JP3624077B2 - Polyarylene sulfide resin composition - Google Patents
Polyarylene sulfide resin composition Download PDFInfo
- Publication number
- JP3624077B2 JP3624077B2 JP26457697A JP26457697A JP3624077B2 JP 3624077 B2 JP3624077 B2 JP 3624077B2 JP 26457697 A JP26457697 A JP 26457697A JP 26457697 A JP26457697 A JP 26457697A JP 3624077 B2 JP3624077 B2 JP 3624077B2
- Authority
- JP
- Japan
- Prior art keywords
- polyarylene sulfide
- sulfide resin
- resin composition
- component
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/08—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/321—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/016—Additives defined by their aspect ratio
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は改良されたポリアリーレンサルファイド樹脂組成物に関する。更に詳しくは、成形加工性に優れ、特に成形時において金型などの金属部を腐食、汚染することがなく、しかも成形品の機械物性に優れたポリアリーレンサルファイド樹脂組成物に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ポリフェニレンサルファイド(以下PPSと略す)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す)樹脂は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。
しかしながら、この樹脂は分子構造中にイオウ原子を有し、又、製造原料がイオウや塩素及びナトリウムが如きアルカリ金属を有していて、樹脂合成時にイオウや塩素、アルカリ金属等を多量に含有する副生成物が生成されるという欠点を持っていて、成形時に金型等の金属材を腐食汚染する難点を有し、又、成形部品材料として使用した時、部品中にインサートされる金属や、メッキあるいは蒸着した金属を腐食、汚染して支障をきたすなどの問題点がある。
この問題点を解決するための手段として、重合したPAS樹脂を酸や熱水、有機溶剤等で脱イオン処理し、洗浄してこれらの不純物を500ppm以下、更には200ppm以下に低減することが提案され、かなり有効ではあるが、PAS樹脂及びその組成物は成形加工温度が少なくとも 280℃以上で極めて高いため、これらの不純物を除去精製してもなお、成形加工時に腐食性のガスを発生し、金属に対する耐食性が充分でない。
この問題点を解決するための技術として、従来から、樹脂に有害物質の補足剤を添加し、腐食性、不純物の発生を抑制する提案が行われている。例えば、炭酸リチウム(特開昭54−162752号公報)、ハイドロタルサイト(特開昭61−275353号公報)、炭酸亜鉛、水酸化亜鉛(特開平2−105857号公報)、硼酸亜鉛(特開平6−306288号公報)などが挙げられる。しかし、本発明者らの追試では、ある種の添加剤は金属の腐食防止にある程度効果が認められるものの、なお充分ではなく、又、少量の配合で機械的物性の低下を生じる等の問題が認められた。又、特開平4−164961では特定の酸化亜鉛を添加した例が示されているが、それでも機械的物性は充分とは言い難く、更に一層の改善が望まれている。
【0003】
【発明が解決しようとする課題】
本発明はかかる問題に鑑み、PAS樹脂組成物の成形時の金型やその使用時の金属に対する腐食、汚染性を改善し、比較的多量の腐食抑制剤を用いても引張強伸度、衝撃強度、靭性等の機械的物性に対する悪影響がなく、優れた耐金属腐食性と機械的物性を兼備したPAS樹脂組成物を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、PAS樹脂に対し、特定の酸化亜鉛を配合することにより、金属に対する腐食、汚染性を著しく改善するとともに、かかる腐食抑制剤による機械物性に対する悪影響が解消され、優れた機械物性を維持し、両特性を兼備することを見出し、本発明を完成するに至った。
即ち本発明は、
(A) ポリアリーレンサルファイド樹脂 100重量部に対して、
(B) 酸化亜鉛ウィスカ0.05〜3重量部
を基本的な構成成分として配合し溶融混練してなるポリアリーレンサルファイド樹脂組成物である。
【0005】
【発明の実施の形態】
以下本発明の構成成分について詳細に説明する。
本発明の組成物における(A) 成分としてのPAS樹脂は、繰返し単位として−(Ar−S)−(ただしArはアリーレン基)で主として構成されたものである。アリーレン基としては、例えば、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p’p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基などが使用できる。この場合、前記のアリーレン基から構成されるアリーレンサルファイド基の中で、同一の繰返し単位を用いたポリマー、すなわちホモポリマーの他に、組成物の加工性という点から、異種繰返し単位を含んだコポリマーが好ましい場合もある。
ホモポリマーとしては、アリーレン基としてp−フェニレン基を用いた、p−フェニレンサルファイド基を繰返し単位とするものが特に好ましく用いられる。又、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp−フェニレンサルファイド基とm−フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p−フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。
又、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できるが、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造または架橋構造を形成させたポリマーも使用できるし、低分子量の直鎖状構造ポリマーを酸素又は酸化剤存在下、高温で加熱して、酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも使用可能である。
又、(A) 成分のPAS樹脂は、前記直鎖状PAS(310℃、ズリ速度 1200sec−1における粘度が10〜300 Pa・s)を主体とし、その一部(1〜30重量%、好ましくは2〜25重量%)が、比較的高粘度(300〜3000Pa・s 、好ましくは 500〜2000Pa・s)の分岐又は架橋PAS樹脂との混合系も好適である。
又、本発明に用いるPAS樹脂は重合後、酸洗浄、熱水洗浄、有機溶剤洗浄(或いはこれらの組合せ)等の脱イオン処理を行って副生不純物等を除去精製することによって、塩素含有量及びアルカリ金属含有量を夫々500ppm以下、好ましくは300ppm以下にしたものが好ましい。
【0006】
次に本発明において(B) 成分として用いる酸化亜鉛ウィスカは、顕微鏡法によって測定した針状部での平均繊維径(短径)が 0.1〜5μm 、平均繊維長(長径) が2〜100 μm であり、かつ平均アスペクト比が5以上であるものが好ましい。市販品の中には三次元的にテトラポット形状をした酸化亜鉛があり、前述の形状を有するウィスカとして好適な化合物の一つであるが、これに限定されるものではない。
上記(B) 成分の配合量はポリアリーレンサルファイド樹脂 100重量部に対して、0.05〜3重量部であり、好ましくは 0.1〜1重量部である。0.05重量部では、金属に対する腐食性の防止効果・汚染性の抑制効果が充分ではない。又、3重量部を超えると(B) 成分を配合しない場合と同等の機械的物性を保持することができなくなる。
更に、(B) 成分の酸化亜鉛ウィスカの表面を予めエポキシアルコキシシラン及び/又はアミノアルコキシシランで処理することが、分散性及び機械的物性の保持の点から好ましい。エポキシアルコキシシランとしては、1分子中にエポキシ基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものでも有効で、例えばγ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシランなどが挙げられる。アミノアルコキシシランとしては、1分子中にアミノ基を1個以上有し、アルコキシ基を2個あるいは3個有するシラン化合物であればいずれのものでも有効で、例えばγ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシランなどが挙げられる。
これらのアルコキシシランの配合量は、(B) 成分の酸化亜鉛ウィスカに対し0.05〜5重量%が好ましい。
【0007】
本発明では、更に(C) 成分として燐酸或いは次亜燐酸又はそれらの塩を配合すると、長期耐湿熱性を向上させることができ、好ましい。
ここで用いられる(C) 燐酸或いは次亜燐酸又はそれらの塩としては、例えば第1燐酸、次亜燐酸、第1燐酸カルシウム、第1燐酸ナトリウム、次亜燐酸カルシウム、次亜燐酸亜鉛、次亜燐酸マグネシウム、次亜燐酸ナトリウム等の亜鉛、アルカリ金属又はアルカリ土類金属の塩類から選ばれた少なくとも1種又は2種以上が挙げられ、好ましくは次亜燐酸カルシウム、次亜燐酸マグネシウム、次亜燐酸亜鉛である。上記(C) 成分の配合量は、(A) ポリアリーレンサルファイド樹脂 100重量部に対し、0.05〜2重量部であり、好ましくは0.1 〜1重量部である。過少であると目的とする長期耐湿熱性に対する改善効果が得られず、又、過大であると成形中のガス発生等の問題があり好ましくない。
上記(C) 成分を(B) 成分と共存させることにより、意外にも(B) 成分の有する金属に対する腐食性の防止効果・汚染性の抑制効果を阻害することなく、両者の相互作用により、長期耐湿熱性が改善されることが確認された。特に(C) 成分はそのまま配合しても有効であるが、後述の(D) 成分である無機又は有機充填材にその一部又は全部を予め付着させて、これを他の成分に配合する方法も有効である。(C) 成分を付着させる方法に関しては特に制限はなく、例えば上記化合物を含む溶液を充填材にスプレーして付着させてもよく、ガラス繊維等の場合にはロールコーターを用いて繊維に上記溶液を塗布することにより付着させてもよい。また、一般的にガラス繊維等の表面処理剤として使用されるエポキシ樹脂、ウレタン樹脂系の収束剤あるいはアミノシラン、エポキシシラン等のカップリング剤と共に処理することも可能である。
【0008】
本発明で用いられる(D) 成分の無機又は有機充填材は、必ずしも必須とされる成分ではないが、機械的強度、耐熱性、寸法安定性(そり、変形)、電気的性質等の性能に優れた成形品を得るためには配合することが好ましく、これには目的に応じて繊維状、粉粒状、又は板状の充填材又はこれらの混合物が用いられる。
【0009】
繊維状充填材としては、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維等が挙げられるほか、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填材はガラス繊維、カーボン繊維、又はチタン酸カリ繊維である。尚、芳香族ポリアミド、アクリル樹脂、フッ素樹脂などの高融点の有機質繊維状物質も使用することができる。
一方、粉粒状充填物としては、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ガラス粉、珪酸カルシウム、珪酸アルミウニム、カオリン、タルク、クレー、珪藻土、ウォラストナイトの如き珪酸塩、酸化鉄、酸化チタン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他、炭化珪素、窒化珪素、各種金属粉末が挙げられる。特に代表的なものは、カーボンブラック、シリカ、ガラスビーズ又はガラス粉、炭酸カルシウム、タルク等である。
又、板状充填材としては、マイカ、ガラスフレーク、各種の金属箔等が挙げられる。
これらの充填材は、一種又は二種以上併用することができる。繊維状充填材、特にガラス繊維又は炭素繊維と、粉粒状又は板状充填材の併用は、特に機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組合せである。
又、これらの充填材の使用にあたっては、必要ならば収束剤又は表面処理剤にて表面処理、又は収束して使用することが望ましい。この処理剤の例を示せば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物である。
上記(D) 成分の配合量は、組成物全量に対して1〜75重量%であり、好ましくは3〜70重量%である。過大の場合は成形作業が困難になるほか、成形品の機械的強度にも問題が出る。
【0010】
更に、本発明に使用する成形品組成物として、一般に熱可塑性樹脂に添加される公知の物質、すなわち酸化防止剤や紫外線吸収剤等の安定剤、難燃剤、染・顔料等の着色剤、潤滑剤および結晶化促進剤、結晶核剤等も要求性能に応じ適宜添加することができる。
【0011】
本発明の樹脂組成物の調製は、一般に合成樹脂組成物の調製に用いられる設備と方法により調製することができる。一般的には必要な成分を混合し、1軸又は2軸の押出機を使用して溶融混練し、押出して成形用ペレットとすることができる。また、樹脂成分を溶融押出し、その途中でガラス繊維の如き無機成分を添加配合するのも好ましい方法の1つである。
このようにして得た材料ペレットは、射出成形、押出し成形、真空成形、圧縮成形等、一般に公知の熱可塑性樹脂の成形法を用いて成形することができるが、最も好ましいのは射出成形である。
【0012】
【実施例】
次に実施例、比較例で本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1〜14および比較例1〜10
(A) 成分として、実質的に線状のポリフェニレンサルファイド樹脂(呉羽化学工業(株)製、「フォートロンKPS」、粘度50Pa・s (310℃、 1200sec−1)100 重量部に対し、表1〜2に示す如く(B) 成分を加えてヘンシェルミキサーで2分間混合した。更に(C) 、(D) 成分を表1〜2に示す量で加えてブレンダーで30秒間混合した。これをシリンダー温度 310℃の押出機で混練し、ポリフェニレンサルファイド樹脂組成物のペレットを作成した。このペレットについて金属に対する腐食性、機械特性及び長期耐湿熱性を測定した。結果を表1〜2に示す。
実施例15
(D) 成分のガラス繊維に対し、溶剤に溶かした(C) 次亜燐酸カルシウムの溶液を表2に示す割合となるように塗布し、充分乾燥して、予め付着させた状態で使用した以外は前記実施例と同様の条件で組成物を調製し、評価した。結果を表2に示す。
【0013】
尚、評価方法は、以下の通りである。
〔耐食性〕
内径18mm、高さ160mm の試験管の底部に上記のペレットを4g入れ、鉄、クロム、カーボンを主成分とする金型用材料(SKD−11)の試験片(15×160 ×2mm)を所定の位置に吊るした。試験管上部に栓をし、 320℃で3時間加熱した後、この試験片を取り出して目視および顕微鏡により観察して腐食状態を調べ、その腐食状態の程度により以下の如く相対的な等級付けを行った。
〔引張強伸度〕
射出成形機でシリンダー温度 320℃、金型温度 150℃で引張試験片を成形し、その試験片をASTM D−638 に準拠し、引張強度と引張伸度を測定した。
〔長期耐湿熱性〕
射出成形機でシリンダー温度 320℃、金型温度 150℃で引張試験片を成形し、その試験片を95℃の熱水中で500 時間処理した後、ASTM D−638 に準拠し、引張強度を測定した。
【0014】
【表1】
【0015】
【表2】
【0016】
注:
(A) PPS
(A−1) ;脱イオン処理したPPSを使用
(B) 腐食防止剤
(B−1) 松下アムテック社製、酸化亜鉛ウィスカ(エポキシシラン処理)、平均繊維径(短径)=0.3 μm 、平均繊維長(長径)=4μm
(B−2) 松下アムテック社製、酸化亜鉛ウィスカ(アミノシラン処理)、平均繊維径(短径)=0.3 μm 、平均繊維長(長径)=4μm
(B−3) 松下アムテック社製、酸化亜鉛ウィスカ(無処理)、平均繊維径(短径)=0.3 μm 、平均繊維長(長径)=4μm
(B−4) 三井金属鉱業社製、酸化亜鉛(乾式法)、平均粒径=0.7 μm
(B−5) 堺化学社製、酸化亜鉛(乾式法)、平均粒径=0.04μm
(B−6) 堺化学社製、酸化亜鉛(湿式法)、平均粒径=0.02μm
(C) 成分
(C−1) 次亜燐酸カルシウム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved polyarylene sulfide resin composition. More specifically, the present invention relates to a polyarylene sulfide resin composition that is excellent in molding processability, in particular, does not corrode and contaminate a metal part such as a mold during molding, and has excellent mechanical properties of a molded product.
[0002]
[Prior art and problems to be solved by the invention]
Polyarylene sulfide (hereinafter abbreviated as PAS) resin represented by polyphenylene sulfide (hereinafter abbreviated as PPS) resin has high heat resistance, mechanical properties, chemical resistance, dimensional stability, and flame retardancy. For this reason, it is widely used for electrical / electronic equipment parts materials, automotive equipment parts materials, chemical equipment parts materials, and the like.
However, this resin has a sulfur atom in the molecular structure, and the raw material for production has an alkali metal such as sulfur, chlorine and sodium, and contains a large amount of sulfur, chlorine, alkali metal, etc. during resin synthesis. It has the disadvantage that by-products are generated, has the difficulty of corroding metal materials such as molds during molding, and when used as a molded part material, There are problems such as corrosion or contamination of plated or evaporated metal, causing trouble.
As a means for solving this problem, it is proposed that the polymerized PAS resin is deionized with acid, hot water, organic solvent, etc. and washed to reduce these impurities to 500 ppm or less, and further to 200 ppm or less. Although it is quite effective, the PAS resin and its composition are extremely high at a molding processing temperature of at least 280 ° C., so even if these impurities are removed and purified, corrosive gas is generated during the molding processing. Corrosion resistance to metals is not sufficient.
As a technique for solving this problem, conventionally, a proposal has been made to add a supplement of a harmful substance to a resin to suppress corrosion and generation of impurities. For example, lithium carbonate (JP 54-162752 A), hydrotalcite (JP 61-275353 JP), zinc carbonate, zinc hydroxide (JP 2-105857 JP), zinc borate (JP No. 6-306288). However, in the follow-up test by the present inventors, some additives are effective to some extent in preventing corrosion of metals, but they are still not sufficient, and there are problems such as a decrease in mechanical properties with a small amount of compounding. Admitted. JP-A-4-164961 shows an example in which specific zinc oxide is added. However, the mechanical properties are still not sufficient, and further improvement is desired.
[0003]
[Problems to be solved by the invention]
In view of such a problem, the present invention improves the corrosion and contamination properties of the metal mold during molding of the PAS resin composition and the metal during its use, even if a relatively large amount of corrosion inhibitor is used. An object of the present invention is to provide a PAS resin composition that has no adverse effects on mechanical properties such as strength and toughness and has both excellent metal corrosion resistance and mechanical properties.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have significantly improved the corrosion and contamination of metals by adding specific zinc oxide to the PAS resin, and the use of such a corrosion inhibitor. It was found that the adverse effects on the mechanical properties were eliminated, the excellent mechanical properties were maintained, and both properties were combined, and the present invention was completed.
That is, the present invention
(A) Polyarylene sulfide resin For 100 parts by weight,
(B) A polyarylene sulfide resin composition comprising 0.05 to 3 parts by weight of zinc oxide whisker as a basic constituent and melt-kneaded.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the constituent components of the present invention will be described in detail.
The PAS resin as the component (A) in the composition of the present invention is mainly composed of — (Ar—S) — (wherein Ar is an arylene group) as a repeating unit. Examples of the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylenesulfone group, p, p′-biphenylene group, and p′p′-di. A phenylene ether group, p, p′-diphenylenecarbonyl group, naphthalene group, and the like can be used. In this case, among the arylene sulfide groups composed of the above-mentioned arylene groups, in addition to a polymer using the same repeating unit, that is, a homopolymer, a copolymer containing different repeating units from the viewpoint of processability of the composition May be preferred.
As the homopolymer, those having a p-phenylene sulfide group as a repeating unit and using a p-phenylene group as an arylene group are particularly preferably used. As the copolymer, among the arylene sulfide groups comprising the above-mentioned arylene groups, two or more different combinations can be used, and among them, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used. It is done. Of these, those containing 70 mol% or more, preferably 80 mol% or more of p-phenylene sulfide groups are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.
Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used. In addition to the PAS resin with a structure, when polycondensation is used, a polymer in which a branched structure or a crosslinked structure is partially formed by using a small amount of a monomer such as a polyhaloaromatic compound having 3 or more halogen substituents is also used. It is also possible to use a polymer in which a low molecular weight linear structure polymer is heated at a high temperature in the presence of oxygen or an oxidant to increase the melt viscosity by oxidative crosslinking or thermal crosslinking, thereby improving the molding processability.
The component (A) PAS resin is mainly composed of the above-mentioned linear PAS (310 ° C., viscosity at a shear rate of 1200 sec −1 of 10 to 300 Pa · s), and a part thereof (1 to 30% by weight, preferably Also suitable is a mixed system with a branched or crosslinked PAS resin having a relatively high viscosity (300 to 3000 Pa · s, preferably 500 to 2000 Pa · s).
In addition, the PAS resin used in the present invention is subjected to deionization treatment such as acid washing, hot water washing, organic solvent washing (or a combination thereof) after polymerization to remove and purify by-product impurities and the like. The alkali metal content is preferably 500 ppm or less, preferably 300 ppm or less.
[0006]
Next, the zinc oxide whisker used as the component (B) in the present invention has an average fiber diameter (minor axis) of 0.1 to 5 μm and an average fiber length (major axis) of 2 to 100 at the needle-like part measured by microscopy. Those having an average aspect ratio of 5 or more are preferable. Among commercially available products, there is zinc oxide having a three-dimensional tetrapot shape, which is one of compounds suitable as whiskers having the above-mentioned shape, but is not limited thereto.
The blending amount of the component (B) is 0.05 to 3 parts by weight, preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the polyarylene sulfide resin. If it is 0.05 part by weight, the effect of preventing corrosiveness to metals and the effect of suppressing contamination are not sufficient. On the other hand, when the amount exceeds 3 parts by weight, the same mechanical properties as when the component (B) is not blended cannot be maintained.
Furthermore, it is preferable that the surface of the zinc oxide whisker as the component (B) is previously treated with epoxyalkoxysilane and / or aminoalkoxysilane from the viewpoint of maintaining dispersibility and mechanical properties. As the epoxyalkoxysilane, any silane compound having one or more epoxy groups in one molecule and having two or three alkoxy groups is effective. For example, γ-glycidoxypropyltrimethoxysilane , Γ-glycidoxypropyltriethoxysilane and the like. As the aminoalkoxysilane, any silane compound having one or more amino groups in one molecule and having two or three alkoxy groups is effective. For example, γ-aminopropyltrimethoxysilane, γ -Aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane and the like.
The compounding amount of these alkoxysilanes is preferably 0.05 to 5% by weight with respect to the zinc oxide whisker as the component (B).
[0007]
In the present invention, it is preferable to add phosphoric acid or hypophosphorous acid or a salt thereof as the component (C) because long-term wet heat resistance can be improved.
Examples of (C) phosphoric acid or hypophosphorous acid or salts thereof used here include primary phosphoric acid, hypophosphorous acid, primary calcium phosphate, primary sodium phosphate, calcium hypophosphite, zinc hypophosphite, hypophosphite, and the like. Examples thereof include at least one or two or more selected from zinc, alkali metal or alkaline earth metal salts such as magnesium phosphate and sodium hypophosphite, preferably calcium hypophosphite, magnesium hypophosphite, hypophosphorous acid Zinc. The amount of the component (C) is 0.05 to 2 parts by weight, preferably 0.1 to 1 part by weight, based on 100 parts by weight of the (A) polyarylene sulfide resin. If the amount is too small, the intended effect of improving the long-term moist heat resistance cannot be obtained. On the other hand, if the amount is too large, problems such as gas generation during molding are not preferable.
By allowing the component (C) to coexist with the component (B), the interaction between the two without surprisingly inhibiting the anti-corrosive effect and the suppressive effect of contamination on the metal of the (B) component, It was confirmed that long-term wet heat resistance was improved. In particular, the component (C) is effective even if blended as it is, but a method of adhering a part or all of it to the inorganic or organic filler which is the component (D) described later and blending it with other components Is also effective. (C) The method for attaching the component is not particularly limited, and for example, a solution containing the above compound may be sprayed on the filler, and in the case of glass fiber, the above solution is applied to the fiber using a roll coater. You may make it adhere by apply | coating. Moreover, it is also possible to process together with epoxy resins generally used as surface treating agents such as glass fibers, urethane resin based converging agents, or coupling agents such as aminosilane and epoxysilane.
[0008]
The inorganic or organic filler of the component (D) used in the present invention is not necessarily an essential component, but performance such as mechanical strength, heat resistance, dimensional stability (warping, deformation), electrical properties, etc. In order to obtain an excellent molded product, it is preferable to mix, and for this purpose, a fibrous, granular, or plate-like filler or a mixture thereof is used.
[0009]
Examples of the fibrous filler include glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, and further stainless steel. Inorganic fibrous materials such as metallic fibrous materials such as aluminum, titanium, copper, and brass. Particularly typical fibrous fillers are glass fiber, carbon fiber, or potassium titanate fiber. High-melting organic fibrous materials such as aromatic polyamides, acrylic resins, and fluororesins can also be used.
On the other hand, the granular fillers include carbon black, graphite, silica, quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate silicate, kaolin, talc, clay, diatomaceous earth, wollastonite, iron oxide, Examples thereof include oxides of metals such as titanium oxide and alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, sulfates of metals such as calcium sulfate and barium sulfate, silicon carbide, silicon nitride, and various metal powders. Particularly typical are carbon black, silica, glass beads or glass powder, calcium carbonate, talc and the like.
Examples of the plate-like filler include mica, glass flakes, various metal foils and the like.
These fillers can be used alone or in combination of two or more. The combined use of fibrous fillers, particularly glass fibers or carbon fibers, and granular or plate-like fillers is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties, and the like.
In addition, when using these fillers, it is desirable to use a surface treatment or a convergence with a sizing agent or a surface treatment agent if necessary. Examples of this treating agent are functional compounds such as epoxy compounds, isocyanate compounds, silane compounds, and titanate compounds.
The blending amount of the component (D) is 1 to 75% by weight, preferably 3 to 70% by weight, based on the total amount of the composition. If it is too large, the molding operation becomes difficult, and the mechanical strength of the molded product also becomes problematic.
[0010]
Furthermore, as a molded product composition used in the present invention, known substances generally added to thermoplastic resins, that is, stabilizers such as antioxidants and UV absorbers, flame retardants, colorants such as dyes and pigments, lubrication An agent, a crystallization accelerator, a crystal nucleating agent, and the like can be appropriately added according to the required performance.
[0011]
The resin composition of the present invention can be prepared by facilities and methods generally used for preparing a synthetic resin composition. In general, necessary components can be mixed, melt-kneaded using a single-screw or twin-screw extruder, and extruded to form pellets for molding. It is also a preferred method to melt-extrude the resin component and add and mix an inorganic component such as glass fiber in the middle.
The material pellets thus obtained can be molded using generally known thermoplastic resin molding methods such as injection molding, extrusion molding, vacuum molding, compression molding, etc., but injection molding is most preferred. .
[0012]
【Example】
Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
Examples 1-14 and Comparative Examples 1-10
(A) As a component, substantially linear polyphenylene sulfide resin (manufactured by Kureha Chemical Industry Co., Ltd., “Fortron KPS”, viscosity 50 Pa · s (310 ° C., 1200 sec −1 ) 100 parts by weight, Table 1 Add component (B) as shown in ~ 2 and mix for 2 minutes with a Henschel mixer, then add ingredients (C) and (D) in the amounts shown in Tables 1-2 and mix for 30 seconds with a blender. The pellets of the polyphenylene sulfide resin composition were prepared by kneading with an extruder at a temperature of 310 ° C. Corrosion, mechanical properties and long-term wet heat resistance of the pellets were measured, and the results are shown in Tables 1-2.
Example 15
(D) For the component glass fiber, except that the solution of (C) calcium hypophosphite dissolved in a solvent was applied to the ratio shown in Table 2, sufficiently dried and used in a pre-adhered state. Prepared and evaluated the composition under the same conditions as in the above Examples. The results are shown in Table 2.
[0013]
The evaluation method is as follows.
[Corrosion resistance]
4 g of the above pellets are put in the bottom of a test tube having an inner diameter of 18 mm and a height of 160 mm, and a test piece (15 × 160 × 2 mm) of a mold material (SKD-11) mainly composed of iron, chromium, and carbon is predetermined. It was hung at the position. After capping the top of the test tube and heating at 320 ° C. for 3 hours, the test piece is taken out and observed visually and under a microscope to examine the corrosion state. The relative grading is performed according to the degree of the corrosion state as follows. went.
[Tensile strength and elongation]
Tensile test pieces were molded with an injection molding machine at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C., and the test pieces were measured for tensile strength and tensile elongation according to ASTM D-638.
[Long-term wet heat resistance]
Tensile test specimens were molded with an injection molding machine at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C., and the specimens were treated in 95 ° C. hot water for 500 hours, and the tensile strength was determined in accordance with ASTM D-638. It was measured.
[0014]
[Table 1]
[0015]
[Table 2]
[0016]
note:
(A) PPS
(A-1): Use deionized PPS (B) Corrosion inhibitor (B-1) Made by Matsushita Amtec Co., Ltd., zinc oxide whisker (epoxysilane treatment), average fiber diameter (short diameter) = 0.3 μm , Average fiber length (major axis) = 4 μm
(B-2) Matsushita Amtec Co., Ltd., zinc oxide whisker (aminosilane treatment), average fiber diameter (minor axis) = 0.3 μm, average fiber length (major axis) = 4 μm
(B-3) Matsushita Amtec Co., Ltd., zinc oxide whisker (untreated), average fiber diameter (minor axis) = 0.3 μm, average fiber length (major axis) = 4 μm
(B-4) manufactured by Mitsui Mining & Smelting Co., Ltd., zinc oxide (dry method), average particle size = 0.7 μm
(B-5) Made by Sakai Chemical Industry Co., Ltd., zinc oxide (dry method), average particle size = 0.04 μm
(B-6) manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide (wet method), average particle size = 0.02 μm
(C) Component (C-1) Calcium hypophosphite
Claims (7)
(B) 酸化亜鉛ウィスカ0.05〜3重量部
を配合してなることを特徴としてなるポリアリーレンサルファイド樹脂組成物。(A) Polyarylene sulfide resin For 100 parts by weight,
(B) A polyarylene sulfide resin composition comprising 0.05 to 3 parts by weight of zinc oxide whisker.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26457697A JP3624077B2 (en) | 1997-09-29 | 1997-09-29 | Polyarylene sulfide resin composition |
KR10-2000-7003254A KR100527220B1 (en) | 1997-09-29 | 1998-09-22 | Polyarylene sulfide resin composition |
DE19882709T DE19882709B4 (en) | 1997-09-29 | 1998-09-22 | Polyarylene sulfide resin composition, process for its preparation and its use |
CNB988095963A CN1165583C (en) | 1997-09-29 | 1998-09-22 | Polyarylene sulfide resin composition |
PCT/JP1998/004265 WO1999016830A1 (en) | 1997-09-29 | 1998-09-22 | Polyarylene sulfide resin composition |
TW087116089A TW492988B (en) | 1997-09-29 | 1998-09-28 | Polyarylene sulfide composition |
US09/983,679 US6605660B2 (en) | 1997-09-29 | 2001-10-25 | Polyarylene sulfide resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26457697A JP3624077B2 (en) | 1997-09-29 | 1997-09-29 | Polyarylene sulfide resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11100505A JPH11100505A (en) | 1999-04-13 |
JP3624077B2 true JP3624077B2 (en) | 2005-02-23 |
Family
ID=17405213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26457697A Expired - Lifetime JP3624077B2 (en) | 1997-09-29 | 1997-09-29 | Polyarylene sulfide resin composition |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP3624077B2 (en) |
KR (1) | KR100527220B1 (en) |
CN (1) | CN1165583C (en) |
DE (1) | DE19882709B4 (en) |
TW (1) | TW492988B (en) |
WO (1) | WO1999016830A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000239422A (en) * | 1999-02-22 | 2000-09-05 | Idemitsu Petrochem Co Ltd | Production of electrolessly plated article and resin composition to be used therefor |
US20010051682A1 (en) | 1999-02-22 | 2001-12-13 | Idemitsu Petrochemical Co., Ltd. | Method of producing the plated molded articles by non-electrode plating, and the resin compositions for that use |
JP2005298669A (en) * | 2004-04-12 | 2005-10-27 | Polyplastics Co | Polyarylene sulfide resin composition and its molded article |
KR101287305B1 (en) * | 2005-12-16 | 2013-07-17 | 오츠카 가가쿠 가부시키가이샤 | Polyarylene sulfide resin composition |
JP5098386B2 (en) * | 2007-03-16 | 2012-12-12 | 東レ株式会社 | Polyarylene sulfide resin composition |
JP5112387B2 (en) * | 2009-06-12 | 2013-01-09 | 株式会社クレファイン | Zinc oxide whisker-containing resin composition, gear molded body and gear blank molded body molded therewith, and gear, gear blank, speed reducer and power steering device using the same |
JP6317963B2 (en) * | 2013-04-04 | 2018-04-25 | ポリプラスチックス株式会社 | Method for expressing heat aging resistance for polyarylene sulfide resin composition |
WO2015046324A1 (en) * | 2013-09-27 | 2015-04-02 | 東レ株式会社 | Polyarylene sulfide resin composition |
CN106832930A (en) * | 2017-01-26 | 2017-06-13 | 潮州三环(集团)股份有限公司 | MT lock pin raw material and preparation method thereof |
CN109233278A (en) * | 2018-08-16 | 2019-01-18 | 金发科技股份有限公司 | A kind of polyphenyl thioether composite material and preparation method thereof |
DE102020105849A1 (en) | 2020-03-04 | 2021-09-09 | Christian-Albrechts-Universität Zu Kiel | Polymer composite and manufacturing process for it |
CN113429786B (en) * | 2021-06-16 | 2022-05-20 | 金发科技股份有限公司 | PPS composition and preparation method and application thereof |
CN118159608A (en) | 2021-11-18 | 2024-06-07 | Dic株式会社 | Polyarylene sulfide resin mixture, resin composition, molded article, and method for producing same |
CN116574375A (en) * | 2023-04-24 | 2023-08-11 | 国材(苏州)新材料科技有限公司 | Polyphenylene sulfide resin with high CTI value and CTI value test method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57205445A (en) * | 1981-06-12 | 1982-12-16 | Toray Ind Inc | Poly-p-phenylene sulfide resin composition |
JPH0751646B2 (en) * | 1988-02-25 | 1995-06-05 | 松下電器産業株式会社 | Whisker reinforced plastics |
JPH03239756A (en) * | 1990-02-19 | 1991-10-25 | Sutaaraito Kogyo Kk | Composition for sliding member |
JP3295847B2 (en) * | 1990-10-29 | 2002-06-24 | 大日本インキ化学工業株式会社 | Polyarylene sulfide resin composition |
JP3061145B2 (en) * | 1990-12-27 | 2000-07-10 | 東ソー株式会社 | Method for reducing corrosiveness of polyarylene sulfide resin |
JP3214884B2 (en) * | 1992-02-13 | 2001-10-02 | 出光石油化学株式会社 | Polyarylene sulfide resin composition |
JP3494227B2 (en) * | 1993-08-06 | 2004-02-09 | 出光石油化学株式会社 | Polyarylene sulfide resin composition |
US5604287A (en) * | 1994-03-17 | 1997-02-18 | Idemitsu Petrochemical Co., Ltd. | Polyarylene sulfide resin composition |
WO1995025770A1 (en) * | 1994-03-18 | 1995-09-28 | Mitsubishi Denki Kabushiki Kaisha | Resin composition for molding precision parts, and sleeve and ferrule produced therefrom |
JP2912153B2 (en) * | 1994-03-22 | 1999-06-28 | ポリプラスチックス株式会社 | Polyarylene sulfide resin composition and method for producing the same |
JP3525525B2 (en) * | 1994-11-28 | 2004-05-10 | 出光石油化学株式会社 | Polyarylene sulfide resin composition |
KR20000064264A (en) * | 1996-07-22 | 2000-11-06 | 히라이 가쯔히꼬 | Polyphenylene Sulphide Resin Composition |
-
1997
- 1997-09-29 JP JP26457697A patent/JP3624077B2/en not_active Expired - Lifetime
-
1998
- 1998-09-22 WO PCT/JP1998/004265 patent/WO1999016830A1/en active IP Right Grant
- 1998-09-22 KR KR10-2000-7003254A patent/KR100527220B1/en active IP Right Grant
- 1998-09-22 CN CNB988095963A patent/CN1165583C/en not_active Expired - Lifetime
- 1998-09-22 DE DE19882709T patent/DE19882709B4/en not_active Expired - Lifetime
- 1998-09-28 TW TW087116089A patent/TW492988B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH11100505A (en) | 1999-04-13 |
TW492988B (en) | 2002-07-01 |
WO1999016830A1 (en) | 1999-04-08 |
CN1272124A (en) | 2000-11-01 |
KR20010030731A (en) | 2001-04-16 |
CN1165583C (en) | 2004-09-08 |
DE19882709B4 (en) | 2010-11-25 |
DE19882709T1 (en) | 2000-08-24 |
KR100527220B1 (en) | 2005-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3624077B2 (en) | Polyarylene sulfide resin composition | |
JPH0812886A (en) | Polyarylene sulfide resin composition | |
JPH02105857A (en) | Polyarylene sulfide resin composition and molding of combination thereof with metal | |
JP3366675B2 (en) | Composition based on polyphenylene sulfide | |
WO2007069770A1 (en) | Polyarylene sulfide resin composition | |
US6605660B2 (en) | Polyarylene sulfide resin composition | |
JP3113191B2 (en) | Polyarylene sulfide resin composition | |
JP2878921B2 (en) | Polyarylene sulfide resin composition | |
JP2001288363A (en) | Reinforced polyarylene sulfide resin composition with good tracking resistance | |
JPH0565543B2 (en) | ||
JP2912153B2 (en) | Polyarylene sulfide resin composition and method for producing the same | |
EP0401502A1 (en) | Glass-filled poly(arylene sulphide) compositions | |
JP3083479B2 (en) | Polyarylene sulfide resin composition | |
JP2834639B2 (en) | Polyarylene sulfide resin composition | |
JP7309790B2 (en) | Method for producing polyarylene sulfide resin composition | |
JP6968321B1 (en) | Method for Producing Polyarylene Sulfide Resin Composition | |
JP2003335945A (en) | Polyarylene sulfide resin composition | |
JP2001172500A (en) | Polyarylene sulfide resin composition | |
JP2007106854A (en) | Thermally conductive resin composition | |
JP4381544B2 (en) | Polyarylene sulfide resin composition | |
JP2608329B2 (en) | Polyarylene sulfide resin composition | |
JP3022311B2 (en) | Polyarylene sulfide resin composition | |
JP3162273B2 (en) | Polyarylene sulfide resin composition | |
JPH05140451A (en) | Polyarylene sulfide resin composition | |
JP2003277610A (en) | Thermoplastic aromatic polysulfone resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071203 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |