JP3624921B2 - Binder for battery, binder composition, electrode, and battery - Google Patents
Binder for battery, binder composition, electrode, and battery Download PDFInfo
- Publication number
- JP3624921B2 JP3624921B2 JP04206396A JP4206396A JP3624921B2 JP 3624921 B2 JP3624921 B2 JP 3624921B2 JP 04206396 A JP04206396 A JP 04206396A JP 4206396 A JP4206396 A JP 4206396A JP 3624921 B2 JP3624921 B2 JP 3624921B2
- Authority
- JP
- Japan
- Prior art keywords
- binder
- weight
- battery
- electrode
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【産業上の利用分野】
本発明は電池用バインダー組成物、それを用いた電極、および電池に関し、さらに詳しくは、電池の容量が大きく、充放電を繰り返しても劣化の少ない電池用バインダー組成物、それを用いた電極、および電池に関する。
【0002】
【従来の技術】
電池用バインダーは、電極基体表面上と接着し、バインダー構造中に活物質が固定された状態にすることにより、電極表面に活物質を固定する。電池の容量は、活物質の種類、量、電解液の種類、量などの複数の要因によって決められるが、バインダーが充分量の活物質を電極に固定できないと初期容量の大きな電池が得られず、また、充放電を繰り返すことなどによって電極から活物質が脱落するに従って電池の容量は低下する。
【0003】
電池用バインダーは、通常、バインダーとなる重合体を溶媒に溶解または分散したバインダー組成物に活物質を分散させて、電極基体表面に塗布し、溶媒を揮発させることにより、電極表面に活物質を固定する。
【0004】
バインダー組成物には、有機溶媒系バインダー組成物と水系バインダー組成物の二種類があり、有機溶媒系バインダー組成物としては、通常、ポリビニリデンフルオライドなどのポリビニリデンフルオライド系重合体をN−メチルピロリドンなどの有機溶媒に溶解したものが用いられいる(例えば、特開平4−249860号公報、特開平7−201315号公報、特開平7−201316号公報など)。この有機溶媒系バインダー組成物に活物質を分散させたスラリーを電極基体に塗布して、有機溶媒を除去して製造した電極を用いると電池の初期容量を大きくすることができるが、この電極を用いた電池で充放電を繰り返すと電極に固定された活物質が脱落しやすいという問題がある。極性基を有するコモノマーを共重合することにより極性を導入することにより活物質が電極基体から脱落しにくいように改良した場合(例えば、特開平7−201315号公報、特開平7−201316号公報など)においても、ポリビニリデンフルオライド系重合体からなるバインダーでは改良効果が小さく、また、電解液に膨潤して強度が低下しやすくなるためなどにより、脱落を十分に抑制できなかった。
【0005】
水系バインダー組成物としては、界面活性剤を用いた乳化重合法により水を溶媒として製造されたスチレン・ブタジエン共重合ゴムのラテックスの水分散液に、増粘剤としてカルボキシルメチルセルロースなどを添加したものが用いられている(例えば、特開平4−342966号公報、特開平5−21068号公報、特開平5−74461号公報など)。この水系バインダー組成物に活物質を分散させたスラリーを電極基体に塗布して、水分を除去して製造した電極を用いると、活物質が脱落しにくくなるため、充放電を繰り返しても電極から活物質が脱落しにくいが、容量の大きな電池は得られなかった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、電池の容量を大きくでき、充放電を繰り返しても劣化の少ない電池用バインダー組成物、それを用いて活物質を固定した電極、および電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意努力の結果、ポリビニリデンフルオライド系重合体にゴム質重合体を配合した組成物がバインダーとして活物質を脱落させにくいことを見い出し、本発明を完成させるに至った。
【0008】
かくして、本発明によれば、ポリビニリデンフルオライド系重合体とゴム質重合体からなる電池用バインダー、該電池用バインダーと溶媒からなるバインダー、該電池用バインダーによって活物質を固定した電極、および該電極を用いた電池が提供される。
【0009】
【発明の実施の形態】
(ポリビニリデンフルオライド系重合体)
本発明で用いるポリビニリデンフルオライド系重合体は、ビニリデンフルオライドに由来する繰り返し構造単位を50重量%以上、好ましくは80重量%以上、より好ましくは90重量%以上、通常の場合は100重量%が最も好ましい。ビニリデンフルオライドに由来する繰り返し構造単位が少なすぎると、柔軟性が不足するか、耐溶剤性が低く、活物質を十分に固定し、脱落させずに維持させることが困難になる。
【0010】
必要に応じて、活物質を十分に固定し、脱落させずに保持できる範囲で、ビニリデンフルオライドと共重合可能なコモノマーを用いて共重合体としてもよい。そのようなコモノマーとしては、エチレン性不飽和単量体が挙げられ、例えば、スチレン、α−メチルスチレン、ビニルトルエン、p−t−ブチルスチレン、クロロスチレンなどの芳香族ビニル系単量体; (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2−エチルヘキシルなどの(メタ)アクリル酸エステル系単量体; (メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミドなどの(メタ)アクリルアミド系単量体; (メタ)アクリル酸グリシジル、アリルグリシジルエーテルなどのグリシジル基含有単量体; (メタ)アクリロニトリルなどの(メタ)アクリロニトリル系単量体; アクリル酸、メタクリル酸、クロトン酸、フマル酸、イタコン酸などのカルボキシル基含有単量体; スチレンスルホン酸ソード、アクリルアミドメチルプロパンスルホン酸などのスルホン酸基含有単量体; メタクリルジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのアミノ基含有単量体; などが挙げられる。これらの大半は極性基を有する単量体であるが、バインダーが接着性に優れたものにするために、ポリビニリデンフルオライド系重合体を共重合体とする場合のコモノマーとしては、極性基を有する単量体を用いるのが好ましい。その場合、コモノマーに由来する繰り返し構造単位が50重量%以下、好ましくは20重量%以下、より好ましくは10重量%以下になるように共重合する。コモノマー由来の繰り返し構造単位が多すぎると、ビニリデンフルオライド由来繰り返し構造単位が少なくなりすぎ、耐溶剤性が低く、充放電による体積変化によって活物質が電極基体から脱落しやすくなるという問題を生じる。
【0011】
本発明のポリビニリデンフルオライド系重合体は、水性溶媒や有機溶媒中で、過硫酸塩、過リン酸塩などを重合開始剤として用いて、重合温度40〜140℃、重合圧力1.4〜14MPa、重合開始剤、乳化剤、連鎖移動剤を用いて共重合して得ることができる。なお、重合度が好ましくは500以上、より好ましくは800以上、かつ好ましくは3000以下、より好ましくは2000以下にする。重合度が小さすぎるとバインダーとして強度が不足し、大きすぎると粘度が高くなりすぎ、バインダー組成物を塗布するのが困難になる。
【0012】
(ゴム質重合体)
本発明においては、バインダーをより柔軟性に優れたものにするために、ポリビニリデンフルオライド系重合体にゴム質重合体を配合してバインダーとする。ゴム質重合体は、特に限定されないが、バインダーとして、活物質との密着性に優れ、電極基体と活物質の接着に優れる点で極性を有するゴム質重合体が好ましい。
【0013】
極性ゴム質重合体は、極性を有する単量体(以下、極性単量体という)に由来する繰り返し構造単位を好ましくは5重量%以上、より好ましくは10重量%以上、特に好ましくは30重量%以上、100重量%以下含有するゴム質重合体である。極性単量体由来繰り返し構造単位が少ないと極性が小さく、活物質が電極基体から剥離しやすいという問題を生じる場合があり、また、有機溶媒に分散しにくくなる。極性単量体としては、(メタ)アクリロニトリル、クロトンニトリル、アリルニトリルなどのエチレン性ニトリル化合物; メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリルニトリル、ヒドロキシエチル(メタ)アクリレートなどのエチレン性不飽和カルボン酸エステル; アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸などのエチレン性不飽和カルボン酸; 無水マレイン酸などのエチレン性不飽和カルボン酸無水物; などを使用することができる。特に、イタコン酸、フマル酸、マレイン酸などのジカルボン酸や無水マレイン酸などのジカルボン酸無水物などが電極の接着強度を高める点で好ましい。
【0014】
また、強度と柔軟性のバランスがよいことから、極性ゴム質重合体は、芳香族ビニル・共役ジエン系重合体であることが好ましい。この好ましい芳香族ビニル・共役ジエン系重合体は、上記の極性単量体に由来する繰り返し構造単位が5重量%以上、好ましくは10重量%以上、より好ましくは30重量%以上、かつ好ましくは50重量%以下、より好ましくは40重量%以下、特に好ましくは35重量%以下、スチレン、α−メチルスチレン、ビニルトルエン、p−t−ブチルスチレンなどの芳香族ビニル系単量体に由来する繰り返し構造単位が好ましくは15重量%以上、より好ましくは20重量%以上、特に好ましくは25重量%以上、かつ好ましくは50重量%以下、より好ましくは45重量%以下、特に好ましくは40重量%以下、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンなどの共役ジエン系単量体に由来する繰り返し構造単位が好ましくは15重量%以上、より好ましくは20重量%以上、特に好ましくは30重量%以上、かつ好ましくは80重量%以下、より好ましくは50重量%以下、特に好ましくは40重量%以下である。極性単量体が多すぎると芳香族ビニル・共役ジエン系重合体の特性があらわれにくく、柔軟性に劣る。芳香族ビニル系単量体が少なすぎるか共役ジエン系単量体が多すぎると強度が不足し、芳香族ビニル系単量体が多すぎるか共役ジエン系単量体が少なすぎると柔軟性が不足する。強度が不足すると充放電による活物質の膨潤・収縮という体積変化のために活物質が電極基体から脱落しやすく、柔軟性が不足すると電極が薄いために電池を組み立てる際などに電極のわずかな変形によってもバインダーが電極基体から剥離しやすくなり、活物質が電極基体から脱落しやすい。
【0015】
本発明に用いるゴム質重合体の製造方法は特に限定されず、極性ゴム質重合体である芳香族ビニル・共役ジエン系重合体の場合も、溶液重合でも乳化重合でもよいが、通常、簡便であることなどから、乳化重合によりラテックス粒子として重合される。乳化重合をする場合、一般には、単量体混合物100重量部を水を主成分とする分散媒60重量部以上、好ましくは100重量部以上、かつ300重量部以下、好ましくは200重量部に分散させ、乳化剤1重量部以上、好ましくは2重量部以上、かつ10重量部以下、好ましくは7重量部以下、重合開始剤0.1重量部以上、好ましくは0.2重量部以上、かつ1重量部以下、好ましくは0.6重量部以下、さらに必要量の分子量調節剤を加えて、温度30℃以上、好ましくは50℃以上、かつ100℃以下、好ましくは90℃以下で攪拌しながら重合する。単量体全部を予め分散媒に分散させた後に重合するバッチ方式、単量体の一部を重合させた後に残りの単量体を連続的に分散媒に添加して重合するセミバッチ方式、単量体を連続的に分散媒に添加して重合する連続方式のいずれで重合してもよい。乳化剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエーテル類、ポリオキシエチレンオキシド・ポリプロピレンオキシド共重合体などの非イオン性乳化剤; アルキルスルホネート類、アルキルアリルスルホネート類、アルキルスルフェート類、アルキルスルホサクシネート類、ポリオキシエチレンアルキルフェニルエーテルサルクエート類などのアニオン性乳化剤が挙げられる。重合開始剤としては、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩; 過酸化水素、ベンゾイルパーオキシド、クメンパーオキシド、第三ブチルヒドロパーオキシドなどの過酸化物;などを用い、必要に応じて重亜硫酸ソーダ、アスコルビン酸などの還元剤; 燐酸二ナトリウムなどの重合助剤を併用してもよい。
【0016】
なお、乳化重合で極性ゴム質重合体である芳香族ビニル・共役ジエン系重合体を得た場合、ラテックス粒子として得られたポリマーの粒子径は0.01μm以上、好ましくは0.05μm以上、より好ましくは0.10μm以上、かつ10μm以下、好ましくは1μm以下、より好ましくは0.5μm以下である。また、溶液重合で極性ゴム質重合体である芳香族ビニル・共役ジエン系重合体を得た場合、テトラヒドロフランを溶媒とするゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値で重量平均分子量20,000以上、好ましくは30,000以上、より好ましくは50,000以上、かつ1,000,000以下、好ましくは800,000以下、より好ましくは500,000以下である。粒径や分子量が小さすぎると接着性に劣り、電極基体から活物質が脱落しやすくなり、大きすぎると重合が困難である。
【0017】
(電池用バインダー)
本発明の電池用バインダーは、ポリビニリデンフルオライド系重合体100重量部に対して、ゴム質重合体5重量部以上、好ましくは20重量部以上、より好ましくは40重量部以上、かつ100重量部以下、好ましくは90重量部以下、より好ましくは80重量部以下配合したものである。ゴム質重合体が少なすぎると柔軟性がないため、わずかな電極の歪みなどでバインダーが電極基体から剥離しやすく、電極表面の活物質層が割れたり、欠けたりすることがある。逆に多すぎると強度が不足し、充放電による活物質の体積変化により活物質が脱落しやすくなる。
【0018】
(電池用バインダー組成物)
本発明の電池用バインダー組成物は、電池用バインダーの溶液または分散液であるが、通常は簡便であることから、予めバインダーを調製することなく、ポリビニリデンフルオライド系重合体、ゴム質重合体、その他の任意成分を一つの溶媒に溶解または分散させてバインダー組成物を調製する。
【0019】
溶媒は、ポリビニリデンフルオライド系重合体とゴム質重合体を溶解、または分散できるものであれば、特に限定されない。特に、ゴム質重合体を極性ゴム質重合体にすることにより、ポリビニリデンフルオライド系重合体がよく溶解、または分散できるN−メチルピロリドン、ジメチルフルオライドなどの極性有機溶媒に、ゴム質重合体も分散させることができる。なお、通常、ポリビニリデンフルオライドが溶解しないアセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類; テトラヒドロフラン、ルルフラールなどのフラン類; 酢酸エチル、酢酸メチルなどのエステル類; アセトニトリル、プロピオニトリルなどのニトリル類; などについても、ポリビニリデンフルオライド系重合体で使用したコモノマーの種類、量によっては可溶となり、これらの溶媒も、ゴム質重合体が溶解、分散できる限りは使用できる。
【0020】
溶媒量も特に限定されないが、通常、バインダー100重量部に溶媒を好ましくは400重量部以上、より好ましくは500重量部以上、特に好ましくは800重量部以上、かつ好ましくは10,000重量部以下、より好ましくは5,000重量部以下、特に好ましくは2,000重量部以下にする。多すぎても少なすぎてもバインダー組成物を塗布するのが困難になる。
【0021】
(電極)
本発明の電極は、電池用バインダー組成物に活物質を配合してスラリーを調製し、電極基体に塗布し、溶媒を除去することにより、電極基体表面に形成されたバインダーのマトリックス中に活物質を固定することにより得られる。
【0022】
本発明で用いる活物質は、活物質として機能する限り特に限定されず、通常は、負極活物質として炭素を用い、正極活物質としてモリブデン、バナジウム、チタン、ニオブなどの酸化物、硫化物、セレン化物などのほか、リチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウム鉄酸化物などのリチウム含有複合酸化物などが用いられる。固定する活物質としては、バインダーマトリックス中に特にしっかりと固定され、電池の電極としての使用中に脱落しにくいことから、炭素が好ましい。
【0023】
本発明に用いるスラリーの活物質量も特に限定されないが、電池用バインダーに対して、重量基準で好ましくは5倍以上、より好ましくは7倍以上、かつ1000倍以下、より好ましくは100倍以下になるよう電池用バインダー組成物に活物質を配合したものである。活物質量が少なすぎると活物質を固定したバインダー層表面に不活性な部分が多くなり、電極としての機能が不十分となることがあり、活物質量が多すぎると活物質が電極基体に十分に固定されずに脱落しやすくなる。なお、スラリーは、溶媒を追加して、塗布しやすい濃度にして使用する。
【0024】
本発明に用いる電極基体は導電性材料からなるものであれば特に限定されないが、一般には鉄、銅、アルミニウムなどの金属製のものを用いる。形状も特に限定されないが、電極表面積が大きいものが好ましいことから、通常、厚さ0.05〜0.5mm程度のシートを用いる。
【0025】
スラリーを塗布する方法は特に限定されない。例えば、浸漬、ハケ塗りなどによって塗布される。塗布する量は、有機溶媒を除去した後に形成される活物質を固定したバインダー層の厚さが好ましくは0.1mm以上、より好ましくは0.5mm以上、好ましくは5mm以下、より好ましくは2mm以下になるようにする。有機溶媒を除去する方法も特に限定されないが、通常は、応力集中が起こってバインダー層に亀裂がはいったり、電極基体から剥離したりしない程度の速度範囲で、できるだけ早く有機溶媒が揮発するように、減圧の程度、加熱の程度を調整して有機溶媒を除去する。
【0026】
(電池)
本発明の電池は、正極と負極の少なくとも一方に本発明の電極を用いたものである。この電池は、正極と負極を活物質が固定されている側(本発明の電極においては、バインダー層側)を向かい合わせ、両極の間に電解液を満たした構造を有している。大型の電池の場合には、電極をテープ状のものとし、負極と正極の間にセパレーター・シートを挟みこんで巻回し、電解液に満たしたケース中に浸漬するなどの方法で、また小型電池の場合には、電極を円状のシートにして電解液を満たしたコイン型ケース中に浸漬するなどの方法で電池として使用しやすく、かつ大きな容量のものが得られるようにすることができる。
【0027】
電解液も特に限定されず、負極活物質、正極活物質の種類に応じて、電池としての機能を発揮するものを選択すればよい。例えば、電解質として、LiClO4、LiBF4、CF3SO3Li、LiI、LiAlCl4、LiPF6、NaClO4、NaBF4、NaI、(n−Bu)4NClO4などが例示され、溶媒として、エーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物類、塩素化炭化水素類、エステル類、カーボネート類、ニトロ化合物類、リン酸エステル系化合物類、スルホラン系化合物類などが例示され、一般には、エチレンカーボネートやジエチルカーボネートなどが広く使用されている。
【0028】
(態様)
本発明の態様としては、
(1) ポリビニリデンフルオライド系重合体とゴム質重合体からなる電池用バインダー、
(2) ゴム質重合体が極性ゴム質重合体である(1)記載の電池用バインダー、
(3) ゴム質重合体が極性基を有する単量体に由来する繰り返し構造単位を5〜100重量%含有するものである(1)または(2)記載の電池用バインダー、
(4) ゴム質重合体が芳香族ビニル・共役ジエン系共重合体である(1)〜(3)のいずれかに記載の電池用バインダー、
(5) ゴム質重合体が、極性基を有する単量体に由来する繰り返し構造単位が5〜50重量%、芳香族ビニル系単量体に由来する繰り返し構造単位が15〜50重量%、共役ジエン系単量体に由来する繰り返し構造単位が15〜80重量%含有するものである(1)〜(4)のいずれかに記載の電池用バインダー、
(6) ゴム質重合体が粒子径0.01〜10μmのラテックス粒子である(1)〜(5)のいずれかに記載の電池用バインダー、
(7) ゴム質重合体がテトラヒドロフランを溶媒とするゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値で重量平均分子量20,000〜1,000,000である(1)〜(5)のいずれかに記載の電池用バインダー、
(8) ポリビニリデンフルオライド系重合体がビニリデンフルオライドに由来する繰り返し構造単位を50〜100重量%含有している(1)〜(7)のいずれかに記載の電池用バインダー、
(9) ポリビニリデンフルオライド系重合体の重合度が500〜3,000である(1)〜(8)のいずれかに記載の電池用バインダー、
(10) ポリビニリデンフルオライド系重合体100重量部に対して、ゴム質重合体5〜100重量部配合したものである(1)〜(9)のいずれかに記載の電池用バインダー、
(11) 溶媒と(1)〜(10)のいずれかに記載の電池用バインダーからなる電池用バインダー組成物、
(12) 電池用バインダー100重量部に溶媒を400〜10,000重量部加えたものである(11)記載の電池用バインダー組成物、
(13) (1)〜(10)のいずれかに記載の電池用バインダーによって活物質を固定した電極、
(14) 電池用バインダーに対して、重量基準で好ましくは5〜1000倍の活物質を固定した(13)記載の電極、
(15) (1)〜(10)のいずれかに記載の電池用バインダー組成物に活物質を均一に分散させ、電極基体に塗布し、溶媒を除去した電極、
(16) (13)〜(15)のいずれかに記載の電極を正極、負極の少なくとも一方に用いた電池、
などが例示される。
【0029】
【実施例】
以下に、参考例、実施例、比較例を挙げて、本発明を具体的に説明する。
【0030】
参考例1
水1リットルにスチレン400g、ブタジエン300g、メタクリル酸メチル200g、アクリロニトリル50g、イタコン酸50g、ラウリル硫酸アンモニウム4g、重炭酸ナトリウム10gを加えて攪拌し、モノマーエマルジョンを調製した。
【0031】
水3.4リットル、エチレンジアミン四酢酸10g、ラウリル硫酸アンモニウム10g、過硫酸カリウム20gと上記モノマーエマルジョンの10重量%を加え、攪拌しながら80℃に加熱して、1時間反応させ、過硫酸カリウム80gを水200mlとともに加えた後、残りのモノマーを4時間に渡って連続的に等速度で添加し、さらに4時間反応させた。残留していたモノマーを減圧して除去し、水酸化リチウムでpHを7に調整した。なお、転化率は約99%であった。
【0032】
得られたラテックス分散液250mlに2000gのN−メチルピロリドンを加え、エバポレーターを用いて水分を除去してラテックス粒子有機溶媒分散液を得た。このラテックス粒子有機溶媒分散液は固形分濃度9.3重量%、水分約180ppm、ラテックス粒子の平均粒子径は0.18μmであった。
【0033】
参考例2
スチレン400g、ブタジエン300g、メタクリル酸メチル200g、アクリロニトリル50g、イタコン酸50gの代わりに、スチレン500g、ブタジエン250g、メタクリル酸メチル150g、アクリロニトリル100gを用いる以外は実施例1と同様にしてラテックス粒子有機溶媒分散液を得た。このラテックス粒子有機溶媒分散液は固形分濃度7.0重量%、水分約200ppm、ラテックス粒子の平均粒子径は0.18μmであった。
【0034】
参考例3
スチレン400g、ブタジエン300g、メタクリル酸メチル200g、アクリロニトリル50g、イタコン酸50gの代わりに、スチレン350g、ブタジエン200g、メタクリル酸メチル200g、アクリロニトリル100g、イタコン酸100g、フマル酸50gを用いる以外は実施例1と同様にしてラテックス粒子有機溶媒分散液を得た。このラテックス粒子有機溶媒分散液は固形分濃度4.0重量%、水分180ppm、ラテックス粒子の平均粒子径は0.18μmであった。
【0035】
実施例1
N−メチルピロリドン30重量部にポリビニリデンフルオライド(重合度約1000)5重量部と参考例1で得たラテックス粒子有機溶媒分散液を固形分量が3重量部になるように加えて、本発明のバインダー組成物を得た。
【0036】
このバインダー組成物に組成物中の固形分量8重量部に対して負極活物質であるカーボン(関西熱学製、NG−12L)100重量部を加え、粘度が約7000cpsになるようにN−メチルピロリドンを加えて、スラリーを調製し、厚さ0.1mmの銅箔上に塗布し、130℃に5時間保持して乾燥し、ロールプレスにより厚さが0.5mm均一の活物質を固定したバインダー層を形成して本発明の電極(負極)とした。
【0037】
また、同じバインダー組成物に組成物中の固形分量4重量部に対して、正極活物質であるLiCo290重量部とアセチレンブラック(電気化学工業製、デンカブラック)10重量部を加え、粘度が約7000cpsになるようにN−メチルピロリドンを加えて、スラリーを調製し、厚さ0.05mmのアルミ箔上に塗布し、130℃に5時間保持して乾燥し、ロールプレスにより厚さが0.5mm均一の活物質を固定したバインダー層を形成して電極(正極)を製造した。
【0038】
負極と正極の両電極をテフロン板上で、筒状の刃を用いて直径15mmの円形に切り抜いた。バインダーによって固定化された活物質層の切断部で、ひび割れや欠けなどは認められなかった。
【0039】
この両電極を直径16mm、厚さ50μmの円形のポリプロピレン製微多孔膜(繊維不織布)からなるセパレーターを介在させて、互いにバインダーで固定化した活物質層を対向させて、ポリプロピレン製パッキンを配置したステンレス鋼製の外装容器中(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.2mmの底面が一つだけある円筒状容器)に収納した。容器中に、エチレンカーボネートとジエチルカーボネートを容積比で1:1に混合した溶媒にLiPF6を1mol/リットルの濃度に溶解した電解液を空気が残らないように注入して、厚さ0.2mmのステンレス鋼のキャップをかぶせて、プリプロピレン製パッキンを介して外装容器とキャップを固定し、それぞれキャップに銅箔が、容器底面にアルミ箔が接触するように内容物を封止して、直径20mm、厚さ2.0mmのコイン型電池を製造した。
【0040】
この電池に、定電流法(電流密度:1.0mA/cm2)で4.0Vに充電し、3.0Vまで放電する充放電を行い、容量の変化を測定した。1回目の充電での容量は180mAh(100%)であり、50回目の充電では170mAh(約94%に低下)、100回目の充電では160mAh(約89%に低下)であった。
【0041】
実施例2
参考例1で得たラテックス粒子有機溶媒分散液の代わりに参考例2で得たラテックス粒子有機溶媒分散液を用いる以外は、実施例1と同様に電極を作製し、電池を得、性能を調べた。
【0042】
直径15mmの円形に切り抜いた両電極のバインダーによって固定化された活物質層の切断部で、ひび割れや欠けなどは認められなかった。また、1回目の充電での容量は175mAh(100%)であり、50回目の充電では160mAh(約91%に低下)、100回目の充電では155mAh(約89%に低下)であった。
【0043】
実施例3
参考例1で得たラテックス粒子有機溶媒分散液の代わりに参考例3で得たラテックス粒子有機溶媒分散液を用いる以外は、実施例1と同様に電極を作製し、電池を得、性能を調べた。
【0044】
直径15mmの円形に切り抜いた両電極のバインダーによって固定化された活物質層の切断部で、ひび割れや欠けなどは認められなかった。また、1回目の充電での容量は185mAh(100%)であり、50回目の充電では170mAh(約92%に低下)、100回目の充電では160mAh(約86%に低下)であった。
【0045】
比較例1
調製したバインダー組成物の代わりにN−メチルピロリドン90重量部にポリビニリデンフルオライド10重量部を加えたバインダー組成物を用いる以外は実施例1と同様にして電極を作製し、電池を得、性能を調べた。
【0046】
直径15mmの円形に切り抜いた両電極のバインダーによって固定化された活物質層の切断部で、ひび割れが認められ、またかなりの部分で欠けが認められた。また、1回目の充電での容量は180mAhであったが、40回目で20mAh以下まで低下したので測定を中止した。
【0047】
【発明の効果】
本発明の電池用バインダー組成物を用いて活物質を固定した電極を正極・負極のいずれか一方に用いた電池においては、その電極から活物質が脱落しにくいために容量低下が小さく、初期容量が大きく、さらに活物質を固定した電極表面にひびが入ったり、欠けたりすることな少ないため、性能が安定している。[0001]
[Industrial application fields]
The present invention relates to a battery binder composition, an electrode using the same, and a battery, and more specifically, a battery binder composition having a large battery capacity and little deterioration even after repeated charge and discharge, an electrode using the same, And battery.
[0002]
[Prior art]
The battery binder is bonded to the surface of the electrode substrate, and the active material is fixed to the electrode surface by fixing the active material in the binder structure. The capacity of the battery is determined by multiple factors such as the type and amount of the active material, the type and amount of the electrolyte, but if the binder cannot fix a sufficient amount of active material to the electrode, a battery with a large initial capacity cannot be obtained. In addition, the capacity of the battery decreases as the active material is removed from the electrode due to repeated charging and discharging.
[0003]
The binder for a battery is usually obtained by dispersing an active material in a binder composition in which a polymer serving as a binder is dissolved or dispersed in a solvent, applying the active material to the surface of the electrode substrate, and volatilizing the solvent. Fix it.
[0004]
There are two types of binder compositions, an organic solvent-based binder composition and an aqueous binder composition. As the organic solvent-based binder composition, a polyvinylidene fluoride-based polymer such as polyvinylidene fluoride is usually N-. Those dissolved in an organic solvent such as methylpyrrolidone are used (for example, JP-A-4-249860, JP-A-7-201315, JP-A-7-201316, etc.). When an electrode manufactured by applying a slurry in which an active material is dispersed in this organic solvent binder composition to an electrode substrate and removing the organic solvent can be used, the initial capacity of the battery can be increased. When charging and discharging are repeated in the used battery, there is a problem that the active material fixed to the electrode is easily dropped. When the active material is improved so as not to easily fall off from the electrode substrate by copolymerizing a comonomer having a polar group (for example, JP-A-7-201315, JP-A-7-201316, etc.) ), The binder made of the polyvinylidene fluoride-based polymer has a small improvement effect, and since the strength is easily lowered by swelling in the electrolytic solution, the drop-off cannot be sufficiently suppressed.
[0005]
As an aqueous binder composition, an aqueous dispersion of a latex of a styrene / butadiene copolymer rubber produced by using an emulsion polymerization method using a surfactant as a solvent and carboxymethyl cellulose or the like as a thickener is added. Used (for example, JP-A-4-342966, JP-A-2-21068, JP-A-5-74461, etc.). When an electrode manufactured by applying a slurry in which an active material is dispersed in this aqueous binder composition to an electrode substrate and removing moisture is used, the active material is less likely to fall off. Although the active material did not easily fall off, a battery having a large capacity could not be obtained.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a battery binder composition that can increase the capacity of the battery and that does not deteriorate even after repeated charge and discharge, an electrode having the active material fixed thereon, and a battery.
[0007]
[Means for Solving the Problems]
As a result of diligent efforts, the present inventors have found that a composition in which a rubbery polymer is blended with a polyvinylidene fluoride polymer is less likely to drop off an active material as a binder, and the present invention has been completed.
[0008]
Thus, according to the present invention, a battery binder comprising a polyvinylidene fluoride polymer and a rubbery polymer, a binder comprising the battery binder and a solvent, an electrode having an active material fixed by the battery binder, and the A battery using the electrode is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Polyvinylidene fluoride polymer)
The polyvinylidene fluoride polymer used in the present invention contains 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and usually 100% by weight of repeating structural units derived from vinylidene fluoride. Is most preferred. If the number of repeating structural units derived from vinylidene fluoride is too small, the flexibility is insufficient or the solvent resistance is low, and it becomes difficult to sufficiently fix the active material and maintain it without dropping off.
[0010]
If necessary, a copolymer may be used using a comonomer copolymerizable with vinylidene fluoride as long as the active material is sufficiently fixed and can be held without dropping. Examples of such comonomers include ethylenically unsaturated monomers such as aromatic vinyl monomers such as styrene, α-methylstyrene, vinyltoluene, pt-butylstyrene, and chlorostyrene; (Meth) acrylate esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Monomers; (meth) acrylamide monomers such as (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide; glycidyl such as glycidyl (meth) acrylate and allyl glycidyl ether Group-containing monomers; (meth) acrylonitriles and other (meth) acrylic Ronitrile monomers; carboxyl group-containing monomers such as acrylic acid, methacrylic acid, crotonic acid, fumaric acid and itaconic acid; sulfonic acid group-containing monomers such as styrene sulfonic acid sword and acrylamidomethylpropane sulfonic acid; Amino group-containing monomers such as dimethylaminoethyl and diethylaminoethyl methacrylate; Most of these are monomers having a polar group, but in order to make the binder excellent in adhesiveness, as a comonomer when a polyvinylidene fluoride polymer is used as a copolymer, a polar group is used. It is preferable to use the monomer which has. In that case, copolymerization is performed so that the repeating structural unit derived from the comonomer is 50% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less. When there are too many repeating structural units derived from a comonomer, there are too many repeating structural units derived from vinylidene fluoride, the solvent resistance is low, and there arises a problem that the active material tends to fall off from the electrode substrate due to a volume change due to charge and discharge.
[0011]
The polyvinylidene fluoride polymer of the present invention is a persulfate, a perphosphate, or the like as a polymerization initiator in an aqueous solvent or an organic solvent. It can be obtained by copolymerization using 14 MPa, a polymerization initiator, an emulsifier, and a chain transfer agent. The degree of polymerization is preferably 500 or more, more preferably 800 or more, and preferably 3000 or less, more preferably 2000 or less. When the degree of polymerization is too small, the strength is insufficient as a binder, and when it is too large, the viscosity becomes too high and it becomes difficult to apply the binder composition.
[0012]
(Rubber polymer)
In the present invention, in order to make the binder more flexible, a rubbery polymer is blended with the polyvinylidene fluoride polymer to obtain a binder. The rubbery polymer is not particularly limited, and a rubbery polymer having polarity is preferable as the binder because it has excellent adhesion to the active material and is excellent in adhesion between the electrode substrate and the active material.
[0013]
The polar rubbery polymer is preferably 5% by weight or more, more preferably 10% by weight or more, particularly preferably 30% by weight of a repeating structural unit derived from a monomer having polarity (hereinafter referred to as polar monomer). The rubber polymer containing 100% by weight or less. If the number of repeating structural units derived from the polar monomer is small, the polarity may be small and the active material may easily peel off from the electrode substrate, and it may be difficult to disperse in the organic solvent. As polar monomers, ethylenic nitrile compounds such as (meth) acrylonitrile, crotonnitrile, allylnitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (Meth) acrylate and other ethylenically unsaturated carboxylic acid esters; acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid and other ethylenically unsaturated carboxylic acids; maleic anhydride and other ethylenically unsaturated carboxylic acid anhydrides Can be used. In particular, dicarboxylic acids such as itaconic acid, fumaric acid and maleic acid, and dicarboxylic acid anhydrides such as maleic anhydride are preferred in terms of increasing the adhesive strength of the electrode.
[0014]
In addition, since the balance between strength and flexibility is good, the polar rubbery polymer is preferably an aromatic vinyl / conjugated diene polymer. This preferred aromatic vinyl / conjugated diene polymer has a repeating structural unit derived from the polar monomer of 5% by weight or more, preferably 10% by weight or more, more preferably 30% by weight or more, and preferably 50%. % By weight or less, more preferably 40% by weight or less, particularly preferably 35% by weight or less, and a repeating structure derived from an aromatic vinyl monomer such as styrene, α-methylstyrene, vinyltoluene, or pt-butylstyrene. The unit is preferably 15% by weight or more, more preferably 20% by weight or more, particularly preferably 25% by weight or more, and preferably 50% by weight or less, more preferably 45% by weight or less, particularly preferably 40% by weight or less, Conjugated diene monomers such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene The repeating structural unit is preferably 15% by weight or more, more preferably 20% by weight or more, particularly preferably 30% by weight or more, and preferably 80% by weight or less, more preferably 50% by weight or less, particularly preferably 40% by weight. % Or less. If the amount of the polar monomer is too large, the characteristics of the aromatic vinyl / conjugated diene polymer are hardly exhibited and the flexibility is poor. Too little aromatic vinyl monomer or too much conjugated diene monomer will result in insufficient strength, and too much aromatic vinyl monomer or too little conjugated diene monomer will provide flexibility. Run short. If the strength is insufficient, the active material is likely to fall off the electrode substrate due to volume change such as swelling / shrinkage of the active material due to charge / discharge, and if the flexibility is insufficient, the electrode is thin and the electrode is thin. As a result, the binder easily peels off from the electrode substrate, and the active material easily falls off the electrode substrate.
[0015]
The method for producing the rubbery polymer used in the present invention is not particularly limited, and in the case of an aromatic vinyl / conjugated diene polymer that is a polar rubbery polymer, solution polymerization or emulsion polymerization may be used, but it is usually simple. For some reason, it is polymerized as latex particles by emulsion polymerization. In the case of emulsion polymerization, generally, 100 parts by weight of the monomer mixture is dispersed in 60 parts by weight or more, preferably 100 parts by weight or more and 300 parts by weight or less, preferably 200 parts by weight of a dispersion medium mainly composed of water. 1 part by weight or more of the emulsifier, preferably 2 parts by weight or more and 10 parts by weight or less, preferably 7 parts by weight or less, 0.1 parts by weight or more of the polymerization initiator, preferably 0.2 parts by weight or more, and 1 part by weight. Part or less, preferably 0.6 parts by weight or less, and a necessary amount of molecular weight regulator is added, and the polymerization is conducted with stirring at a temperature of 30 ° C. or higher, preferably 50 ° C. or higher and 100 ° C. or lower, preferably 90 ° C. or lower . A batch method in which all monomers are dispersed in a dispersion medium in advance and then polymerized, a semi-batch method in which a part of the monomers is polymerized and then the remaining monomers are continuously added to the dispersion medium for polymerization. The polymerization may be carried out by any continuous method in which a monomer is continuously added to a dispersion medium for polymerization. As the emulsifier, nonionic emulsifiers such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, polyoxyethylene oxide / polypropylene oxide copolymers; alkyl sulfonates, alkyl allyl sulfonates, alkyl sulfates, alkyl sulfone Examples include anionic emulsifiers such as succinates and polyoxyethylene alkylphenyl ether sulcates. As a polymerization initiator, persulfates such as potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, benzoyl peroxide, cumene peroxide and tert-butyl hydroperoxide; Reducing agents such as sodium bisulfite and ascorbic acid; polymerization aids such as disodium phosphate may be used in combination.
[0016]
When an aromatic vinyl / conjugated diene polymer, which is a polar rubber polymer, is obtained by emulsion polymerization, the particle size of the polymer obtained as latex particles is 0.01 μm or more, preferably 0.05 μm or more. Preferably they are 0.10 micrometer or more and 10 micrometers or less, Preferably it is 1 micrometer or less, More preferably, it is 0.5 micrometer or less. Further, when an aromatic vinyl / conjugated diene polymer that is a polar rubbery polymer is obtained by solution polymerization, a weight average molecular weight of 20,000 or more in terms of polystyrene by gel permeation chromatography using tetrahydrofuran as a solvent, Preferably it is 30,000 or more, More preferably, it is 50,000 or more and 1,000,000 or less, Preferably it is 800,000 or less, More preferably, it is 500,000 or less. If the particle size or molecular weight is too small, the adhesiveness is inferior, the active material tends to fall off from the electrode substrate, and if it is too large, polymerization is difficult.
[0017]
(Binder for battery)
The battery binder of the present invention is 5 parts by weight or more, preferably 20 parts by weight or more, more preferably 40 parts by weight or more and 100 parts by weight with respect to 100 parts by weight of the polyvinylidene fluoride polymer. Hereinafter, it is preferably 90 parts by weight or less, more preferably 80 parts by weight or less. If the amount of the rubbery polymer is too small, there is no flexibility, so that the binder is easily peeled off from the electrode substrate due to slight distortion of the electrode, and the active material layer on the electrode surface may be cracked or chipped. On the other hand, if the amount is too large, the strength is insufficient, and the active material is likely to fall off due to the volume change of the active material due to charge / discharge.
[0018]
(Binder composition for batteries)
The battery binder composition of the present invention is a battery binder solution or dispersion, but is usually simple, so that a polyvinylidene fluoride polymer and a rubbery polymer are prepared without preparing a binder in advance. The other optional components are dissolved or dispersed in one solvent to prepare a binder composition.
[0019]
The solvent is not particularly limited as long as it can dissolve or disperse the polyvinylidene fluoride polymer and the rubbery polymer. In particular, by making a rubbery polymer into a polar rubbery polymer, the rubbery polymer is added to a polar organic solvent such as N-methylpyrrolidone or dimethylfluoride that can dissolve or disperse the polyvinylidene fluoride polymer well. Can also be dispersed. Usually, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, in which polyvinylidene fluoride does not dissolve; Furans such as tetrahydrofuran and rufurfural; Esters such as ethyl acetate and methyl acetate; Nitriles such as acetonitrile and propionitrile , Etc., become soluble depending on the type and amount of the comonomer used in the polyvinylidene fluoride polymer, and these solvents can be used as long as the rubbery polymer can be dissolved and dispersed.
[0020]
The amount of the solvent is not particularly limited, but usually the solvent is preferably 400 parts by weight or more, more preferably 500 parts by weight or more, particularly preferably 800 parts by weight or more, and preferably 10,000 parts by weight or less, in 100 parts by weight of the binder. More preferably, it is 5,000 parts by weight or less, particularly preferably 2,000 parts by weight or less. If it is too much or too little, it becomes difficult to apply the binder composition.
[0021]
(electrode)
In the electrode of the present invention, an active material is blended into the binder composition for a battery to prepare a slurry, which is applied to the electrode substrate, and the solvent is removed, whereby the active material is incorporated into the binder matrix formed on the electrode substrate surface. Is obtained by fixing.
[0022]
The active material used in the present invention is not particularly limited as long as it functions as an active material. Usually, carbon is used as a negative electrode active material, and oxides such as molybdenum, vanadium, titanium, niobium, sulfides, and Ce are used as a positive electrode active material. Les In addition to nitride, lithium-containing composite oxides such as lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, and lithium iron oxide are used. As the active material to be fixed, carbon is preferable because it is particularly firmly fixed in the binder matrix and hardly falls off during use as a battery electrode.
[0023]
The amount of the active material of the slurry used in the present invention is not particularly limited, but is preferably 5 times or more, more preferably 7 times or more, and 1000 times or less, more preferably 100 times or less, on a weight basis with respect to the battery binder. An active material is blended in the binder composition for batteries. If the amount of the active material is too small, there are many inactive portions on the surface of the binder layer on which the active material is fixed, and the function as an electrode may be insufficient. It becomes easy to drop off without being fixed enough. In addition, the slurry is used by adding a solvent to a concentration that facilitates coating.
[0024]
The electrode substrate used in the present invention is not particularly limited as long as it is made of a conductive material, but generally a metal substrate such as iron, copper or aluminum is used. Although the shape is not particularly limited, a sheet having a thickness of about 0.05 to 0.5 mm is usually used because a large electrode surface area is preferable.
[0025]
The method for applying the slurry is not particularly limited. For example, it is applied by dipping or brushing. The amount to be applied is preferably 0.1 mm or more, more preferably 0.5 mm or more, preferably 5 mm or less, more preferably 2 mm or less, with the thickness of the binder layer fixing the active material formed after removing the organic solvent. To be. The method for removing the organic solvent is not particularly limited, but usually, the organic solvent is volatilized as soon as possible within a speed range that does not cause stress concentration to crack the binder layer or peel off from the electrode substrate. The organic solvent is removed by adjusting the degree of decompression and the degree of heating.
[0026]
(battery)
The battery of the present invention uses the electrode of the present invention for at least one of a positive electrode and a negative electrode. This battery has a structure in which an active material is fixed between a positive electrode and a negative electrode (a binder layer side in the electrode of the present invention) face each other, and an electrolyte solution is filled between both electrodes. In the case of a large battery, the electrode is tape-shaped, the separator sheet is sandwiched between the negative electrode and the positive electrode, wound, and immersed in a case filled with electrolyte. In this case, it is easy to use the battery as a battery by a method such as making the electrode into a circular sheet and immersing it in a coin-shaped case filled with the electrolyte, and a battery with a large capacity can be obtained.
[0027]
There is no particular limitation on the electrolytic solution, and a material that functions as a battery may be selected according to the types of the negative electrode active material and the positive electrode active material. For example, as an electrolyte, LiClO 4 , LiBF 4 , CF 3 SO 3 Li, LiI, LiAlCl 4 , LiPF 6 , NaClO 4 , NaBF 4 , NaI, (n-Bu) 4 NClO 4 Examples of solvents include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphate esters Examples thereof include compounds and sulfolane compounds, and generally, ethylene carbonate, diethyl carbonate and the like are widely used.
[0028]
(Aspect)
As an aspect of the present invention,
(1) a battery binder comprising a polyvinylidene fluoride polymer and a rubbery polymer;
(2) The battery binder according to (1), wherein the rubber polymer is a polar rubber polymer,
(3) The battery binder according to (1) or (2), wherein the rubbery polymer contains 5 to 100% by weight of a repeating structural unit derived from a monomer having a polar group,
(4) The battery binder according to any one of (1) to (3), wherein the rubbery polymer is an aromatic vinyl / conjugated diene copolymer,
(5) The rubbery polymer has 5 to 50% by weight of repeating structural units derived from monomers having polar groups, 15 to 50% by weight of repeating structural units derived from aromatic vinyl monomers, and conjugated. The battery binder according to any one of (1) to (4), wherein the repeating structural unit derived from a diene monomer contains 15 to 80% by weight,
(6) The battery binder according to any one of (1) to (5), wherein the rubbery polymer is latex particles having a particle diameter of 0.01 to 10 μm.
(7) The rubbery polymer according to any one of (1) to (5), which has a weight average molecular weight of 20,000 to 1,000,000 in terms of polystyrene by gel permeation chromatography using tetrahydrofuran as a solvent. Battery binder,
(8) The binder for batteries according to any one of (1) to (7), wherein the polyvinylidene fluoride-based polymer contains 50 to 100% by weight of repeating structural units derived from vinylidene fluoride,
(9) The binder for batteries according to any one of (1) to (8), wherein the degree of polymerization of the polyvinylidene fluoride polymer is 500 to 3,000,
(10) The battery binder according to any one of (1) to (9), wherein 5 to 100 parts by weight of a rubbery polymer is blended with 100 parts by weight of the polyvinylidene fluoride polymer.
(11) A battery binder composition comprising a solvent and the battery binder according to any one of (1) to (10),
(12) The battery binder composition according to (11), which is obtained by adding 400 to 10,000 parts by weight of a solvent to 100 parts by weight of a battery binder,
(13) An electrode in which an active material is fixed by the battery binder according to any one of (1) to (10),
(14) The electrode according to (13), wherein the active material is preferably fixed 5 to 1000 times by weight based on the binder for the battery,
(15) An electrode in which the active material is uniformly dispersed in the battery binder composition according to any one of (1) to (10), applied to an electrode substrate, and the solvent is removed.
(16) A battery using the electrode according to any one of (13) to (15) as at least one of a positive electrode and a negative electrode,
Etc. are exemplified.
[0029]
【Example】
The present invention will be specifically described below with reference examples, examples and comparative examples.
[0030]
Reference example 1
To 1 liter of water, 400 g of styrene, 300 g of butadiene, 200 g of methyl methacrylate, 50 g of acrylonitrile, 50 g of itaconic acid, 4 g of ammonium lauryl sulfate and 10 g of sodium bicarbonate were added and stirred to prepare a monomer emulsion.
[0031]
Add 3.4 liters of water, 10 g of ethylenediaminetetraacetic acid, 10 g of ammonium lauryl sulfate, 20 g of potassium persulfate and 10% by weight of the above monomer emulsion, heat to 80 ° C. with stirring, and react for 1 hour to obtain 80 g of potassium persulfate. After addition with 200 ml of water, the remaining monomer was added continuously at a constant rate over 4 hours and allowed to react for an additional 4 hours. The remaining monomer was removed under reduced pressure, and the pH was adjusted to 7 with lithium hydroxide. The conversion rate was about 99%.
[0032]
2000 g of N-methylpyrrolidone was added to 250 ml of the obtained latex dispersion, and water was removed using an evaporator to obtain a latex particle organic solvent dispersion. This latex particle organic solvent dispersion had a solid content of 9.3% by weight, a water content of about 180 ppm, and the average particle size of the latex particles was 0.18 μm.
[0033]
Reference example 2
Latex particle organic solvent dispersion in the same manner as in Example 1 except that styrene 400 g, butadiene 300 g, methyl methacrylate 200 g, acrylonitrile 50 g, and itaconic acid 50 g were used instead of styrene 500 g, butadiene 250 g, methyl methacrylate 150 g, and acrylonitrile 100 g. A liquid was obtained. This latex particle organic solvent dispersion had a solid content concentration of 7.0% by weight, a water content of about 200 ppm, and the average particle size of the latex particles was 0.18 μm.
[0034]
Reference example 3
Example 1 is used except that instead of styrene 400 g, butadiene 300 g, methyl methacrylate 200 g, acrylonitrile 50 g, and itaconic acid 50 g, styrene 350 g, butadiene 200 g, methyl methacrylate 200 g, acrylonitrile 100 g, itaconic acid 100 g, and fumaric acid 50 g are used. Similarly, a latex particle organic solvent dispersion was obtained. This latex particle organic solvent dispersion had a solid content concentration of 4.0% by weight, a water content of 180 ppm, and the average particle size of the latex particles was 0.18 μm.
[0035]
Example 1
By adding 30 parts by weight of N-methylpyrrolidone to 5 parts by weight of polyvinylidene fluoride (polymerization degree: about 1000) and the latex particle organic solvent dispersion obtained in Reference Example 1 so that the solid content is 3 parts by weight, A binder composition was obtained.
[0036]
To this binder composition, 100 parts by weight of carbon (NG-12L, manufactured by Kansai Thermal Engineering) as a negative electrode active material is added to 8 parts by weight of the solid content in the composition, and N-methyl is added so that the viscosity is about 7000 cps. Pyrrolidone was added to prepare a slurry, which was applied onto a copper foil having a thickness of 0.1 mm, dried by holding at 130 ° C. for 5 hours, and an active material having a uniform thickness of 0.5 mm was fixed by a roll press. A binder layer was formed to provide an electrode (negative electrode) of the present invention.
[0037]
Further, in the same binder composition, LiCo as a positive electrode active material with respect to 4 parts by weight of the solid content in the composition 2 90 parts by weight and 10 parts by weight of acetylene black (Denka Black, Denki Kagaku Kogyo) were added, N-methylpyrrolidone was added so that the viscosity was about 7000 cps, and a slurry was prepared. An electrode (positive electrode) was manufactured by applying the coating layer on the substrate, drying it while maintaining at 130 ° C. for 5 hours, and forming a binder layer on which an active material having a uniform thickness of 0.5 mm was fixed by a roll press.
[0038]
Both the negative electrode and the positive electrode were cut into a circle having a diameter of 15 mm on a Teflon plate using a cylindrical blade. No cracks or chips were observed at the cut portion of the active material layer fixed with the binder.
[0039]
A polypropylene packing was disposed with the active material layers fixed to each other facing each other with a separator made of a circular polypropylene microporous membrane (fiber nonwoven fabric) having a diameter of 16 mm and a thickness of 50 μm interposed between the two electrodes. It was stored in a stainless steel outer container (cylindrical container having only one bottom surface having a diameter of 20 mm, a height of 1.8 mm, and a stainless steel thickness of 0.2 mm). In a container, LiPF was added to a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. 6 An electrolyte solution dissolved in a concentration of 1 mol / liter is poured so that no air remains, and a stainless steel cap with a thickness of 0.2 mm is covered, and the outer container and the cap are fixed via a polypropylene-made packing. The contents were sealed so that the copper foil was in contact with the cap and the aluminum foil was in contact with the bottom of the container, thereby producing a coin-type battery having a diameter of 20 mm and a thickness of 2.0 mm.
[0040]
In this battery, the constant current method (current density: 1.0 mA / cm 2 ) Was charged to 4.0V and discharged to 3.0V, and the change in capacity was measured. The capacity at the first charge was 180 mAh (100%), 170 mAh (reduced to about 94%) at the 50th charge, and 160 mAh (reduced to about 89%) at the 100th charge.
[0041]
Example 2
An electrode was prepared in the same manner as in Example 1 except that the latex particle organic solvent dispersion obtained in Reference Example 2 was used instead of the latex particle organic solvent dispersion obtained in Reference Example 1, and a battery was obtained and the performance was examined. It was.
[0042]
In the cut portion of the active material layer fixed by the binder of both electrodes cut into a circle having a diameter of 15 mm, no cracks or chips were observed. The capacity at the first charge was 175 mAh (100%), 160 mAh (reduced to about 91%) at the 50th charge, and 155 mAh (reduced to about 89%) at the 100th charge.
[0043]
Example 3
An electrode was prepared in the same manner as in Example 1 except that the latex particle organic solvent dispersion obtained in Reference Example 3 was used instead of the latex particle organic solvent dispersion obtained in Reference Example 1, a battery was obtained, and the performance was examined. It was.
[0044]
In the cut portion of the active material layer fixed by the binder of both electrodes cut into a circle having a diameter of 15 mm, no cracks or chips were observed. The capacity at the first charge was 185 mAh (100%), 170 mAh (decreased to about 92%) at the 50th charge, and 160 mAh (decreased to about 86%) at the 100th charge.
[0045]
Comparative Example 1
An electrode was produced in the same manner as in Example 1 except that a binder composition in which 10 parts by weight of polyvinylidene fluoride was added to 90 parts by weight of N-methylpyrrolidone instead of the prepared binder composition was obtained, and a battery was obtained. I investigated.
[0046]
Cracks were observed at the cut portion of the active material layer fixed by the binder of both electrodes cut into a circle having a diameter of 15 mm, and chipping was observed at a considerable portion. Moreover, although the capacity | capacitance by the 1st charge was 180 mAh, since it fell to 20 mAh or less by the 40th time, the measurement was stopped.
[0047]
【The invention's effect】
In a battery in which an electrode having an active material fixed using the battery binder composition of the present invention is used for either the positive electrode or the negative electrode, since the active material is less likely to fall off from the electrode, the capacity decrease is small, and the initial capacity In addition, since the electrode surface to which the active material is fixed is less likely to crack or chip, the performance is stable.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04206396A JP3624921B2 (en) | 1996-02-05 | 1996-02-05 | Binder for battery, binder composition, electrode, and battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04206396A JP3624921B2 (en) | 1996-02-05 | 1996-02-05 | Binder for battery, binder composition, electrode, and battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09213337A JPH09213337A (en) | 1997-08-15 |
JP3624921B2 true JP3624921B2 (en) | 2005-03-02 |
Family
ID=12625650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04206396A Expired - Fee Related JP3624921B2 (en) | 1996-02-05 | 1996-02-05 | Binder for battery, binder composition, electrode, and battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3624921B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120027126A (en) | 2009-03-30 | 2012-03-21 | 제이에스알 가부시끼가이샤 | Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device |
EP2822067A4 (en) * | 2012-03-02 | 2015-12-16 | Zeon Corp | Positive electrode for secondary battery, and secondary battery |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0932212A4 (en) * | 1997-08-11 | 2000-10-25 | Sony Corp | Nonaqueous electrolyte secondary battery |
JP3627586B2 (en) | 1999-09-03 | 2005-03-09 | 日本ゼオン株式会社 | Binder for lithium ion secondary battery electrode and use thereof |
JP4947830B2 (en) * | 2000-08-31 | 2012-06-06 | 株式会社クレハ | Method for producing electrode mixture, electrode structure using the same, and non-aqueous electrochemical device |
US6773838B2 (en) * | 2000-09-04 | 2004-08-10 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary battery and negative electrode for the same |
JP4259778B2 (en) | 2001-08-02 | 2009-04-30 | パナソニック株式会社 | Method for producing positive electrode for non-aqueous secondary battery |
KR101116546B1 (en) * | 2003-04-24 | 2012-02-28 | 니폰 제온 가부시키가이샤 | Binder for electrode of lithium ion secondary battery |
JP4859373B2 (en) * | 2004-11-30 | 2012-01-25 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery |
TW200740913A (en) * | 2006-02-02 | 2007-11-01 | Jsr Corp | Polymer composition, paste for secondary battery electrode, and secondary battery electrode |
JP5470817B2 (en) * | 2008-03-10 | 2014-04-16 | 日産自動車株式会社 | Battery electrode, battery using the same, and manufacturing method thereof |
JP5547505B2 (en) * | 2010-01-28 | 2014-07-16 | 日本エイアンドエル株式会社 | Secondary battery electrode binder |
KR101921169B1 (en) | 2011-03-18 | 2018-11-22 | 제온 코포레이션 | Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell |
CN103718355B (en) * | 2011-08-03 | 2016-10-05 | 日本瑞翁株式会社 | Conductive adhesive composition, the collector body of band bond layer and electro-chemical element electrode for electro-chemical element electrode |
US9385374B2 (en) * | 2014-04-01 | 2016-07-05 | Ppg Industries Ohio, Inc. | Electrode binder composition for lithium ion electrical storage devices |
KR101764470B1 (en) * | 2014-10-02 | 2017-08-02 | 주식회사 엘지화학 | Cathode active material slurry comprising different kind of binders and cathode electrode produced by the same |
US11984601B2 (en) | 2018-08-21 | 2024-05-14 | Lg Energy Solution, Ltd. | Conductive material dispersion liquid, electrode and lithium secondary battery prepared by using the same |
US20220278330A1 (en) * | 2019-08-29 | 2022-09-01 | Eneos Materials Corporation | Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device |
CN112467133B (en) * | 2020-03-30 | 2022-03-18 | 万向一二三股份公司 | Lithium ion battery cathode slurry and preparation method thereof |
-
1996
- 1996-02-05 JP JP04206396A patent/JP3624921B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120027126A (en) | 2009-03-30 | 2012-03-21 | 제이에스알 가부시끼가이샤 | Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device |
EP2822067A4 (en) * | 2012-03-02 | 2015-12-16 | Zeon Corp | Positive electrode for secondary battery, and secondary battery |
KR101762604B1 (en) * | 2012-03-02 | 2017-07-28 | 제온 코포레이션 | Positive electrode for secondary battery, and secondary battery |
US10033042B2 (en) | 2012-03-02 | 2018-07-24 | Zeon Corporation | Positive electrode for secondary battery, and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPH09213337A (en) | 1997-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3624921B2 (en) | Binder for battery, binder composition, electrode, and battery | |
JP4461659B2 (en) | Binder composition for lithium ion secondary battery electrode and use thereof | |
US7052629B2 (en) | Binder for battery, slurry for battery electrode, electrode for lithium secondary battery, and lithium secondary battery | |
JP3710826B2 (en) | Polymer dispersion composition | |
JP4281118B2 (en) | Binder composition for battery, slurry for battery electrode, electrode for lithium secondary battery, and lithium secondary battery | |
KR100642082B1 (en) | Binder composition for lithium ion secondary cell electrode and use of it | |
JP3755544B2 (en) | Organic solvent-based binder composition, electrode, and battery | |
JPH09199135A (en) | Binder composition for battery, electrode and battery | |
JP7552578B2 (en) | Slurry composition for non-aqueous secondary battery functional layer, separator for non-aqueous secondary battery, and non-aqueous secondary battery | |
KR20120090766A (en) | A binder for lithium ion rechargeable battery cells | |
JP4356294B2 (en) | Electrode binder composition, electrode slurry, electrode, and battery | |
JP4438102B2 (en) | Binder for battery, slurry for battery electrode, electrode for lithium secondary battery, and lithium secondary battery | |
JP4438104B2 (en) | Secondary battery binder composition, battery electrode slurry, battery electrode, and secondary battery | |
JPWO2007125924A1 (en) | Binder for electrochemical cell electrode | |
JP4380608B2 (en) | Organic solvent-based binder composition, electrode, and battery | |
JP2011049177A (en) | Slurry for electrode of secondary battery, electrode of battery, and secondary battery | |
JP4552235B2 (en) | Lithium ion secondary battery electrode and secondary battery | |
JP4543442B2 (en) | Polymer particles, polymer dispersion composition, slurry for battery electrode, electrode and battery | |
JPH10106542A (en) | Lithium secondary battery | |
CN115003713A (en) | Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, separator for secondary battery, electrode for secondary battery, and secondary battery | |
KR102439896B1 (en) | Polymer composition for non-aqueous secondary battery, and non-aqueous secondary battery | |
WO2022163767A1 (en) | Nonaqueous secondary battery | |
JP2022149954A (en) | Polymer composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
KR102784579B1 (en) | Slurry composition for non-aqueous secondary battery functional layer, separator for non-aqueous secondary battery and non-aqueous secondary battery | |
CN118763354A (en) | Diaphragm and battery and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041123 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |