[go: up one dir, main page]

JP3623714B2 - Broadband antenna and array antenna device - Google Patents

Broadband antenna and array antenna device Download PDF

Info

Publication number
JP3623714B2
JP3623714B2 JP2000093860A JP2000093860A JP3623714B2 JP 3623714 B2 JP3623714 B2 JP 3623714B2 JP 2000093860 A JP2000093860 A JP 2000093860A JP 2000093860 A JP2000093860 A JP 2000093860A JP 3623714 B2 JP3623714 B2 JP 3623714B2
Authority
JP
Japan
Prior art keywords
dipole antenna
antenna
free space
space wavelength
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000093860A
Other languages
Japanese (ja)
Other versions
JP2001284946A (en
Inventor
正佳 新宅
佳雄 恵比根
剛 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NTT Docomo Inc
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, Nihon Dengyo Kosaku Co Ltd filed Critical NTT Docomo Inc
Priority to JP2000093860A priority Critical patent/JP3623714B2/en
Publication of JP2001284946A publication Critical patent/JP2001284946A/en
Application granted granted Critical
Publication of JP3623714B2 publication Critical patent/JP3623714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は陸上における移動通信に好適な広帯域アンテナ及びアレイアンテナ装置に関するものである。
【0002】
【従来の技術】
携帯電話に代表される移動体通信における基地局アンテナは、半波長ダイポールアンテナ等の放射素子を垂直方向に多段にアレイ状に配置してアレイアンテナを構成している。例えば、移動体通信に関しては多くの加入者にサービスを提供する為に360度のサービスエリアを3あるいは6つのセクタに分けて対応している。したがって、水平面内のビーム幅は、3セクタ構成のサービスエリアの場合は、約120度のビーム幅を、6セクタ構成のサービスエリアとした場合は約60度のビーム幅の指向特性を有するアレイアンテナを開発する必要がある。
【0003】
比較的狭いビーム幅を有するアンテナを作る際、所謂八木宇田アンテナのようにダイポールアンテナに代表されるような放射素子に、ビームを有する方向とは逆方向に放射素子よりやや長い無給電素子あるいは反射板を設け、さらに必要に応じてビームを有する方向に放射素子よりやや短い無給電素子を設け、それらの間隔や長さ、あるいは形状を調整して所望のビーム幅を得ている。
上記記載の各放射素子と、各反射板、及びその他無給電素子とで構成されるアンテナの水平方向の放射ビーム幅とは、各放射素子と、各反射板、及びその他無給電素子とで構成されるアンテナの水平方向の指向特性において、その正面における利得に対して、その利得が3dB低下する角度の範囲、つまり、各放射素子と、各反射板、及びその他無給電素子とで構成されるアンテナの水平方向の指向特性の半値幅を意味している。
【0004】
【発明が解決しようとする課題】
携帯電話等の移動体通信では通信品質を向上させるため、ダイバシチが用いられ、さらにその方法によってスペースダイバシチや、ハイトダイバシチ、偏波ダイバシチなどに分けられる。なかでも偏波ダイバシチは垂直偏波の電波と水平偏波の電波を同時に受信することで、安定した通話を可能にしている。
このようなシステムの基地局アンテナには垂直偏波素子と、水平偏波素子の両方を持ち合わせ、それぞれの素子がほぼ同じ指向特性を得られる様に配列した偏波ダイバシチアンテナが必要となる。
【0005】
垂直偏波素子については、半波長ダイポールアンテナが一般に使用されている。周知の如く、半波長ダイポールアンテナはダイポール軸と直交する面内(H面内)で無指向特性である為、この垂直偏波用の半波長ダイポールアンテナに反射板を組合せることにより、垂直偏波の水平面内の放射ビーム幅を120度とすることは容易である。なお、図7において、9a、9bは半波長ダイポールアンテナの素子、6は反射板を表している。図7のように、120度ビームアンテナを水平に2個配置することにより、放射ビーム幅を60度とすることもまた容易である。
【0006】
しかしながら、水平偏波用アンテナとして半波長ダイポールアンテナを使用する場合、半波長ダイポールアンテナはダイポール軸を含む面内(E面内)では8字型の指向特性を有している為、この水平偏波用の半波長アンテナに反射板を組合せても水平偏波の水平面内のビーム幅は70度程度にしかならない。
このように、従来技術では、水平偏波用の放射素子として半波長ダイポールアンテナを用いた場合、ダイポール軸を含む面内、つまり水平面内のビーム幅を狭くする為に無給電素子の形状、長さ、間隔を調整すると、その反面で、入力インピーダンスの整合が狭い帯域幅でしかとれなくなってしまうという欠点があった。本発明の目的はビーム幅をほとんど変えずに広帯域にわたって入力インピーダンスの整合をとる技術を提供することにある。
【0007】
【課題を解決するための手段】
本題について開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。
自由空間波長に比し、薄い誘電体の表面に各被着させた金属皮膜あるいは線状の半波長ダイポールアンテナの素子を設け、その両側の端部の近傍に自由空間波長に比し、狭い幅で、自由空間波長の約4分の1の長さを有する金属皮膜あるいは線状の1対の無給電素子を半波長ダイポールアンテナの素子と同じ平面状に配置する。
【0008】
前記半波長ダイポールアンテナの素子で構成される放射素子ならびに無給電素子に、放射方向とは逆方向に線状の反射素子あるいは面状の反射板を有することを特徴とする。
前記放射素子ならびに無給電素子に、反射方向とは逆方向に線状の反射素子あるいは面状の反射板を有し、放射方向に放射素子よりやや短い無給電素子を配置することを特徴とする。
【0009】
【作用】
自由空間波長に比し薄い誘電体の表面に各被着させた金属皮膜あるいは線状の自由空間波長の2分の1の長さに比し約7割の長さのダイポールアンテナの素子の両側の端部の近傍に、自由空間波長に比し狭い幅で自由空間波長の約4分の1の長さを有する金属皮膜あるいは線状の1対の無給電素子を半波長ダイポールアンテナの素子と同じ平面上に配置する。この時、放射方向とは逆方向に線状の反射素子あるいは面状の反射板を有し、放射方向に放射素子よりやや短い無給電素子を配置した場合においてもビーム幅を変えずに広帯域を実現できる。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の実施例を詳細に説明する。
なお、実施例を説明する為の全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
〈実施例1〉
図1は本発明の1実施例を示す斜視図、即ち、本発明を斜め前方から見た図である。
【0011】
1は自由空間波長に比し薄い誘電体板、2は誘電体板1の表面に各被着させた金属皮膜で、自由空間波長の2分の1の長さに比し約7割の長さのダイポールアンテナの素子、3a、3b、3c、3dは自由空間波長に比し狭い幅で自由空間波長の約4分の1の長さを有する無給電素子で、これらは誘電体板1の表面に設けてある。4aは整合線路で、これは誘電体板1の裏側に設けてある。5は入出力端子で、例えば同軸接栓より成り、その内部導体を整合線路4aに接続し、外部導体をダイポールアンテナの素子2に接続している。誘電体板1を例えば、熱硬化PPE銅張積層板を用いて形成する場合には、印刷手法と同様の手法によって不要の金属皮膜を除去して誘電体板1の表裏面にダイポールアンテナの素子2、無給電素子3a、3b、3c、3d、整合線路4aを被着形成する。これらの製作方法は後述する他の実施例においても同様である。
【0012】
整合線路4aによって伝播された高周波エネルギーは、ダイポールアンテナの素子2を励振し、定在波がおきる。また、その励振されたエネルギーの一部は容量結合された無給電素子3a、3b、3c、3dにも伝わり、その無給電素子3a、3b、3c、3dのダイポールアンテナの素子2とは反対側の端部まで伝播し、その高周波電流はその端部で反射されダイポールアンテナの素子2の方向に戻ってくる。無給電素子3a、3b、3c、3dは自由空間波長の約4分の1の長さを有することから、端部で反射されて戻ってきた高周波電流の位相はおおよそ180°ずれることになり、再び、容量結合されたダイポールアンテナの素子2を励振するが、もともとダイポールアンテナの素子2におきていた定在波とは位相が異なる為、一部が打ち消され、整合線路4aへ戻っていくエネルギーが少なくなる。したがって、ダイポールアンテナの素子2、無給電素子3a、3b、3c、3dの長さ、及びダイポールアンテナの素子2と無給電素子3a、3b、3c、3dとの間隔を適切な値にすることで、広帯域にわたり入力反射特性が改善される。
〈実施例2〉
図2は本発明の実施例2を示す斜視図、即ち、本発明を斜め前方から見た図である。
【0013】
2は自由空間波長の2分の1の長さに比し約7割の長さのダイポールアンテナの素子、3a、3b、3c、3dは自由空間波長に比し狭い幅で、自由空間波長の約4分の1の長さを有する無給電素子で、ダイポールアンテナの素子2と同一平面上に設けてある。4aは整合線路で、6は反射板であり、この反射板6は導電体であれば格子や適宜穴を打ち抜いた金属板(所謂、パンチングメタル)を使用してもよく、また、その形状も適宜選択可能である。
【0014】
ダイポールアンテナの素子2、及び無給電素子3a、3b、3c、3dから放射された電磁波は、その一部は反射板6で反射され、ダイポールアンテナの素子2、及び無給電素子3a、3b、3c、3dから反射板6とは反対の方向に放射された電磁波と合成されて、反射板6とは反対方向に電磁波は放射される。半波長ダイポールアンテナを使用する場合、半波長ダイポールアンテナはダイポール軸を含む面内(E面内)では8字型の指向特性を有している為、ダイポールアンテナの素子2、及び無給電素子3a、3b、3c、3dに反射板6を組み合わせても水平面内のビーム幅は70度程度にしかならない。しかし、水平面内のビーム幅を70度よりも細いビーム幅にしたい場合はダイポールアンテナの素子2、及び無給電素子3a、3b、3c、3dと、反射板6との距離を通常の自由空間波長の4分の1の長さに比しさらに狭くし、自由空間波長の8分の1程度まで狭くすることで、水平面内のビーム幅は、ダイポールアンテナの素子2、及び無給電素子3a、3b、3c、3dと、反射板6との距離を通常の自由空間波長の4分の1の長さのときに比しわずかに狭くすることが可能である。このような場合においても無給電素子3a、3b、3c、3dをダイポールアンテナの素子2の両側の端部の近傍に配置することにより広帯域とすることができる。
〈実施例3〉
図3は本発明の実施例3を示す斜視図、即ち、本発明を斜め前方から見た図である。
【0015】
実施例2で構成したダイポールアンテナの素子2と、無給電素子3a、3b、3c、3dと、反射板6に放射方向に自由空間波長に比し狭い幅で、自由空間波長の2分の1の長さに比し約7割の長さで、ダイポールアンテナの素子2に比し短い長さの無給電素子7を配置した。
無給電素子7は、所謂八木宇田アンテナの導波器と同じ作用をしているため、水平面内のビーム幅を実施例2に比し狭くすることが可能である。一般に無給電素子数が多い八木宇田アンテナの場合、比帯域幅が広く取れないという欠点があるが、本実施例においては、無給電素子3a、3b、3c、3dを配置することにより、広帯域化が可能である。
【0016】
図4は実施例3のダイポールアンテナの素子2における周波数と反射減衰量との関係を示すグラフである。
なお、図4において横軸は周波数(GHz)、縦軸は反射減衰量(dB)である。
図4から明らかなように本実施例のダイポールアンテナの素子2において反射減衰量が14dB(電圧定在波比VSWR=1.5)以下の周波数領域は約380MHzであり、これは、2GHzにおいて、比帯域幅19%を実現していることを意味している。
〈実施例4〉
図5は本発明の実施例4を示す斜視図、即ち、本発明を斜め前方から見た図である。
【0017】
実施例3で構成したダイポールアンテナの素子2と、無給電素子3a、3b、3c、3dと、無給電素子7を縦方向に4素子配置し、一連の反射板6で構成し、図5に示すように配置をすることで、動作利得を増加させるとともに、それぞれのダイポールアンテナの素子2にそれぞれ位相差や、振幅差をつけた高周波電流を給電することで、地面に対して垂直な面内の指向特性を変化させることが可能である。
【0018】
図6は本発明の他の実施例を示す斜視図、即ち、本発明を斜め前方から見た図である。
実施例3で構成したダイポールアンテナの素子2と、無給電素子3a、3b、3c、3dと、無給電素子7を縦方向に4素子配置し、一連の反射板6で構成し、各素子の間に垂直偏波用のダイポールアンテナの素子8a、8bを配置した図で、4bは垂直偏波用のダイポールアンテナの素子8a、8bにそれぞれ給電する為の整合線路である。
【0019】
図6に示すように各素子を配置することで、水平偏波素子と垂直偏波素子を効率よく配置され、垂直偏波、及び水平偏波の水平方向の放射ビーム方向を60度とすることが可能である。したがって、これらの素子を移動通信用基地局の偏波ダイバシチアンテナとして使用することにより、水平偏波、及び垂直偏波の電波をバランス良く送受信することが可能である。
また、それぞれの水平偏波用ダイポールアンテナの素子2、及び垂直偏波用のダイポールアンテナの素子8a、8bにそれぞれ位相差や、振幅差をつけた高周波電流を給電することで、地面に対して垂直な面内の指向特性を変化させることが可能である。
【0020】
以上、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その趣旨を逸脱しない範囲において種々変更が可能であることは勿論である。
【0021】
【発明の効果】
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
本発明のアンテナは、水平偏波用の放射素子として半波長ダイポールアンテナを用いた場合、水平面内のビーム幅を狭くする為に無給電素子の形状、長さ、間隔を調整すると、入力インピーダンスの整合が狭い帯域幅でしかとれなくなってしまう欠点を、半波長ダイポールアンテナの素子と同じ平面上で半波長ダイポールアンテナの素子の両側に無給電素子を配置することで、ビーム幅をほとんど変えずに広帯域にわたって入力インピーダンスの整合をとることが可能である。
【0022】
本発明のアンテナは、水平偏波素子と垂直偏波素子を効率よく配置し、垂直偏波、及び水平偏波の水平方向の放射ビーム方向を60度とすることが可能である。したがって、これらの素子を移動通信用基地局の偏波ダイバシチアンテナとして使用することにより、水平偏波、及び垂直偏波の電波をバランス良く送受信することが可能である。
【図面の簡単な説明】
【図1】本発明の実施例1を示す概略図。
【図2】本発明の実施例2を示す概略図。
【図3】本発明の実施例3を示す概略図。
【図4】本発明の実施例3の周波数と反射減衰量の関係との一実測例を示すグラフ。
【図5】本発明の実施例4を示す概略図。
【図6】本発明の他の実施例を示す概略図。
【図7】従来のアンテナを説明するための概略図。
【符号の説明】
1 誘電体板
2、8a、8b、9a、9b ダイポールアンテナの素子
3a、3b、3c、3d、7 無給電素子
4a、4b 整合線路
5 入出力端子
6 反射板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a broadband antenna and an array antenna apparatus suitable for mobile communication on land.
[0002]
[Prior art]
A base station antenna in mobile communication typified by a mobile phone constitutes an array antenna by arranging radiating elements such as a half-wave dipole antenna in a multi-stage array in the vertical direction. For example, with regard to mobile communication, in order to provide services to many subscribers, the service area of 360 degrees is divided into 3 or 6 sectors. Accordingly, the beam width in the horizontal plane is an array antenna having a directivity characteristic of a beam width of about 120 degrees in the case of a service area of 3 sectors and a beam width of about 60 degrees in the case of a service area of 6 sectors. Need to develop.
[0003]
When making an antenna with a relatively narrow beam width, a parasitic element or a reflection element that is slightly longer than the radiating element in the direction opposite to the direction of the beam is applied to a radiating element represented by a dipole antenna such as a so-called Yagi-Uda antenna. A plate is provided, and if necessary, a parasitic element slightly shorter than the radiating element is provided in the direction having the beam, and a desired beam width is obtained by adjusting the interval, length, or shape thereof.
The horizontal radiation beam width of the antenna composed of each radiating element described above, each reflecting plate, and other parasitic elements is composed of each radiating element, each reflecting plate, and other parasitic elements. In the horizontal directivity characteristic of the antenna, the angle range in which the gain decreases by 3 dB with respect to the gain at the front, that is, each radiating element, each reflecting plate, and other parasitic elements This means the full width at half maximum of the directivity of the antenna in the horizontal direction.
[0004]
[Problems to be solved by the invention]
In mobile communication such as a cellular phone, diversity is used to improve communication quality, and it is further classified into space diversity, height diversity, polarization diversity, and the like depending on the method. In particular, polarization diversity enables a stable call by simultaneously receiving vertically polarized waves and horizontally polarized waves.
The base station antenna of such a system requires a polarization diversity antenna that has both a vertical polarization element and a horizontal polarization element and is arranged so that each element can obtain substantially the same directivity characteristics.
[0005]
A half-wave dipole antenna is generally used for the vertical polarization element. As is well known, a half-wave dipole antenna has non-directional characteristics in a plane perpendicular to the dipole axis (in the H plane). Therefore, by combining a reflector with this half-wave dipole antenna for vertical polarization, It is easy to set the radiation beam width in the horizontal plane of the waves to 120 degrees. In FIG. 7, 9a and 9b represent elements of a half-wave dipole antenna, and 6 represents a reflector. As shown in FIG. 7, it is easy to set the radiation beam width to 60 degrees by arranging two 120 degree beam antennas horizontally.
[0006]
However, when a half-wavelength dipole antenna is used as the horizontally polarized antenna, the half-wavelength dipole antenna has an 8-shaped directional characteristic in the plane including the dipole axis (in the E plane). Even if a reflector is combined with a wave half-wave antenna, the beam width in the horizontal plane of horizontal polarization is only about 70 degrees.
As described above, in the conventional technique, when a half-wave dipole antenna is used as a radiating element for horizontally polarized waves, the shape and length of the parasitic element are reduced in order to narrow the beam width in the plane including the dipole axis, that is, in the horizontal plane. On the other hand, when the interval is adjusted, there is a drawback that matching of the input impedance can be achieved only with a narrow bandwidth. An object of the present invention is to provide a technique for matching input impedance over a wide band without changing the beam width.
[0007]
[Means for Solving the Problems]
Of the inventions disclosed in this subject, the outline of typical ones will be briefly described as follows.
Compared to free space wavelength, each coated thin film or linear half-wavelength dipole antenna element is provided on the surface of a thin dielectric, and its width is narrower than the free space wavelength near the ends on both sides. Thus, a metal film having a length of about a quarter of the free space wavelength or a pair of linear parasitic elements is arranged in the same plane as the elements of the half-wave dipole antenna.
[0008]
The radiating element and the parasitic element constituted by the elements of the half-wave dipole antenna have a linear reflecting element or a planar reflecting plate in a direction opposite to the radiating direction.
The radiating element and the parasitic element have a linear reflecting element or a planar reflecting plate in a direction opposite to the reflecting direction, and a parasitic element slightly shorter than the radiating element is disposed in the radiating direction. .
[0009]
[Action]
Both sides of a dipole antenna element approximately 70% longer than the length of one half of the metal film or linear free space wavelength deposited on the surface of a thin dielectric compared to the free space wavelength A metal film or a pair of linear parasitic elements having a width that is narrower than the free space wavelength and about one-fourth of the free space wavelength are placed near the end of the half-wavelength dipole antenna. Place on the same plane. At this time, even when a linear reflecting element or a planar reflecting plate is provided in the direction opposite to the radiation direction, and a parasitic element slightly shorter than the radiation element is arranged in the radiation direction, a wide bandwidth can be obtained without changing the beam width. realizable.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In all the drawings for explaining the embodiments, parts having the same functions are given the same reference numerals, and their repeated explanation is omitted.
<Example 1>
FIG. 1 is a perspective view showing an embodiment of the present invention, that is, a view of the present invention as viewed obliquely from the front.
[0011]
1 is a thin dielectric plate compared to the free space wavelength, and 2 is a metal film deposited on the surface of the dielectric plate 1, approximately 70% longer than the half of the free space wavelength. The dipole antenna elements 3a, 3b, 3c and 3d are parasitic elements having a narrow width compared to the free space wavelength and a length of about one quarter of the free space wavelength. It is provided on the surface. Reference numeral 4 a denotes a matching line, which is provided on the back side of the dielectric plate 1. Reference numeral 5 denotes an input / output terminal composed of, for example, a coaxial plug, and has an inner conductor connected to the matching line 4a and an outer conductor connected to the element 2 of the dipole antenna. When the dielectric plate 1 is formed using, for example, a thermosetting PPE copper-clad laminate, an unnecessary metal film is removed by a method similar to the printing method, and a dipole antenna element is formed on the front and back surfaces of the dielectric plate 1. 2. The parasitic elements 3a, 3b, 3c, 3d and the matching line 4a are deposited. These manufacturing methods are the same in other embodiments described later.
[0012]
The high frequency energy propagated by the matching line 4a excites the element 2 of the dipole antenna, and a standing wave is generated. A part of the excited energy is also transmitted to the capacitively coupled parasitic elements 3a, 3b, 3c, and 3d, and the parasitic element 3a, 3b, 3c, and 3d has a dipole antenna element 2 on the opposite side. The high-frequency current is reflected at the end, and returns to the element 2 of the dipole antenna. Since the parasitic elements 3a, 3b, 3c, and 3d have a length of about a quarter of the free space wavelength, the phase of the high-frequency current that has been reflected and returned from the end portion is shifted by approximately 180 °. The element 2 of the capacitively coupled dipole antenna is excited again, but the phase is different from the standing wave originally placed on the element 2 of the dipole antenna, so that part of the energy is canceled and returned to the matching line 4a. Less. Therefore, by setting the length of the element 2 of the dipole antenna, the parasitic elements 3a, 3b, 3c, and 3d and the distance between the element 2 of the dipole antenna and the parasitic elements 3a, 3b, 3c, and 3d to appropriate values. The input reflection characteristics are improved over a wide band.
<Example 2>
FIG. 2 is a perspective view showing a second embodiment of the present invention, that is, a view of the present invention as viewed obliquely from the front.
[0013]
2 is a dipole antenna element that is approximately 70% longer than half the free space wavelength, and 3a, 3b, 3c, and 3d are narrower than the free space wavelength. It is a parasitic element having a length of about ¼, and is provided on the same plane as the element 2 of the dipole antenna. 4a is a matching line, and 6 is a reflector. If the reflector 6 is a conductor, a grid or a metal plate (so-called punching metal) with appropriately punched holes may be used. It can be selected as appropriate.
[0014]
A part of the electromagnetic wave radiated from the element 2 of the dipole antenna and the parasitic elements 3a, 3b, 3c, 3d is reflected by the reflecting plate 6, and the element 2 of the dipole antenna and the parasitic elements 3a, 3b, 3c. 3d is combined with the electromagnetic wave radiated in the direction opposite to the reflector 6, and the electromagnetic wave is radiated in the direction opposite to the reflector 6. When the half-wave dipole antenna is used, the half-wave dipole antenna has an 8-shaped directivity characteristic in the plane including the dipole axis (in the E plane), and therefore the element 2 of the dipole antenna and the parasitic element 3a Even if the reflector 6 is combined with 3b, 3c and 3d, the beam width in the horizontal plane is only about 70 degrees. However, when the beam width in the horizontal plane is desired to be narrower than 70 degrees, the distance between the dipole antenna element 2 and the parasitic elements 3a, 3b, 3c, and 3d and the reflector 6 is set to a normal free space wavelength. The width of the beam in the horizontal plane is reduced to about one-eighth of the free space wavelength, so that the beam width in the horizontal plane can be reduced to the dipole antenna element 2 and the parasitic elements 3a and 3b. It is possible to make the distance between 3c, 3d and the reflecting plate 6 slightly smaller than when the length is a quarter of the normal free space wavelength. Even in such a case, by providing the parasitic elements 3a, 3b, 3c, and 3d in the vicinity of the end portions on both sides of the element 2 of the dipole antenna, a wide band can be obtained.
<Example 3>
FIG. 3 is a perspective view showing a third embodiment of the present invention, that is, a view of the present invention as viewed obliquely from the front.
[0015]
The dipole antenna element 2 configured in the second embodiment, the parasitic elements 3a, 3b, 3c, and 3d, and the reflecting plate 6 have a width narrower than the free space wavelength in the radial direction and half the free space wavelength. A parasitic element 7 having a length approximately 70% shorter than that of the dipole antenna and shorter than the element 2 of the dipole antenna is disposed.
Since the parasitic element 7 operates in the same manner as a so-called Yagi-Uda antenna director, the beam width in the horizontal plane can be made narrower than that in the second embodiment. In general, the Yagi-Uda antenna having a large number of parasitic elements has a drawback that the specific bandwidth cannot be widened. However, in this embodiment, by providing the parasitic elements 3a, 3b, 3c, and 3d, the bandwidth can be increased. Is possible.
[0016]
FIG. 4 is a graph showing the relationship between the frequency and the return loss in the element 2 of the dipole antenna of Example 3.
In FIG. 4, the horizontal axis represents the frequency (GHz) and the vertical axis represents the return loss (dB).
As is clear from FIG. 4, in the element 2 of the dipole antenna of this example, the frequency region in which the return loss is 14 dB (voltage standing wave ratio VSWR = 1.5) or less is about 380 MHz, which is 2 GHz. This means that the specific bandwidth is 19%.
<Example 4>
FIG. 5 is a perspective view showing a fourth embodiment of the present invention, that is, a view of the present invention viewed obliquely from the front.
[0017]
The element 2 of the dipole antenna configured in Example 3, the parasitic elements 3a, 3b, 3c, and 3d, and the parasitic element 7 are arranged in four elements in the vertical direction, and are constituted by a series of reflectors 6 as shown in FIG. By arranging as shown, the operating gain is increased, and a high-frequency current with a phase difference and an amplitude difference is supplied to each element 2 of each dipole antenna, so that an in-plane perpendicular to the ground is provided. It is possible to change the directivity characteristic of.
[0018]
FIG. 6 is a perspective view showing another embodiment of the present invention, that is, a view of the present invention viewed obliquely from the front.
The element 2 of the dipole antenna configured in Example 3, the parasitic elements 3a, 3b, 3c, and 3d, and the parasitic element 7 are arranged in the vertical direction, and are composed of a series of reflecting plates 6, and each element In the figure, elements 8a and 8b of a vertically polarized dipole antenna are arranged, and 4b is a matching line for supplying power to the elements 8a and 8b of the vertically polarized dipole antenna.
[0019]
By arranging each element as shown in FIG. 6, the horizontal polarization element and the vertical polarization element are efficiently arranged, and the horizontal radiation beam direction of the vertical polarization and the horizontal polarization is set to 60 degrees. Is possible. Therefore, by using these elements as a polarization diversity antenna of a mobile communication base station, it is possible to transmit and receive radio waves of horizontal polarization and vertical polarization with good balance.
In addition, by supplying a high-frequency current with a phase difference and an amplitude difference to the element 2 of the horizontally polarized dipole antenna and the elements 8a and 8b of the vertically polarized dipole antenna, It is possible to change the directivity in the vertical plane.
[0020]
Although specific description has been given based on the above-described embodiment, the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the invention.
[0021]
【The invention's effect】
Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
When a half-wave dipole antenna is used as a horizontally polarized radiating element, the antenna of the present invention adjusts the shape, length, and spacing of parasitic elements to narrow the beam width in the horizontal plane. The disadvantage that matching can only be achieved with a narrow bandwidth is that the parasitic elements are placed on both sides of the half-wave dipole antenna element on the same plane as the half-wave dipole antenna element, so that the beam width is hardly changed. It is possible to match the input impedance over a wide band.
[0022]
In the antenna of the present invention, the horizontal polarization element and the vertical polarization element are efficiently arranged, and the horizontal radiation beam direction of the vertical polarization and the horizontal polarization can be set to 60 degrees. Therefore, by using these elements as a polarization diversity antenna of a mobile communication base station, it is possible to transmit and receive radio waves of horizontal polarization and vertical polarization with good balance.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing Example 1 of the present invention.
FIG. 2 is a schematic diagram showing Example 2 of the present invention.
FIG. 3 is a schematic view showing Example 3 of the present invention.
FIG. 4 is a graph showing an actual measurement example of the relationship between the frequency and the return loss in Example 3 of the present invention.
FIG. 5 is a schematic diagram showing Example 4 of the present invention.
FIG. 6 is a schematic view showing another embodiment of the present invention.
FIG. 7 is a schematic diagram for explaining a conventional antenna.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dielectric board 2, 8a, 8b, 9a, 9b Dipole antenna element 3a, 3b, 3c, 3d, 7 Parasitic element 4a, 4b Matching line 5 Input / output terminal 6 Reflector

Claims (2)

属皮膜の自由空間波長の2分の1の長さに比し7割の長さの水平に配されたダイポールアンテナの素子と、ダイポールアンテナの素子の両側の端の上下の角部とそれぞれ容量結合し、それぞれダイポールアンテナの素子の長さ方向に延長され、自由空間波長の4分の1の長さを有する金属皮膜の第1〜第4無給電素子とが自由空間波長に比し薄い一枚の平面状誘電体の表面に各被着され、
電波の放射方向とは逆方向に格子状あるいは面状の反射板を備え、
電波の放射方向に、上記ダイポールアンテナ素子の放射電波に対し導波器と作用する第5無給電素子がダイポールアンテナ素子と並行に対向して配置されていることを特徴とする広帯域アンテナ。
And elements of the dipole antenna arranged on the horizontal ratio and 70% of the length 1 of the length of half the free space wavelength of metals skin membrane, and the corner portions of the upper and lower sides of the ends of the elements of the dipole antenna respectively capacitively coupled, is extended in the longitudinal direction of the element of each dipole antenna, a ratio to the first to fourth passive element and the free space wavelength of the metal skin layer having a first length of a quarter of the free space wavelength Each deposited on the surface of a thin planar dielectric,
A grid or planar reflector is provided in the opposite direction to the radio wave radiation direction.
A wideband antenna, wherein a fifth parasitic element that acts as a director for a radiation wave of the dipole antenna element is disposed in parallel with the dipole antenna element in a radiation direction of the radio wave .
請求項1に記載の広帯域アンテナの複数を垂直方向に配列してアレイ化し、それぞれのダイポールアンテナ素子に位相差及び振幅差の高周波電流を給電する給電装置を備え、それぞれの放射素子を励振することで垂直面内の指向特性を変化させることを特徴とするアレイアンテナ装置。 A plurality of broadband antennas according to claim 1 are arranged in an array in the vertical direction, each dipole antenna element is provided with a power feeding device that feeds a high-frequency current having a phase difference and an amplitude difference, and each radiation element is excited. An array antenna apparatus characterized by changing a directivity characteristic in a vertical plane.
JP2000093860A 2000-03-30 2000-03-30 Broadband antenna and array antenna device Expired - Lifetime JP3623714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093860A JP3623714B2 (en) 2000-03-30 2000-03-30 Broadband antenna and array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093860A JP3623714B2 (en) 2000-03-30 2000-03-30 Broadband antenna and array antenna device

Publications (2)

Publication Number Publication Date
JP2001284946A JP2001284946A (en) 2001-10-12
JP3623714B2 true JP3623714B2 (en) 2005-02-23

Family

ID=18608988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093860A Expired - Lifetime JP3623714B2 (en) 2000-03-30 2000-03-30 Broadband antenna and array antenna device

Country Status (1)

Country Link
JP (1) JP3623714B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854211B2 (en) * 2002-09-12 2006-12-06 株式会社エヌ・ティ・ティ・ドコモ Antenna device
JP3839393B2 (en) * 2002-11-13 2006-11-01 電気興業株式会社 Dual frequency antenna device
CN1701466A (en) * 2003-08-05 2005-11-23 日本安特尼株式会社 Planar antenna with reflector
CN1734836B (en) * 2004-08-10 2010-11-17 富士康(昆山)电脑接插件有限公司 Antenna
JP2008047964A (en) * 2006-08-10 2008-02-28 Docomo Technology Inc Antenna device
KR100883408B1 (en) 2006-09-11 2009-03-03 주식회사 케이엠더블유 Dual Band Dual Polarization Antenna for Mobile Communication Base Station
US7586451B2 (en) * 2006-12-04 2009-09-08 Agc Automotive Americas R&D, Inc. Beam-tilted cross-dipole dielectric antenna
JP4732321B2 (en) * 2006-12-18 2011-07-27 電気興業株式会社 Antenna device
KR101080459B1 (en) * 2007-04-27 2011-11-04 닛본 덴끼 가부시끼가이샤 Sector antenna
JP4905239B2 (en) * 2007-04-27 2012-03-28 三菱電機株式会社 Antenna device
JP4512630B2 (en) * 2007-11-09 2010-07-28 電気興業株式会社 Dipole antenna and dipole array antenna
JP4623105B2 (en) * 2008-02-18 2011-02-02 ミツミ電機株式会社 Broadcast receiving antenna device
FR2946805B1 (en) * 2009-06-11 2012-03-30 Alcatel Lucent RADIANT ELEMENT OF ANTENNA
JP4927921B2 (en) * 2009-10-19 2012-05-09 日本電業工作株式会社 Antenna and array antenna
US8736507B2 (en) 2010-10-22 2014-05-27 Panasonic Corporation Antenna apparatus provided with dipole antenna and parasitic element pairs as arranged at intervals
JP5605285B2 (en) * 2011-03-30 2014-10-15 三菱電機株式会社 Dipole array antenna
JP5745582B2 (en) * 2013-09-02 2015-07-08 日本電業工作株式会社 Antenna and sector antenna
CN107508048A (en) * 2017-07-10 2017-12-22 佛山市波谱达通信科技有限公司 A kind of directional antenna arrangement
CN107611593B (en) * 2017-07-13 2023-09-29 佛山市顺德区中山大学研究院 Multi-frequency broadband dipole antenna with coupling branches
CN108321521A (en) * 2018-04-13 2018-07-24 南京濠暻通讯科技有限公司 A kind of novel miniaturization printed on both sides dual-band broadband terminal antenna
CN110518347B (en) * 2019-08-27 2020-10-16 南京邮电大学 Multi-band vehicle-mounted antenna
CN117099267A (en) * 2021-09-06 2023-11-21 太平洋工业株式会社 Passive component

Also Published As

Publication number Publication date
JP2001284946A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP3623714B2 (en) Broadband antenna and array antenna device
US6317084B1 (en) Broadband plate antenna
EP2660933B1 (en) Array antenna of mobile terminal and implementing method thereof
US7589686B2 (en) Small ultra wideband antenna having unidirectional radiation pattern
US6759990B2 (en) Compact antenna with circular polarization
JP6449352B2 (en) Compound loop antenna
JP2006519545A (en) Multi-band branch radiator antenna element
JP4171875B2 (en) Multiband patch antenna and skeleton slot radiator
US7710327B2 (en) Multi band indoor antenna
CN107359420B (en) Miniaturized high-gain dual-band circularly polarized antenna
CN114498006A (en) Antenna and terminal equipment
CN114583442B (en) Antenna unit and omni-directional dipole antenna
EP1324423A1 (en) Low-cost printed omni-directional monopole antenna for ultra-wideband in mobile applications
JP4516246B2 (en) antenna
CN109860976B (en) Broadband patch antenna based on differential resonator feed
JP2002246834A (en) Dual-polarization antenna device
JP3782278B2 (en) Beam width control method of dual-polarized antenna
Ramya et al. Design and Analysis of microstrip patch array antenna for WLAN applications
JP3483096B2 (en) Monopole antenna
Rahman et al. Design and Analysis of High Gain Microstrip Antenna Array for 5G Wireless Communications
CN113540763A (en) Antenna and equipment
JP3057173B2 (en) Corner reflector antenna device
Liu et al. Wideband millimeter wave planner sub-array with enhanced gain for 5G communication systems
KR200348650Y1 (en) A high gain microstrip antenna by using Yagi structure
CN118040344B (en) Ultra-wideband planar modularized 45-degree oblique polarization phased array antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3623714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term