燃料噴射弁06から燃料を噴射して混合気08を形成し点火栓で点火して成層燃焼を行うものであって、前記燃料噴射弁06はその噴射軸線方向をシリンダ径方向にほぼ沿わせて配置され、燃料噴射弁06の噴射軸線方向に沿って複数の点火栓04,05が互いに離間して配列されており、成層燃焼領域では、機関回転数の低い時には燃料噴射弁06に近い点火栓04により混合気08に点火し、機関回転数の上昇に従って燃料噴射弁06から遠い点火栓05により混合気08に点火する構成となっている。なお、02は吸気弁、03は排気弁である。
【0003】
このような構成とすることによって成層燃焼領域を大幅に拡大することができ、その結果燃費改善が図れるというものである。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の直接筒内噴射式火花点火機関01にあっては、運転条件により主に、点火位置を変えており、各条件で燃焼安定性は向上するものの、燃料噴霧や濃混合気の分布のバラツキによる安定性のサイクル変動の悪化は防げない。また、噴射期間の長い低回転高負荷域のみでは、噴霧の拡散を防止するために噴霧の先端と後端の多点点火を行っているが、多点同時点火であるため、成層運転は可能となり成層燃焼領域はひろがるものの、点火時期は燃料噴射期間、噴霧形状、点火栓位置間隔により決まり、最適燃焼位置での点火は制御できない。このため、燃費重視の点火時期制御ができない。
この発明は、このような従来の問題点に着目してなされたもので、複数の点火栓を燃料噴射弁の噴射軸線方向に沿って配列し、運転条件により、2個所以上の異なる位置の点火栓において、移動する濃混合気位置にあわせるように、時間差を設けて点火することで上記問題点を解決することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するための手段として、請求項1記載の発明では、ピストン上部に形成された燃焼室と、吸気ポート下部に燃焼室に対し斜め下向きに燃料を筒内に直接噴射するようにした高圧の燃料噴射弁と、を有し、前記燃料噴射弁の噴射軸線方向に沿って複数の点火栓が離間して配設された成層燃焼を行う直接筒内噴射式火花点火機関において、前記機関の運転条件が低中速域の成層燃焼域では、燃料噴射弁に近い側の複数の点火栓において濃混合気の移動にあわせて燃料噴射弁に近い側から順に点火していき、機関の運転条件が高速域の成層燃焼域では、燃料噴射弁に遠い側の複数の点火栓において濃混合気の移動にあわせて燃料噴射弁により近い側から順に点火していくことを特徴とする。
請求項2記載の発明では、請求項1記載の直接筒内噴射式火花点火機関において、前記成層燃焼時に燃料噴霧をエアガイドするタンブル流を形成するピストン形状として、点火栓の配置方向のタンブル流動を安定化するため、燃料噴射弁の噴射軸線方向に沿って長手形状化した凹面部を有することを特徴とする。
請求項3記載の発明では、請求項2記載の直接筒内噴射式火花点火機関において、前記燃焼室を形成するシリンダヘッド形状において、燃料噴射弁に近い側の第1点火栓は突起させないようにして均質運転時に噴霧が点火栓に直接かからないようにし、燃料噴射弁に遠い側の燃焼室上面部を凹形状にすることで成層燃焼時も十分燃料が第1点火栓近傍に届くようにしたことを特徴とする。
請求項4記載の発明では、請求項2記載の直接筒内噴射式火花点火機関において、前記複数の点火栓の位置間隔において、高速条件で使用する燃料噴射弁に遠い側の点火栓の間隔を、低中速条件で使用する燃料噴射弁に近い側の点火栓の間隔よりも短くしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
(実施の形態1)
図1は、この発明の実施の形態1を示す図である。
まず、構成を説明すると、本実施の形態の直接筒内噴射式火花点火機関1は、ピストン11上部に形成された燃焼室7と、吸気ポート9下部に燃焼室7に対し斜め下向きに燃料を筒内に直接噴射するようにした高圧の燃料噴射弁6とを有し、点火栓で点火して成層燃焼を行うものであり、前記燃料噴射弁6の噴射軸線方向に沿って複数の点火栓(第1点火栓10,第2点火栓4,第3点火栓5)が離間して配設され、運転条件により、2個所以上の異なる位置において、時間差を設けて点火する点火時期制御手段12が設けられている。機関の運転条件として負荷はアクセル開度センサ14により検出され、回転数はクランク角センサ15により検出され、これらはコントロールユニット13へ入力される。このコントロールユニット13はこうした機関の運転条件に応じて前述した点火時期制御手段12を制御する。なお、2は吸気弁、3は排気弁である。
【0007】
次に作用を説明する。
図2および図3に示すように、機関の運転条件が低中速域の成層燃焼領域では、燃料噴射弁6に近い側の第1点火栓10および第2点火栓4において、濃混合気8の移動にあわせて燃料噴射弁6に近い側の第1点火栓10から燃焼室7中央の第2点火栓4へと順に点火していく。低中速域では1回転あたりの時間が長く燃料噴射時期は上死点(以下、TDCと称す)に近いタイミングとなるため、高背圧下での燃料噴射となり燃料噴霧の貫徹距離が短くなり濃混合気8は燃焼室7の燃料噴射弁6に近い側に存在する。そこで、燃料噴射弁6に近い側の第1点火栓10および第2点火栓4において点火し、かつ、前記濃混合気8の移動にあわせて順番に点火することで噴霧形状(噴霧の貫徹距離)のバラツキによらず安定して点火できる。また、このように点火することで燃え残しの無いように混合気後端から、ガス流動でガードされた燃焼室7中央部付近のメインの濃混合気8まですばやく燃焼でき、従来例に比べ、最適燃焼(熱発生)位置の制御(燃費重視の点火時期設定)が容易となり、燃費改善が図れる。
【0008】
機関の運転条件が高速域の成層燃焼領域では燃料噴射弁6に遠い側の第2点火栓4および第3点火栓5において、濃混合気8の移動にあわせて燃焼室7中央の第2点火栓4から燃焼室7排気側の第3点火栓5へと順に点火していく。前述の低中速域に対し高速域では1回転あたりの時間が短く燃料噴射時期はTDCから離れた早いタイミングとなるため、低背圧下での燃料噴射となり、燃料噴霧の貫徹距離は長くなり濃混合気8は燃料噴射弁6から遠い燃焼室7の排気側に存在する。そこで、燃料噴射弁6に遠い側の第2点火栓4および第3点火栓5において点火し、かつ、低中速域と同様に前記濃混合気8の移動にあわせて順番に点火することで噴霧形状(噴霧の貫徹距離)のバラツキによらず安定して点火できる。また、低中速域と同様に、従来例に比べ、最適燃焼(熱発生)位置の制御(燃費重視の点火時期設定)が容易となり、燃費改善が図れる。
【0009】
(実施の形態2)
図4および図5には実施の形態2を示す。
この実施の形態は、実施の形態1の構成において、機関の運転条件が高速域の成層燃焼領域で第1点火栓10、第2点火栓4、および第3点火栓5を用い、濃混合気8の移動にあわせて燃料噴射弁6に近い側の第1点火栓10から燃焼室7中央の第2点火栓4、さらに、燃焼室7排気側の第3点火栓5へと順に点火していくものである。これにより、より一層噴霧形状(噴霧の貫徹距離)のバラツキによらず安定して点火できる。また、燃え残しの無いように混合気後端から、ガス流動でガードされた燃焼室7中央部付近のメインの濃混合気8まですばやく燃焼でき、従来例に比べ、最適燃焼(熱発生)位置の制御(燃費重視の点火時期設定)が容易となり、燃費改善が図れる。
【0010】
(実施の形態3)
図6には実施の形態3を示す。
この実施の形態は、実施の形態1の構成において、機関の運転条件が低中速域のアイドル時の成層燃焼領域では、第1点火栓10、第2点火栓4、および第3点火栓5を用い、濃混合気8の移動にあわせて燃料噴射弁6に近い側の第1点火栓10から燃焼室7中央の第2点火栓4、さらに、燃焼室7排気側の第3点火栓5へと順に点火していくものである。アイドル領域では、ガス流動が弱く、このガス流動により第2点火栓4近傍に濃混合気8がガードされにくくなるが、本実施の形態では燃焼室7排気側の第3点火栓5まで濃混合気8の移動にあわせて順番に点火していくので、噴霧形状(噴霧の貫徹距離)のバラツキによらず安定して燃焼できる。
【0011】
(実施の形態4)
図7には実施の形態4を示す。
この実施の形態は、実施の形態1の構成において、成層燃焼時に燃料噴霧をガイドするタンブル流を形成するピストン11は、この冠面部に燃料噴射弁6の噴射軸線方向(点火栓の配列方向)に沿って長手形状化した凹面部16を配設する。これにより、点火栓の配列方向のタンブル流を安定化でき、濃混合気8の移動速度や、最終到達位置のバラツキを低減でき、安定した点火ができる。
【0012】
(実施の形態5)
図8には実施の形態5を示す。
この実施の形態は、実施の形態1の構成において、燃焼室7を形成するシリンダヘッド形状において、燃料噴射弁6に近い側の第1点火栓10は突起させない形状とし、さらに、第1点火栓10の燃料噴射弁6に遠い側の燃焼室7上面を凹形状17にする。これにより均質運転時に噴霧が点火栓10に直接かからないようにするとともに、成層燃焼時は背圧下で巻き上がった噴霧が第1点火栓10の燃料噴射弁6に遠い側の端面から届くようになる。
【0013】
(実施の形態6)
図9には実施の形態6を示す。
この実施の形態は、実施の形態1を構成する複数の点火栓間隔において、高速条件で使用する第2点火栓4と第3点火栓5の間隔を、低中速条件で使用する第1点火栓10と第2点火栓4の間隔よりも短くする。これにより、高速条件では、流動が強く混合気が分散しやすくなるが、点火栓間隔が短いため、これを抑制できる。
【0014】
【発明の効果】
以上説明してきたように、本発明の直接筒内噴射式火花点火機関にあっては、以上のような構成としたため、低中速域では1回転あたりの時間が長く燃料噴射時期は上死点に近いタイミングとなるため、高背圧下での燃料噴射となり燃料噴霧の貫徹距離が短くなり濃混合気は燃焼室の燃料噴射弁に近い側に存在するが、燃料噴射弁に近い側の第1点火栓および第2点火栓において点火し、かつ、前記濃混合気の移動にあわせて順番に点火することで噴霧形状(噴霧の貫徹距離)のバラツキによらず安定して点火でき、また、このように点火することで燃え残しの無いように混合気後端部から、ガス流動でガードされた燃焼室中央部付近のメインの濃混合気部まですばやく燃焼でき、従来例に比べ、最適燃焼(熱発生)位置の制御(燃費重視の点火時期設定)が容易となり、燃費改善が図れる。
また、高速域では1回転あたりの時間が短く燃料噴射時期は上死点から離れた早いタイミングとなるため、低背圧下での燃料噴射となり、燃料噴霧の貫徹距離は長くなり濃混合気は燃料噴射弁から遠い燃焼室の排気側に存在するが、燃料噴射弁に遠い側の第2点火栓および第3点火栓において点火し、かつ、低中速域と同様に前記濃混合気の移動にあわせて順番に点火することで噴霧形状(噴霧の貫徹距離)のバラツキによらず安定して点火でき、低中速域と同様に従来例に比べ、最適燃焼(熱発生)位置の制御(燃費重視の点火時期設定)が容易となり、燃費改善が図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示す図である。
【図2】実施の形態1の作用を示す図である。
【図3】実施の形態1の作用を示す図である。
【図4】実施の形態2を示す図である。
【図5】実施の形態2を示す図である。
【図6】実施の形態3を示す図である。
【図7】実施の形態4を示す図である。
【図8】実施の形態5を示す図である。
【図9】実施の形態6を示す図である。
【図10】従来の直接筒内噴射式火花点火機関を示す図である。
【図11】従来の直接筒内噴射式火花点火機関を示す図である。
【図12】従来の直接筒内噴射式火花点火機関を示す図である。
【図13】従来の直接筒内噴射式火花点火機関を示す図である。
【図14】従来の直接筒内噴射式火花点火機関を示す図である。
【符号の説明】
1 直接筒内噴射式火花点火機関
2 吸気弁
3 排気弁
4 第2点火栓
5 第3点火栓
6 燃料噴射弁
7 燃焼室
8 混合気
9 吸気ポート
10 第1点火栓
11 ピストン
12 点火時期制御手段
13 コントロールユニット
14 アクセル開度センサ
15 クランク角センサ
16 凹面部
17 凹形状
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct in-cylinder spark ignition engine.
[0002]
[Prior art]
As a conventional direct in-cylinder type spark ignition engine, for example, there is one shown in FIGS. 10 to 14 (Japanese Patent Laid-Open No. 10-169446).
This direct in-cylinder spark ignition engine 01 has a combustion chamber 07 as an upper space in the cylinder, and fuel is injected into the combustion chamber 07 from a fuel injection valve 06 to form an air-fuel mixture 08, which is ignited by a spark plug. In the stratified combustion, the fuel injection valve 06 is disposed so that the injection axis direction thereof is substantially along the cylinder radial direction, and a plurality of spark plugs 04, 05 are provided along the injection axis direction of the fuel injection valve 06. In the stratified charge combustion region, the air-fuel mixture 08 is ignited by an ignition plug 04 close to the fuel injection valve 06 when the engine speed is low, and the ignition is far from the fuel injection valve 06 as the engine speed increases. The air-fuel mixture 08 is ignited by the stopper 05. Note that 02 is an intake valve, and 03 is an exhaust valve.
[0003]
By adopting such a configuration, the stratified combustion region can be greatly expanded, and as a result, fuel consumption can be improved.
[0004]
[Problems to be solved by the invention]
However, in such a conventional direct in-cylinder spark ignition engine 01, the ignition position is mainly changed according to the operating conditions, and although the combustion stability is improved under each condition, the fuel spray and the rich mixing are improved. It is impossible to prevent the deterioration of the stability cycle fluctuation due to the dispersion of the Qi distribution. In addition, only in the low-rotation and high-load region where the injection period is long, multipoint ignition is performed at the front and rear ends of the spray to prevent the spread of the spray, but stratified operation is possible because of the multipoint simultaneous ignition. Although the stratified combustion region spreads, the ignition timing is determined by the fuel injection period, spray shape, and spark plug position interval, and ignition at the optimal combustion position cannot be controlled. For this reason, ignition timing control with an emphasis on fuel efficiency cannot be performed.
The present invention has been made paying attention to such a conventional problem, in which a plurality of spark plugs are arranged along the injection axis direction of the fuel injection valve, and ignition at two or more different positions is performed depending on operating conditions. An object of the present invention is to solve the above-mentioned problems by igniting the stopper with a time difference so as to match the position of the moving rich mixture.
[0005]
[Means for Solving the Problems]
As a means for achieving the above object, in the first aspect of the invention, the fuel is directly injected into the cylinder obliquely downward with respect to the combustion chamber formed in the upper portion of the piston and the lower portion of the intake port. has a high-pressure fuel injection valve, and in the direct cylinder injection type spark ignition engine which performs a plurality of stratified charge combustion ignition plug is disposed in spaced along the jet axis of the fuel injection valve, the engine In the stratified combustion region where the operating conditions of the engine are low and medium speed regions, the multiple ignition plugs close to the fuel injection valve are ignited in order from the side close to the fuel injection valve as the rich mixture moves. In the stratified combustion region where the conditions are high speed regions, ignition is performed in order from the side closer to the fuel injection valve in accordance with the movement of the rich mixture in the plurality of spark plugs on the side far from the fuel injection valve .
According to a second aspect of the present invention, in the direct in-cylinder spark ignition engine according to the first aspect, a tumble flow in the direction in which the spark plug is arranged is formed as a piston shape that forms a tumble flow that air-guides fuel spray during the stratified combustion. In order to stabilize the fuel injection valve, it is characterized in that it has a concave surface portion that is elongated along the injection axis direction of the fuel injection valve .
According to a third aspect of the present invention, in the direct in-cylinder spark ignition engine according to the second aspect, in the cylinder head shape forming the combustion chamber, the first spark plug on the side close to the fuel injection valve is not projected. During the homogeneous operation, the spray is not directly applied to the spark plug, and the upper surface of the combustion chamber on the side far from the fuel injection valve has a concave shape so that fuel can reach the vicinity of the first spark plug even during stratified combustion. It is characterized by.
According to a fourth aspect of the present invention, in the direct in-cylinder injection spark ignition engine according to the second aspect, in the position interval of the plurality of spark plugs, the distance between the spark plugs on the side far from the fuel injection valve used under high speed conditions is set. The distance between the spark plugs on the side close to the fuel injection valve used under the low and medium speed conditions is shorter .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a diagram showing a first embodiment of the present invention.
First, the configuration will be described. The direct in-cylinder spark ignition engine 1 according to the present embodiment has a combustion chamber 7 formed in the upper part of the piston 11 and fuel in the lower part of the intake port 9 obliquely downward with respect to the combustion chamber 7. A high-pressure fuel injection valve 6 that directly injects into the cylinder, performs stratified combustion by igniting with an ignition plug, and a plurality of ignition plugs along the injection axis direction of the fuel injection valve 6 (First spark plug 10, second spark plug 4, and third spark plug 5) are spaced apart from each other, and depending on the operating conditions, ignition timing control means 12 that ignites with a time difference at two or more different positions. Is provided. As engine operating conditions, the load is detected by the accelerator opening sensor 14, and the rotational speed is detected by the crank angle sensor 15, which are input to the control unit 13. The control unit 13 controls the ignition timing control means 12 described above according to the operating conditions of such an engine. In addition, 2 is an intake valve and 3 is an exhaust valve.
[0007]
Next, the operation will be described.
As shown in FIGS. 2 and 3, in the stratified combustion region where the engine operating conditions are low and medium speed regions, the rich mixture 8 at the first spark plug 10 and the second spark plug 4 on the side close to the fuel injection valve 6. Is ignited sequentially from the first spark plug 10 on the side closer to the fuel injection valve 6 to the second spark plug 4 in the center of the combustion chamber 7. In the low and medium speed range, the time per revolution is long and the fuel injection timing is close to top dead center (hereinafter referred to as TDC), so fuel injection is performed under high back pressure, and the fuel spray penetration distance is shortened and concentrated. The air-fuel mixture 8 exists on the side of the combustion chamber 7 close to the fuel injection valve 6. Accordingly, the first ignition plug 10 and the second ignition plug 4 on the side close to the fuel injection valve 6 are ignited and sequentially ignited in accordance with the movement of the rich air-fuel mixture 8 to thereby form the spray shape (spray penetration distance). ) Can be ignited stably regardless of variations. In addition, by igniting in this way, it is possible to quickly burn from the rear end of the mixture to the main concentrated mixture 8 near the center of the combustion chamber 7 that is guarded by gas flow so that there is no unburned residue, compared to the conventional example, Control of the optimal combustion (heat generation) position (ignition timing setting with an emphasis on fuel efficiency) is facilitated, and fuel efficiency can be improved.
[0008]
In the stratified combustion region where the engine operating condition is a high speed region, the second ignition plug 4 and the third ignition plug 5 on the side far from the fuel injection valve 6, the second ignition at the center of the combustion chamber 7 in accordance with the movement of the rich mixture 8. The third ignition plug 5 on the exhaust side of the combustion chamber 7 is sequentially ignited from the plug 4. Compared to the low and medium speed ranges described above, the time per revolution is shorter in the high speed range, and the fuel injection timing is earlier than the TDC. Therefore, fuel injection is performed under low back pressure, and the fuel spray penetration distance becomes longer and thicker. The air-fuel mixture 8 exists on the exhaust side of the combustion chamber 7 far from the fuel injection valve 6. Therefore, the second spark plug 4 and the third spark plug 5 on the side far from the fuel injection valve 6 are ignited, and are ignited in order in accordance with the movement of the rich air-fuel mixture 8 as in the low and medium speed regions. Stable ignition is possible regardless of variations in spray shape (spray penetration distance). In addition, as in the low and medium speed range, the control of the optimal combustion (heat generation) position (ignition timing setting with an emphasis on fuel efficiency) becomes easier and the fuel efficiency can be improved as compared with the conventional example.
[0009]
(Embodiment 2)
4 and 5 show the second embodiment.
This embodiment uses the first spark plug 10, the second spark plug 4, and the third spark plug 5 in the stratified combustion region where the engine operating condition is the high speed region in the configuration of the first embodiment. 8 is ignited in order from the first spark plug 10 on the side close to the fuel injection valve 6 to the second spark plug 4 at the center of the combustion chamber 7 and further to the third spark plug 5 on the exhaust side of the combustion chamber 7. It is going. As a result, ignition can be performed more stably regardless of the variation in the spray shape (spray penetration distance). In addition, it is possible to burn quickly from the rear end of the mixture to the main concentrated mixture 8 near the center of the combustion chamber 7 that is guarded by gas flow so that there is no unburned residue. Control (ignition timing setting with an emphasis on fuel efficiency) is facilitated, and fuel efficiency can be improved.
[0010]
(Embodiment 3)
FIG. 6 shows a third embodiment.
In this embodiment, in the configuration of the first embodiment, the first spark plug 10, the second spark plug 4, and the third spark plug 5 in the stratified combustion region at the time of idling when the engine operating condition is the low and medium speed range. In accordance with the movement of the rich air-fuel mixture 8, the first ignition plug 10 on the side close to the fuel injection valve 6 to the second ignition plug 4 in the center of the combustion chamber 7 and the third ignition plug 5 on the exhaust side of the combustion chamber 7 are used. It ignites in order. In the idle region, the gas flow is weak, and this gas flow makes it difficult for the rich mixture 8 to be guarded in the vicinity of the second spark plug 4. In this embodiment, however, the rich mixture up to the third spark plug 5 on the exhaust side of the combustion chamber 7 is performed. Since the ignition is performed sequentially in accordance with the movement of the gas 8, combustion can be stably performed regardless of variations in the spray shape (spray penetration distance).
[0011]
(Embodiment 4)
FIG. 7 shows a fourth embodiment.
In this embodiment, in the configuration of the first embodiment, the piston 11 that forms the tumble flow that guides the fuel spray at the time of stratified combustion is in the direction of the injection axis of the fuel injection valve 6 (the direction in which the spark plugs are arranged). A concave surface portion 16 having a longitudinal shape is disposed along the surface. Thereby, the tumble flow in the arrangement direction of the spark plugs can be stabilized, the moving speed of the rich air-fuel mixture 8 and the variation in the final arrival position can be reduced, and stable ignition can be performed.
[0012]
(Embodiment 5)
FIG. 8 shows a fifth embodiment.
In this embodiment, in the configuration of the first embodiment, the shape of the cylinder head forming the combustion chamber 7 is such that the first spark plug 10 on the side close to the fuel injection valve 6 does not protrude, and further, the first spark plug The upper surface of the combustion chamber 7 on the side far from the 10 fuel injection valves 6 has a concave shape 17. As a result, the spray is not directly applied to the spark plug 10 during the homogeneous operation, and the spray that has been rolled up under the back pressure reaches the fuel injection valve 6 of the first spark plug 10 from the far end face during the stratified combustion. .
[0013]
(Embodiment 6)
FIG. 9 shows a sixth embodiment.
In this embodiment, in the plurality of spark plug intervals constituting the first embodiment, the first ignition using the interval between the second spark plug 4 and the third spark plug 5 used under the high speed condition under the low and medium speed conditions. The interval between the stopper 10 and the second ignition stopper 4 is made shorter. As a result, the flow is strong and the air-fuel mixture is easily dispersed under high-speed conditions, but this can be suppressed because the spark plug interval is short.
[0014]
【The invention's effect】
As described above, the direct in-cylinder injection spark ignition engine of the present invention is configured as described above, so that the time per revolution is long in the low and medium speed range, and the fuel injection timing is the top dead center. Therefore, the fuel injection is performed under high back pressure, the penetration distance of the fuel spray is shortened, and the rich air-fuel mixture exists on the side close to the fuel injection valve in the combustion chamber, but the first on the side close to the fuel injection valve. By igniting at the spark plug and the second spark plug and igniting sequentially in accordance with the movement of the rich mixture, stable ignition can be achieved regardless of variations in the spray shape (spray penetration distance). By igniting in this way, it is possible to quickly burn from the rear end of the mixture to the main concentrated mixture near the center of the combustion chamber that is guarded by gas flow, so that there is no unburned residue. Heat generation) Position control (Focus on fuel efficiency) Tue timing setting) is facilitated, thereby fuel economy improvement.
Also, in the high speed range, the time per revolution is short and the fuel injection timing is an early timing away from the top dead center. Therefore, the fuel injection is performed under low back pressure, and the fuel spray penetration distance becomes long and the rich mixture becomes fuel. Exists on the exhaust side of the combustion chamber far from the injection valve, but ignites at the second and third ignition plugs on the side far from the fuel injection valve, and moves the rich mixture as in the low to medium speed range. By igniting in turn, it is possible to ignite stably regardless of variations in spray shape (spray penetration distance), and control of the optimal combustion (heat generation) position (fuel consumption) as compared to the conventional example as in the low to medium speed range. (Estimated ignition timing setting) becomes easy, and fuel consumption can be improved.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention.
FIG. 2 is a diagram illustrating the operation of the first embodiment.
FIG. 3 is a diagram illustrating the operation of the first embodiment.
FIG. 4 is a diagram showing a second embodiment.
FIG. 5 is a diagram showing a second embodiment.
FIG. 6 is a diagram showing a third embodiment.
7 is a diagram showing a fourth embodiment. FIG.
FIG. 8 shows a fifth embodiment.
FIG. 9 shows a sixth embodiment.
FIG. 10 is a view showing a conventional direct in-cylinder injection spark ignition engine.
FIG. 11 is a view showing a conventional direct in-cylinder injection spark ignition engine.
FIG. 12 is a view showing a conventional direct in-cylinder spark ignition engine.
FIG. 13 is a view showing a conventional direct in-cylinder spark ignition engine.
FIG. 14 is a diagram showing a conventional direct in-cylinder spark ignition engine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Direct in-cylinder injection type spark ignition engine 2 Intake valve 3 Exhaust valve 4 2nd spark plug 5 3rd spark plug 6 Fuel injection valve 7 Combustion chamber 8 Mixture 9 Intake port 10 1st spark plug 11 Piston 12 Ignition timing control means 13 Control unit 14 Accelerator opening sensor 15 Crank angle sensor 16 Concave surface 17 Concave shape

Claims (4)

ピストン上部に形成された燃焼室と、吸気ポート下部に燃焼室に対し斜め下向きに燃料を筒内に直接噴射するようにした高圧の燃料噴射弁と、を有し、前記燃料噴射弁の噴射軸線方向に沿って複数の点火栓が離間して配設された成層燃焼を行う直接筒内噴射式火花点火機関において、
機関の運転条件が低中速域の成層燃焼域では、燃料噴射弁に近い側の複数の点火栓において濃混合気の移動にあわせて燃料噴射弁に近い側から順に点火していき、
機関の運転条件が高速域の成層燃焼域では、燃料噴射弁に遠い側の複数の点火栓において濃混合気の移動にあわせて燃料噴射弁により近い側から順に点火していくことを特徴とする直接筒内噴射式火花点火機関。
A combustion chamber formed in the upper part of the piston, and a high-pressure fuel injection valve configured to inject fuel directly into the cylinder at a lower part of the intake port obliquely downward with respect to the combustion chamber, and an injection axis of the fuel injection valve In a direct in-cylinder injection spark ignition engine that performs stratified combustion in which a plurality of spark plugs are spaced apart along the direction,
In the stratified combustion region where the engine operating conditions are low and medium speed regions, ignition is performed sequentially from the side close to the fuel injection valve in accordance with the movement of the rich mixture in the plurality of spark plugs close to the fuel injection valve,
In the stratified combustion region where the engine operating condition is a high speed region, ignition is performed in order from the side closer to the fuel injection valve in accordance with the movement of the rich mixture in the plurality of spark plugs on the side far from the fuel injection valve. Direct in-cylinder spark ignition engine.
前記成層燃焼時に燃料噴霧をエアガイドするタンブル流を形成するピストン形状として、点火栓の配置方向のタンブル流動を安定化するため、燃料噴射弁の噴射軸線方向に沿って長手形状化した凹面部を有することを特徴とする請求項記載の直接筒内噴射式火花点火機関。As a piston shape that forms a tumble flow for air-guided fuel spray during the stratified combustion, in order to stabilize the tumble flow in the direction in which the spark plug is disposed, a concave surface portion that is elongated along the injection axis direction of the fuel injection valve is provided. direct cylinder injection type spark ignition engine according to claim 1, characterized in that it has. 前記燃焼室を形成するシリンダヘッド形状において、燃料噴射弁に近い側の第1点火栓は突起させないようにして均質運転時に噴霧が点火栓に直接かからないようにし、燃料噴射弁に遠い側の燃焼室上面部を凹形状にすることで成層燃焼時も十分燃料が第1点火栓近傍に届くようにしたことを特徴とする請求項記載の直接筒内噴射式火花点火機関。In the cylinder head shape forming the combustion chamber, the first spark plug on the side close to the fuel injection valve is not protruded so that spray is not directly applied to the spark plug during homogeneous operation, and the combustion chamber on the side far from the fuel injection valve direct cylinder injection type spark ignition engine according to claim 1, wherein a sufficient fuel even during the stratified combustion by the upper surface portion in a concave shape and to reach the first spark plug vicinity. 前記複数の点火栓の位置間隔において、高速条件で使用する燃料噴射弁に遠い側の点火栓の間隔を、低中速条件で使用する燃料噴射弁に近い側の点火栓の間隔よりも短くしたことを特徴とする請求項記載の直接筒内噴射式火花点火機関。In the position intervals of the plurality of spark plugs, the distance between the spark plugs on the side far from the fuel injection valve used in the high speed condition is made shorter than the distance between the spark plugs on the side close to the fuel injection valve used in the low and medium speed conditions. The direct in-cylinder injection spark ignition engine according to claim 1 .
JP35237298A 1998-12-11 1998-12-11 Direct cylinder injection spark ignition engine Expired - Lifetime JP3627546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35237298A JP3627546B2 (en) 1998-12-11 1998-12-11 Direct cylinder injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35237298A JP3627546B2 (en) 1998-12-11 1998-12-11 Direct cylinder injection spark ignition engine

Publications (2)

Publication Number Publication Date
JP2000179441A JP2000179441A (en) 2000-06-27
JP3627546B2 true JP3627546B2 (en) 2005-03-09

Family

ID=18423624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35237298A Expired - Lifetime JP3627546B2 (en) 1998-12-11 1998-12-11 Direct cylinder injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP3627546B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852310B2 (en) 2000-08-07 2006-11-29 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine
JP2002266739A (en) * 2001-03-12 2002-09-18 Mazda Motor Corp Engine ignition timing control device
JP4170902B2 (en) 2001-07-02 2008-10-22 株式会社日立製作所 In-cylinder direct injection internal combustion engine
JP3937874B2 (en) * 2002-03-04 2007-06-27 トヨタ自動車株式会社 Ignition control in a direct injection internal combustion engine.
DE10234215A1 (en) * 2002-07-27 2004-02-05 Bayerische Motoren Werke Ag Spark-ignited, direct-injection internal combustion engine
DE10344215A1 (en) * 2003-09-22 2005-04-14 Thomas Wank Differently ignited combustion engine for motor vehicles has three spark plugs in combustion space one in the center and two between valves and periphery
JP6443367B2 (en) * 2016-03-15 2018-12-26 株式会社豊田中央研究所 Ignition device for internal combustion engine
DE102016212951A1 (en) * 2016-07-15 2018-02-01 Ford Global Technologies, Llc Direct-injection spark-ignition internal combustion engine with injection device arranged in the cylinder tube and method for operating such an internal combustion engine

Also Published As

Publication number Publication date
JP2000179441A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
US5207058A (en) Internal combustion engine
JP3975702B2 (en) Control device for self-igniting engine
KR101016924B1 (en) Fuel injection control device and fuel injection method of internal combustion engine
JP6784214B2 (en) Internal combustion engine control device
JP7430805B2 (en) How to operate a motor vehicle, especially an automobile internal combustion engine
JP2018184869A (en) Control device of internal combustion engine
EP1026377B1 (en) Direct-fuel-injection-type spark-ignition internal combustion engine
JP4329860B2 (en) In-cylinder injection spark ignition internal combustion engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
US6935302B2 (en) In-cylinder injection type internal combustion engine
JP2009185688A (en) Direct-injection spark-ignition internal combustion engine
JP2001207854A (en) Spark ignition type reciprocating engine
JP3952710B2 (en) Compression self-ignition internal combustion engine
JPH1182030A (en) Fuel injection control device for cylinder direct injection type spark ignition engine
US20080022967A1 (en) Direct-Injection Spark-Ignition Internal Combustion Engine
JP2001207890A (en) Combustion control device of internal combustion engine
JP2002195040A (en) Cylinder direct-injection of fuel type internal combustion engine
JPWO2002020957A1 (en) In-cylinder injection spark ignition engine
JP2002285844A (en) Compression self-ignition type internal combustion engine
JP4046055B2 (en) In-cylinder internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP3832043B2 (en) In-cylinder injection engine
JP4055292B2 (en) Direct injection spark ignition internal combustion engine fuel injection control device
JP3175611B2 (en) In-cylinder injection spark ignition engine
JP3978965B2 (en) Combustion control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term