JP3624516B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP3624516B2 JP3624516B2 JP02615996A JP2615996A JP3624516B2 JP 3624516 B2 JP3624516 B2 JP 3624516B2 JP 02615996 A JP02615996 A JP 02615996A JP 2615996 A JP2615996 A JP 2615996A JP 3624516 B2 JP3624516 B2 JP 3624516B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- electrolyte secondary
- aqueous
- carbonate
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 48
- 239000003125 aqueous solvent Substances 0.000 claims description 40
- 150000002148 esters Chemical class 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 25
- 229910052744 lithium Inorganic materials 0.000 claims description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 14
- 229910001416 lithium ion Inorganic materials 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 14
- 239000003575 carbonaceous material Substances 0.000 claims description 13
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 10
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 8
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 7
- 229910003002 lithium salt Inorganic materials 0.000 claims description 6
- 159000000002 lithium salts Chemical class 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- -1 cyclic carbonate ester Chemical class 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000002180 crystalline carbon material Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002905 orthoesters Chemical class 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- OUNVFRBWIROSPL-UHFFFAOYSA-N triethoxymethanol Chemical compound CCOC(O)(OCC)OCC OUNVFRBWIROSPL-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- HDPNBNXLBDFELL-UHFFFAOYSA-N 1,1,1-trimethoxyethane Chemical compound COC(C)(OC)OC HDPNBNXLBDFELL-UHFFFAOYSA-N 0.000 description 1
- JDQNNHFSSCEQPM-UHFFFAOYSA-N 1-(1,1-dipropoxyethoxy)propane Chemical compound CCCOC(C)(OCCC)OCCC JDQNNHFSSCEQPM-UHFFFAOYSA-N 0.000 description 1
- RWNXXQFJBALKAX-UHFFFAOYSA-N 1-(dipropoxymethoxy)propane Chemical compound CCCOC(OCCC)OCCC RWNXXQFJBALKAX-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- YJECKCFXZTWHPU-UHFFFAOYSA-N trimethoxymethanol Chemical compound COC(O)(OC)OC YJECKCFXZTWHPU-UHFFFAOYSA-N 0.000 description 1
- PQOCPEXINVSCJB-UHFFFAOYSA-N tripropoxymethanol Chemical compound CCCOC(O)(OCCC)OCCC PQOCPEXINVSCJB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウム含有複合酸化物を含有する正極と、リチウムイオンをドープ且つ脱ドープし得る炭素材料を含有する負極と、リチウム塩電解質を非水溶媒に溶解させてなる非水電解液とを備えた非水電解液二次電池に関する。より詳しくは、高電圧且つ重負荷放電条件におけるサイクル特性に優れた非水電解液二次電池に関する。
【0002】
【従来の技術】
近年、電子技術の進歩により電子機器の高性能化、小型化、ポータブル化が進み、これら携帯用電子機器に使用される高エネルギー密度電池の要求が強まっている。従来、これらの電子機器に使用される二次電池としては、ニッケル・カドミウム電池や鉛電池等が挙げられるが、これらの電池では放電電位(約1.2V)が低く、電池重量および電池体積が大きく、エネルギー密度の高い電池の要求には十分には応えられていないのが実情である。
【0003】
最近、これらの要求を満たす電池システムとして、金属リチウムやリチウム合金を負極とする非水電解液二次電池が注目され、盛んに研究が行われている。しかし、金属リチウムなどを負極とする非水電解液二次電池の場合、金属リチウムの溶解、折出時のデンドライト生成や析出リチウムの微細化のために、サイクル寿命や急速充電特性が実用上十分な特性を示さないという問題がある。
【0004】
そこで、これらの問題を解決するために、リチウムイオンをドープ且つ脱ドープ可能な物質、例えば炭素材料を負極とするリチウムイオン非水電解液二次電池の研究開発が活発化している。このような負極を使用する非水電解液二次電池は、リチウムが金属状態で存在しないため、金属リチウム負極に起因するサイクル特性の低下や急速充電特性の低下等に関する問題はなく、優れた電池特性を示す。また、ニッケル・カドミウム電池に比較しても、二次電池として必要とされる低自己放電性も改善されており、しかもメモリー効果もないという利点を有する。更に、正極に酸化還元電位の高いリチウム含有複合酸化物を用いることにより、電池の電圧(約4.2V)が高くなるため、高エネルギー密度の電池を実現できるという利点も有する。
【0005】
ところで、このようなリチウムイオン非水電解液二次電池に用いられている非水電解液としては、LiPF6などの電解質を環状炭酸エステル類又は鎖状炭酸エステル類などの非水溶媒に溶解したものが使用されている。中でも、非水溶媒として、炭酸プロピレンと炭酸ジエチルとの混合溶媒を使用することが一般に推奨されている。このような混合溶媒を非水溶媒として使用することにより、高温条件下(例えば、夏季の自動車内や高温多湿雰囲気の倉庫内等)でリチウムイオン非水電解液二次電池を保管あるいは使用した場合でもサイクル特性の劣化を抑制することができる。
【0006】
【発明が解決しようとする課題】
しかしながら、炭酸プロピレンと炭酸ジエチルとの混合有機溶媒を非水電解液二次電池の非水溶媒として使用した場合、高電圧且つ重負荷放電条件下でのサイクル特性が十分とはいえず、更に改善することが求められていた。
【0007】
本発明は、以上の従来の技術の課題を解決しようとするものであり、リチウム含有複合酸化物を含む正極と、リチウムイオンをドープ且つ脱ドープし得る炭素材料を含む負極と、リチウム塩電解質を非水溶媒に溶解してなる非水電解液とを備えた非水電解液二次電池の高電圧且つ重負荷放電条件下でのサイクル特性を向上させることを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、電解液の非水溶媒としてオルトギ酸エステル、オルト酢酸エステル及びオルト炭酸エステルからなる群より選択されるオルト酸エステルを使用することにより上述の目的が達成できることを見出し、本発明を完成させるに至った。
【0009】
即ち、本発明は、リチウム含有複合酸化物を含む正極と、リチウムイオンをドープ且つ脱ドープし得る炭素材料を含む負極と、リチウム塩電解質を非水溶媒に溶解してなる非水電解液とを備えた非水電解液二次電池において、非水溶媒が、オルトギ酸エステル、オルト酢酸エステル及びオルト炭酸エステルからなる群より選択されるオルト酸エステルと、それ以外の非水溶媒とを含有し、非水溶媒中にオルト酸エステルを5容量以上含有することを特徴とする非水電解液二次電池を提供する。
【0010】
【発明の実施の形態】
本発明の非水電解液二次電池は、非水溶媒がオルトギ酸エステル、オルト酢酸エステル及びオルト炭酸エステルからなる群より選択されるオルト酸エステルと、それ以外の非水溶媒とを含有し、非水溶媒中にオルト酸エステルを5容量以上含有することを特徴とする。これにより、非水電解液二次電池の高電圧且つ重負荷放電条件下でのサイクル特性を向上させることができる。
【0011】
このような効果が得られる理由は、明確ではないが次のように考えられる。
【0012】
即ち、非水電解液二次電池の電池特性の劣化、特に高電圧で重負荷放電特性の低下の原因の一つとして、非水電解液に痕跡量で含まれる水などの不純物や非水溶媒分子の分解が考えられる。まず、痕跡量の水に関しては、水に対する反応性が非常に高いオルト酸エステルを非水溶媒として使用すると、オルト酸エステルが直ちに水と反応し、電池特性に影響を及ぼさない範囲でアルコールとエステルとを副成し、これにより電池特性の劣化が防止されるためであると考えられる。また、水以外の不純物や溶媒分子に関しては、それらに比べてオルト酸エステルは分解しやすいために、電極表面に電極反応を阻害しないが不純物や溶媒分子の分解を妨げることができるような皮膜が形成されるためと考えられる。
【0013】
オルト酸エステルは、前述したようにオルトギ酸エステル、オルト酢酸エステル及びオルト炭酸エステルから選択される。ここで、オルトギ酸エステルとしては、オルトギ酸トリメチル、オルトギ酸トリエチル、オルトギ酸トリプロピルなどを挙げることができるが、中でも操作が容易である点からオルトギ酸トリエチルが好ましい。オルト酢酸エステルとしては、オルト酢酸トリメチル、オルト酢酸トリエチル、オルト酢酸トリプロピルなどを挙げることができるが、中でも操作が容易である点からオルト酢酸トリエチルが好ましい。オルト炭酸エステルとしては、オルト炭酸トリメチル、オルト炭酸トリエチル、オルト炭酸トリプロピルなどを挙げることができるが、中でも操作が容易である点からオルト炭酸トリエチルが好ましい。
【0014】
なお、これらのオルト酸エステルは二種以上を混合して使用することができる。
【0015】
本発明において、非水溶媒の100%をこのようなオルト酸エステルにより構成してもよいが、他の非水溶媒と必要に応じて混合して使用することができる。その場合、オルト酸エステルの非水溶媒中の含有量は、少な過ぎるとサイクル特性の向上が望めないので非水溶媒の少なくとも5容量%である。
【0016】
オルト酸エステルと併用することのできる非水溶媒としては、従来よりリチウムイオン非水電解液二次電池において用いられている非水溶媒、例えば、高誘電率溶媒である炭酸プロピレン、炭酸エチレン、炭酸ブチレン、γ−ブチロラクトン等や、低粘度溶媒である1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル等を挙げることができる。
【0017】
特に、炭酸プロピレン、炭酸エチレン及び炭酸ブチレンからなる群より選択される環状炭酸エステルの少なくとも一種を使用することが好ましい。これにより、オルト酸エステル単独で非水電解液の非水溶媒を構成した場合に比べ高い導電率が得られる。
【0018】
非水溶媒を、オルト酸エステルと環状炭酸エステルとの2成分混合系から構成した場合、オルト酸エステルの非水溶媒中の含有量は、好ましくは5〜90容量%、より好ましくは20〜80容量%である。一方、このときの環状炭酸エステルの非水溶媒中の含有量は、好ましくは10〜95容量%、より好ましくは20〜80容量%である。
【0019】
また、本発明においては、オルト酸エステルと環状炭酸エステルとの2成分に加えて、更に炭酸ジエチルを加えて3成分混合系から非水溶媒を構成してもよい。
【0020】
非水溶媒を、オルト酸エステルと環状炭酸エステルと炭酸ジエチルとの3成分混合系から構成した場合、オルト酸エステルの非水溶媒中の含有量は、好ましくは5〜80容量%、より好ましくは5〜50容量%である。一方、このときの環状炭酸エステルの非水溶媒中の含有量は、好ましくは10〜50容量%、より好ましくは10〜40容量%であり、炭酸ジエチルの非水溶媒中の含有量は、好ましくは10〜45容量%、より好ましくは20〜40容量%である。
【0021】
以上のような非水溶媒に溶解させて非水電解液を調製する際に使用する電解質としては、一般に、リチウム電池用として使用されるLiClO4、LiAsF6、LiPF6、LiBF4、LiCl、LiBr、CH3SO3Li、CF3SO3Li等を挙げることができる。これらは単独でも2種類以上を混合して用いることができる。
【0022】
本発明のリチウムイオン非水電解液二次電池の正極としては、正極活物質としてリチウム含有複合酸化物を使用したものを使用する。これにより高いエネルギー密度の二次電池を構成することができる。
【0023】
ここで、リチウム含有複合酸化物としては、従来よりリチウムイオン二次電池の正極活物質として用いられているものを使用することができ、特に式(1)
【0024】
【化2】
LixMO2 (1)
(式中、Mは遷移金属、好ましくはCo、Ni及びMnの少なくとも一種であり、xは0.05≦x≦1.10を満足させる数である。)
で表される化合物を好ましく使用することができる。式中xの値は、充放電状態により0.05≦x≦1.10の範囲内で変化する。ここで、遷移金属MがMnである場合、LixMn2O4、LixMnO2のいずれも使用することができる。
【0025】
なお、このようなリチウム含有複合酸化物から正極を形成するに際しては、公知の導電材や結着材等を添加することができる。
【0026】
このようなリチウム含有複合酸化物は、例えばリチウム及び遷移金属Mのそれぞれの塩、例えば、炭酸塩、硝酸塩、硫酸塩、酸化物、水酸化物、ハロゲン化物等を原料として製造することができる。例えば、所望の組成に応じてリチウム塩原料及び遷移金属M塩原料をそれぞれ計量し、十分に混合した後に酸素存在雰囲気下600℃〜1000℃の温度範囲で加熱焼成することにより製造することができる。この場合、各成分の混合方法は、特に限定されるものでなく、粉末状の塩類をそのまま乾式の状態で混合してもよく、あるいは粉末状の塩類を水に溶解して水溶液の状態で混合してもよい。
【0027】
本発明の非水電解液二次電池を構成する負極としては、リチウムイオンをドープ且つ脱ドープ可能な炭素材料が用いられるが、このような炭素材料としては2000℃以下の比較的低い温度で焼成して得られる低結晶性炭素材料や、結晶化しやすい原料を3000℃近くの高温で処理した高結晶性炭素材料等を使用することができる。例えば、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、人造黒鉛類、天然黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭などを使用することができる。中でも、(002)面の面間隔が3.70オングストローム以上、真密度が1.70g/cc未満、且つ空気気流中における示差熱分析で700℃以上に発熱ピークを持たない低結晶性炭素材料や、負極合剤充填性の高い真比重が2.10g/cc以上の高結晶性炭素材料を好ましく使用することができる。
【0028】
このような材料から負極を形成するに際しては、公知の結着材等を添加することができる。
【0029】
本発明の非水電解液二次電池のセパレータ、電池缶、PTC素子、集電体等の他の構成については、従来のリチウムイオン非水電解液二次電池と同様とすることができる。また、電池の組み立て手順も従来と同様に行うことができる。
【0030】
なお、本発明の非水電解液二次電池の電池形状については特に限定されず、必要に応じて円筒型形状、角型形状、コイン型形状、ボタン型形状等の種々の形状とすることができる。
【0031】
以上説明したように、本発明の非水電解液二次電池は、非水溶媒として特定のオルト酸エステルを使用することにより高電圧且つ重負荷放電条件下のサイクル特性が向上しているので、重負荷放電を必要とする近年の種々の小型電子機器の電源として適したものとなる。
【0032】
【実施例】
以下、本発明の非水電解液二次電池を実施例により具体的に説明する。
【0033】
実施例1〜15及び比較例1〜3
図1に示す電池の断面図を参照しながら具体的に説明する。
【0034】
(負極(1)の作製)
石油ピッチに酸素を含む官能基を10〜20%導入(酸素架橋)した後、不活性ガス中1000℃で焼成することにより、ガラス状炭素材料に近い性質の難黒鉛化炭素材料{(002)面の面間隔=3.76オングストローム(X線回折測定による);真比重=1.58}を得た。
【0035】
次に、得られた炭素材料を平均粒径10μmの粉末に粉砕した。この粉末90重量部と結着剤としてポリフッ化ビニリデン10重量部とを混合して負極合剤を調製し、これをN−メチル−2−ピロリドンに分散させて負極合剤スラリーを調製した。
【0036】
そして、このスラリーを負極集電体(10)である10μm厚の銅箔の両面に塗布し、乾燥後ロールプレス機で圧縮成型を行うことにより帯状の負極(1)を作製した。
【0037】
(正極(2)の作製)
まず、炭酸リチウムと炭酸コバルトとを0.5モル対1.0モルの比率となるように混合し、900℃で5時間、空気中で焼成することによりLiCoO2を得た。
【0038】
次に、この正極活物質としてLiCoO291重量部と、導電材としてグラファイト6重量部と、結着剤としてポリフッ化ビニリデン3重量部とを混合して正極合剤を調製し、これをN−メチル−2−ピロリドンに分散させて正極合剤スラリーを調製した。
【0039】
次に、このスラリーを正極集電体(11)である20μm厚のアルミニウム箔の両面に均一に塗布し、乾燥後ロールプレス機で圧縮成型を行うことにより帯状の正極(2)を得た。
【0040】
(非水電解液二次電池の作製)
以上のように作製した帯状の負極(1)と正極(2)と、厚さが25μmの微多孔性ポリエチレンフィルムからなるセパレータ(3)とを順に積層してセンターピンの回りに多数巻回することにより、ニッケルメッキを施した鉄製の電池缶(5)(外径13.8mm,高さ51.8mm)に適切に収まるような大きさの渦巻式電極体を作製した。
【0041】
次に、この渦巻式電極体を電池缶(5)に収納し、その渦巻式電極体上下両面に絶縁板(4)を配置し、そして正極(2)及び負極(1)のそれぞれの集電を行うために、アルミニウムからなる正極リード(13)を正極集電体(11)から導出して電流遮断装置としてのPTC素子(9)を備えた安全弁装置(8)を介して電池蓋(7)に接続した。また、ニッケルからなる負極リード(12)を負極集電体(10)から導出して電池缶(5)に熔接した。
【0042】
次に、電池缶(5)の中に、表1〜表2に示す混合非水溶媒に、LiPF6を1モル/リットルの濃度で溶解させた非水電解液を注入した。そして、アスファルトを塗布したガスケット(6)を介して電池蓋(7)と電池缶(5)とをかしめることで電池蓋(7)を固定した。これにより、図1に示すような直径13.8mmで高さ50mmの円筒型非水電解液二次電池を作製した。
【0043】
【表1】
【0044】
【表2】
【0045】
(電池性能の評価)
このようにして作製した実施例1〜15及び比較例1〜3の円筒型非水電解液二次電池について、以下に示すサイクル寿命試験を行った。
【0046】
温度23℃において、充電電圧4.20V、充電電流1000mAで充電時間2.5hの条件で充電を行い、続いて放電電流250mAで終止電圧2.75Vの条件で放電を行うサイクルを繰り返し、10サイクル目と100サイクル目の放電容量(Wh/l)を測定し、10サイクル目の放電容量に対する100サイクル目の放電容量の比率を容量保持率(%)として算出した。得られた結果を表3に示す。
【0047】
【表3】
【0048】
表3の結果から、オルト酸エステルを非水溶媒として使用した実施例1〜15の非水電解液二次電池は、非水溶媒として従来の環状炭酸エステルと炭酸ジエチルとの混合溶媒を使用した比較例1〜3の電池に比べ、容量維持率が格段と改善されたことがわかる。
【0049】
なお、実施例1〜7の結果から、オルトギ酸トリエチルに代表されるオルト酸エステルと炭酸プロピレンとの2成分系の混合非水溶媒を使用した場合には、オルト酸エステルの非水溶媒中の含有量の好ましい範囲が、少なくとも5〜90容量%であることがわかる。また、実施例10〜13の結果から、オルトギ酸トリエチルに代表されるオルト酸エステルと炭酸プロピレンと炭酸ジエチルとの3成分系の混合非水溶媒を使用した場合には、オルト酸エステルの非水溶媒中の含有量の好ましい範囲が、少なくとも5〜80容量%であることがわかる。
【0050】
【発明の効果】
本発明によれば、リチウム含有複合酸化物を含む正極と、リチウムイオンをドープ且つ脱ドープし得る炭素材料を含む負極と、リチウム塩電解質を非水溶媒に溶解してなる非水電解液とを備えた非水電解液二次電池の高電圧且つ重負荷放電条件下でのサイクル特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の非水電解液二次電池の断面図である。
【符号の説明】
1 負極、 2 正極、 3 セパレータ、 4 絶縁板、 5 電池缶、
6 ガスケット、 7 電池蓋、 8 安全弁装置、 9 PTC素子、
10 負極集電体、 11 正極集電体、 12 負極リード、
13 正極リード[0001]
BACKGROUND OF THE INVENTION
The present invention comprises a positive electrode containing a lithium-containing composite oxide, a negative electrode containing a carbon material that can be doped and dedoped with lithium ions, and a non-aqueous electrolyte obtained by dissolving a lithium salt electrolyte in a non-aqueous solvent. The present invention relates to a provided non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery excellent in cycle characteristics under high voltage and heavy load discharge conditions.
[0002]
[Prior art]
In recent years, advances in electronic technology have led to higher performance, smaller size, and more portable electronic devices, and the demand for high energy density batteries used in these portable electronic devices has increased. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries have a low discharge potential (about 1.2 V), and have a low battery weight and battery volume. The fact is that the demand for large, high-energy batteries is not fully met.
[0003]
Recently, as a battery system that satisfies these requirements, a non-aqueous electrolyte secondary battery using metallic lithium or a lithium alloy as a negative electrode has attracted attention and has been actively studied. However, in the case of a non-aqueous electrolyte secondary battery using metallic lithium as a negative electrode, the cycle life and quick charge characteristics are practically sufficient for dissolving metallic lithium, generating dendrites during folding, and refining precipitated lithium. There is a problem that it does not show a special characteristic.
[0004]
Therefore, in order to solve these problems, research and development of lithium ion non-aqueous electrolyte secondary batteries having a negative electrode made of a material that can be doped and dedoped with lithium ions, for example, a carbon material, has been activated. A non-aqueous electrolyte secondary battery using such a negative electrode has no problem in terms of cycle characteristics and rapid charge characteristics due to the lithium metal negative electrode because lithium does not exist in a metallic state, and is an excellent battery. Show properties. In addition, even when compared with a nickel-cadmium battery, the low self-discharge property required for a secondary battery is improved, and there is an advantage that there is no memory effect. Furthermore, by using a lithium-containing composite oxide having a high oxidation-reduction potential for the positive electrode, the battery voltage (about 4.2 V) is increased, and thus there is an advantage that a battery with a high energy density can be realized.
[0005]
By the way, as a non-aqueous electrolyte used in such a lithium ion non-aqueous electrolyte secondary battery, an electrolyte such as LiPF 6 is dissolved in a non-aqueous solvent such as a cyclic carbonate or a chain carbonate. Things are used. In particular, it is generally recommended to use a mixed solvent of propylene carbonate and diethyl carbonate as the non-aqueous solvent. When such a mixed solvent is used as a non-aqueous solvent, a lithium ion non-aqueous electrolyte secondary battery is stored or used under high temperature conditions (for example, in a car in summer or in a warehouse with a high temperature and humidity atmosphere). However, deterioration of cycle characteristics can be suppressed.
[0006]
[Problems to be solved by the invention]
However, when a mixed organic solvent of propylene carbonate and diethyl carbonate is used as a non-aqueous solvent for a non-aqueous electrolyte secondary battery, the cycle characteristics under high voltage and heavy load discharge conditions are not sufficient, and further improvement It was sought to do.
[0007]
The present invention is intended to solve the above-described problems of the prior art, and includes a positive electrode including a lithium-containing composite oxide, a negative electrode including a carbon material that can be doped and dedoped with lithium ions, and a lithium salt electrolyte. An object is to improve cycle characteristics under high voltage and heavy load discharge conditions of a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte solution dissolved in a nonaqueous solvent.
[0008]
[Means for Solving the Problems]
The present inventor has found that the above-mentioned object can be achieved by using an ortho acid ester selected from the group consisting of ortho formate, ortho acetate and ortho carbonate as a non-aqueous solvent for the electrolyte. It came to complete.
[0009]
That is, the present invention includes a positive electrode including a lithium-containing composite oxide, a negative electrode including a carbon material that can be doped and dedoped with lithium ions, and a non-aqueous electrolyte obtained by dissolving a lithium salt electrolyte in a non-aqueous solvent. In the nonaqueous electrolyte secondary battery provided, the nonaqueous solvent contains an orthoacid ester selected from the group consisting of orthoformate, orthoacetate and orthocarbonate, and another nonaqueous solvent , Provided is a non-aqueous electrolyte secondary battery characterized in that it contains 5 or more volumes of ortho acid ester in a non-aqueous solvent .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The nonaqueous electrolyte secondary battery of the present invention contains an orthoacid ester selected from the group consisting of orthoformate, orthoacetate and orthocarbonate , and other nonaqueous solvents. It is characterized by containing 5 volumes or more of ortho acid ester in the non-aqueous solvent . Thereby, the cycle characteristics of the nonaqueous electrolyte secondary battery under high voltage and heavy load discharge conditions can be improved.
[0011]
The reason why such an effect is obtained is not clear, but is considered as follows.
[0012]
That is, as one of the causes of deterioration of battery characteristics of non-aqueous electrolyte secondary batteries, particularly heavy load discharge characteristics at high voltage, impurities such as water and non-aqueous solvents contained in non-aqueous electrolyte in trace amounts. Molecular decomposition can be considered. First, with regard to trace amounts of water, if an ortho acid ester, which is very reactive with water, is used as a non-aqueous solvent, the ortho acid ester immediately reacts with water, and alcohol and ester are not affected. This is considered to be because the deterioration of the battery characteristics is prevented. In addition, with respect to impurities and solvent molecules other than water, ortho-esters are more easily decomposed than those, so there is a film on the electrode surface that does not inhibit the electrode reaction but can prevent the decomposition of impurities and solvent molecules. It is thought that it is formed.
[0013]
The ortho acid ester is selected from ortho formate, ortho acetate and ortho carbonate as described above. Here, examples of the orthoformate include trimethyl orthoformate, triethyl orthoformate, tripropyl orthoformate, etc. Among them, triethyl orthoformate is preferable because of easy operation. Examples of the orthoacetate ester include trimethyl orthoacetate, triethyl orthoacetate, tripropyl orthoacetate and the like. Among them, triethyl orthoacetate is preferable because of easy operation. Examples of the ortho carbonate include trimethyl ortho carbonate, triethyl ortho carbonate, tripropyl ortho carbonate and the like. Among them, triethyl ortho carbonate is preferable because it is easy to operate.
[0014]
These ortho acid esters can be used in combination of two or more.
[0015]
In the present invention, 100% of the non-aqueous solvent may be composed of such an orthoester, but it can be used by mixing with other non-aqueous solvents as necessary. In this case, the content of the ortho acid ester in the non-aqueous solvent is at least 5% by volume of the non-aqueous solvent because improvement in cycle characteristics cannot be expected if the content is too small.
[0016]
Non-aqueous solvents that can be used in combination with ortho-acid esters include non-aqueous solvents conventionally used in lithium ion non-aqueous electrolyte secondary batteries, such as propylene carbonate, ethylene carbonate, carbonic acid, which are high dielectric constant solvents. Examples include butylene, γ-butyrolactone,
[0017]
In particular, it is preferable to use at least one cyclic carbonate selected from the group consisting of propylene carbonate, ethylene carbonate, and butylene carbonate. As a result, a higher electrical conductivity can be obtained as compared with the case where the non-aqueous solvent of the non-aqueous electrolyte is constituted by the ortho acid ester alone.
[0018]
When the non-aqueous solvent is composed of a two-component mixed system of an ortho acid ester and a cyclic carbonate, the content of the ortho acid ester in the non-aqueous solvent is preferably 5 to 90% by volume, more preferably 20 to 80%. It is volume%. On the other hand, the content of the cyclic carbonate in the non-aqueous solvent at this time is preferably 10 to 95% by volume, more preferably 20 to 80% by volume.
[0019]
Further, in the present invention, in addition to the two components of the ortho acid ester and the cyclic carbonate ester, diethyl carbonate may be further added to constitute the non-aqueous solvent from the three component mixed system.
[0020]
When the non-aqueous solvent is composed of a three-component mixed system of an ortho acid ester, a cyclic carbonate and diethyl carbonate, the content of the ortho acid ester in the non-aqueous solvent is preferably 5 to 80% by volume, more preferably 5 to 50% by volume. On the other hand, the content of the cyclic carbonate in the non-aqueous solvent is preferably 10 to 50% by volume, more preferably 10 to 40% by volume, and the content of diethyl carbonate in the non-aqueous solvent is preferably Is 10 to 45% by volume, more preferably 20 to 40% by volume.
[0021]
As an electrolyte used when preparing a non-aqueous electrolyte by dissolving in a non-aqueous solvent as described above, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr generally used for lithium batteries are generally used. CH 3 SO 3 Li, CF 3 SO 3 Li, and the like. These can be used alone or in admixture of two or more.
[0022]
As the positive electrode of the lithium ion nonaqueous electrolyte secondary battery of the present invention, a positive electrode active material using a lithium-containing composite oxide is used. Thereby, a secondary battery having a high energy density can be configured.
[0023]
Here, as a lithium containing complex oxide, what is conventionally used as a positive electrode active material of a lithium ion secondary battery can be used, and especially Formula (1)
[0024]
[Chemical formula 2]
Li x MO 2 (1)
(In the formula, M is a transition metal, preferably at least one of Co, Ni and Mn, and x is a number satisfying 0.05 ≦ x ≦ 1.10.)
The compound represented by can be preferably used. In the formula, the value of x varies within a range of 0.05 ≦ x ≦ 1.10. Here, when the transition metal M is Mn, both Li x Mn 2 O 4 and Li x MnO 2 can be used.
[0025]
In addition, when forming a positive electrode from such a lithium containing complex oxide, a well-known electrically conductive material, a binder, etc. can be added.
[0026]
Such a lithium-containing composite oxide can be produced using, for example, respective salts of lithium and transition metal M, such as carbonates, nitrates, sulfates, oxides, hydroxides, halides, and the like as raw materials. For example, the lithium salt raw material and the transition metal M salt raw material can be weighed according to the desired composition, mixed thoroughly, and then heated and fired in a temperature range of 600 ° C. to 1000 ° C. in an oxygen-existing atmosphere. . In this case, the mixing method of each component is not particularly limited, and the powdered salts may be mixed in a dry state as they are, or the powdered salts are dissolved in water and mixed in an aqueous solution state. May be.
[0027]
As the negative electrode constituting the non-aqueous electrolyte secondary battery of the present invention, a carbon material that can be doped and dedoped with lithium ions is used. Such a carbon material is fired at a relatively low temperature of 2000 ° C. or lower. Thus, it is possible to use a low crystallinity carbon material obtained in this manner, a high crystallinity carbon material obtained by treating a raw material that is easily crystallized at a high temperature close to 3000 ° C., and the like. For example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), artificial graphite, natural graphites, glassy carbons, organic polymer compound fired bodies (furan resin etc. are fired at an appropriate temperature) And carbonized), carbon fiber, activated carbon, and the like. Among them, a low crystalline carbon material having a (002) plane spacing of 3.70 angstroms or more, a true density of less than 1.70 g / cc, and having no exothermic peak at 700 ° C. or higher by differential thermal analysis in an air stream, A highly crystalline carbon material having a high negative electrode mixture filling property and a true specific gravity of 2.10 g / cc or more can be preferably used.
[0028]
In forming the negative electrode from such a material, a known binder or the like can be added.
[0029]
Other configurations of the separator, battery can, PTC element, current collector and the like of the non-aqueous electrolyte secondary battery of the present invention can be the same as those of the conventional lithium ion non-aqueous electrolyte secondary battery. The battery assembly procedure can also be performed in the same manner as in the past.
[0030]
The battery shape of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape as necessary. it can.
[0031]
As described above, the non-aqueous electrolyte secondary battery of the present invention has improved cycle characteristics under high voltage and heavy load discharge conditions by using a specific ortho acid ester as a non-aqueous solvent. It becomes suitable as a power source for various recent small electronic devices that require heavy load discharge.
[0032]
【Example】
Hereinafter, the non-aqueous electrolyte secondary battery of the present invention will be specifically described with reference to examples.
[0033]
Examples 1-15 and Comparative Examples 1-3
This will be specifically described with reference to a cross-sectional view of the battery shown in FIG.
[0034]
(Preparation of negative electrode (1))
A non-graphitizable carbon material having a property close to that of a glassy carbon material {(002) by introducing 10 to 20% of oxygen-containing functional groups into oxygen pitch (oxygen crosslinking) and then firing at 1000 ° C. in an inert gas. The distance between the surfaces was 3.76 Å (according to X-ray diffraction measurement); the true specific gravity = 1.58}.
[0035]
Next, the obtained carbon material was pulverized into a powder having an average particle diameter of 10 μm. 90 parts by weight of this powder and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode mixture slurry.
[0036]
And this slurry was apply | coated to both surfaces of 10-micrometer-thick copper foil which is a negative electrode collector (10), and the strip-shaped negative electrode (1) was produced by performing compression molding with a roll press machine after drying.
[0037]
(Preparation of positive electrode (2))
First, LiCoO 2 was obtained by mixing lithium carbonate and cobalt carbonate so as to have a ratio of 0.5 mol to 1.0 mol and firing in air at 900 ° C. for 5 hours.
[0038]
Next, 91 parts by weight of LiCoO 2 as the positive electrode active material, 6 parts by weight of graphite as the conductive material, and 3 parts by weight of polyvinylidene fluoride as the binder were prepared, and a positive electrode mixture was prepared. A positive electrode mixture slurry was prepared by dispersing in methyl-2-pyrrolidone.
[0039]
Next, this slurry was uniformly applied on both surfaces of a 20 μm-thick aluminum foil as the positive electrode current collector (11), and after drying, compression molding was performed with a roll press to obtain a strip-shaped positive electrode (2).
[0040]
(Preparation of non-aqueous electrolyte secondary battery)
The strip-shaped negative electrode (1) and positive electrode (2) produced as described above and the separator (3) made of a microporous polyethylene film having a thickness of 25 μm are sequentially laminated and wound around the center pin. Thus, a spiral electrode body having such a size as to fit properly in a nickel-plated iron battery can (5) (outer diameter: 13.8 mm, height: 51.8 mm) was produced.
[0041]
Next, this spiral electrode body is accommodated in the battery can (5), the insulating plates (4) are arranged on both the upper and lower surfaces of the spiral electrode body, and the respective current collectors of the positive electrode (2) and the negative electrode (1) are arranged. In order to perform this, the positive electrode lead (13) made of aluminum is led out from the positive electrode current collector (11), and the battery lid (7) is connected via the safety valve device (8) provided with the PTC element (9) as a current interruption device. ). Further, the negative electrode lead (12) made of nickel was led out from the negative electrode current collector (10) and welded to the battery can (5).
[0042]
Next, a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 mol / liter was poured into the battery can (5) in the mixed non-aqueous solvents shown in Tables 1 and 2. The battery lid (7) was fixed by caulking the battery lid (7) and the battery can (5) through a gasket (6) coated with asphalt. Thus, a cylindrical nonaqueous electrolyte secondary battery having a diameter of 13.8 mm and a height of 50 mm as shown in FIG. 1 was produced.
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
(Evaluation of battery performance)
The following cycle life tests were performed on the cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 15 and Comparative Examples 1 to 3 thus manufactured.
[0046]
At a temperature of 23 ° C., charging is repeated at a charging voltage of 4.20 V, a charging current of 1000 mA at a charging time of 2.5 h, and then a discharging cycle of 250 mA at a final voltage of 2.75 V is repeated 10 cycles. The discharge capacity (Wh / l) of the first and 100th cycles was measured, and the ratio of the discharge capacity of the 100th cycle to the discharge capacity of the 10th cycle was calculated as the capacity retention rate (%). The obtained results are shown in Table 3.
[0047]
[Table 3]
[0048]
From the results in Table 3, the nonaqueous electrolyte secondary batteries of Examples 1 to 15 using ortho acid ester as the nonaqueous solvent used a conventional mixed solvent of cyclic carbonate and diethyl carbonate as the nonaqueous solvent. It can be seen that the capacity retention rate was remarkably improved as compared with the batteries of Comparative Examples 1 to 3.
[0049]
In addition, from the results of Examples 1 to 7, when a two-component mixed non-aqueous solvent of ortho acid ester represented by triethyl orthoformate and propylene carbonate was used, in the non-aqueous solvent of ortho acid ester It can be seen that the preferred range of the content is at least 5 to 90% by volume. From the results of Examples 10 to 13, when a three-component mixed non-aqueous solvent of ortho acid ester represented by triethyl orthoformate, propylene carbonate and diethyl carbonate was used, non-aqueous solution of ortho acid ester was used. It turns out that the preferable range of content in a solvent is at least 5 to 80 volume%.
[0050]
【The invention's effect】
According to the present invention, a positive electrode including a lithium-containing composite oxide, a negative electrode including a carbon material that can be doped and dedoped with lithium ions, and a nonaqueous electrolytic solution obtained by dissolving a lithium salt electrolyte in a nonaqueous solvent. The cycle characteristics under high voltage and heavy load discharge conditions of the provided nonaqueous electrolyte secondary battery can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
1 negative electrode, 2 positive electrode, 3 separator, 4 insulating plate, 5 battery can,
6 Gasket, 7 Battery cover, 8 Safety valve device, 9 PTC element,
10 negative electrode current collector, 11 positive electrode current collector, 12 negative electrode lead,
13 Positive lead
Claims (8)
【化1】
LixMO2 (1)
(式中、Mは遷移金属の少なくとも一種であり、xは0.05≦x≦1.10を満足する数である。)である請求項1〜7のいずれか1の請求項に記載の非水電解液二次電池。The lithium-containing composite oxide has the formula (1)
[Chemical 1]
Li x MO 2 (1)
( Wherein , M is at least one kind of transition metal, and x is a number satisfying 0.05 ≦ x ≦ 1.10), according to any one of claims 1 to 7 . Non-aqueous electrolyte secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02615996A JP3624516B2 (en) | 1996-01-18 | 1996-01-18 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02615996A JP3624516B2 (en) | 1996-01-18 | 1996-01-18 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09199171A JPH09199171A (en) | 1997-07-31 |
JP3624516B2 true JP3624516B2 (en) | 2005-03-02 |
Family
ID=12185781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02615996A Expired - Fee Related JP3624516B2 (en) | 1996-01-18 | 1996-01-18 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3624516B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001160416A (en) * | 1999-12-03 | 2001-06-12 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte rechargeable battery |
JP2002270222A (en) * | 2001-03-14 | 2002-09-20 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte and secondary battery |
WO2024262634A1 (en) * | 2023-06-22 | 2024-12-26 | 株式会社村田製作所 | Secondary battery |
-
1996
- 1996-01-18 JP JP02615996A patent/JP3624516B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09199171A (en) | 1997-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4524881B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3669064B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3543437B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material | |
JP4061586B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
US7655358B2 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
JP4910243B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5164477B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5099168B2 (en) | Lithium ion secondary battery | |
JP3598153B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0982361A (en) | Square nonaqueous electrolyte secondary battery | |
JP2003017060A (en) | Positive electrode active material and non-aqueous electrolyte battery | |
JP2002251992A (en) | Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery | |
WO2020003595A1 (en) | Nonaqueous electrolyte secondary battery | |
JP4032744B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery using the same | |
JP2011249293A (en) | Lithium transition metal compound and its manufacturing method, and lithium ion battery | |
JP3451763B2 (en) | Manufacturing method of positive electrode active material | |
CN1188334A (en) | Lithium secondary battery and cathode active material for lithium secondary battery | |
JP2002175835A (en) | Manufacturing method of nonaqueous electrolytic liquid and the nonaqueous electrolytic liquid secondary battery | |
JPH1131513A (en) | Nonaqueous electrolyte secondary battery | |
JPH09120815A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JPH09199112A (en) | Nonaqueous electrolyte secondary cell | |
JPH09199172A (en) | Nonaqueous electrolyte secondary battery | |
JP3624516B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002025626A (en) | Aging treatment method for lithium secondary battery | |
JPH09139212A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |