JP3621714B2 - 車室内騒音低減装置 - Google Patents
車室内騒音低減装置 Download PDFInfo
- Publication number
- JP3621714B2 JP3621714B2 JP03122294A JP3122294A JP3621714B2 JP 3621714 B2 JP3621714 B2 JP 3621714B2 JP 03122294 A JP03122294 A JP 03122294A JP 3122294 A JP3122294 A JP 3122294A JP 3621714 B2 JP3621714 B2 JP 3621714B2
- Authority
- JP
- Japan
- Prior art keywords
- taps
- signal
- compensation
- compensation coefficient
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Exhaust Silencers (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Filters That Use Time-Delay Elements (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、エンジンの振動騒音を主要因として発生する車室内の騒音を、相殺音と干渉させて低減させる車室内騒音低減装置に関する。
【0002】
【従来の技術】
エンジンの振動騒音を主要因として発生する車室内騒音に対し、この騒音と同一振幅で逆位相となる音(相殺音)を音源から発生させ、車室内騒音を低減させる種々の技術が提案されている。
【0003】
また、最近では、例えば特開平3−178846号公報等に示されるように、LMS(Least Mean Square) アルゴリズム、或いは、このLMSアルゴリズムを多チャンネルに拡大したMEFX−LMS(Multiple Error Filtered X−LMS) アルゴリズムを利用した車室内騒音低減装置が提案され、一部実用化され始めている。
【0004】
一般に、このLMSアルゴリズムを利用した車室内騒音低減装置では、エンジン振動を主要因として発生する車室内騒音を消音する場合、エンジン振動と相関の高い信号を騒音振動源信号(プライマリソース)として検出し、このプライマリソースから適応フィルタによって騒音に対する相殺音を合成してスピーカから発生する。そして、受聴点における騒音低減状態を誤差信号(エラー信号)としてマイクにより検出し、このエラー信号と、上記プライマリソースに補償係数CLM0 (主にスピーカ/マイク間の車内伝達特性を有限のインパルスレスポンスで表現した係数列;LはマイクNo. 、MはスピーカNo. を示す添字)を合成した信号とからLMSアルゴリズムにより上記適応フィルタのフィルタ係数W(n) を更新して受聴点における騒音低減を最適な値とするようになっている。
【0005】
ところで、例えば図4に示すように、車室内の前側に相殺音を発するスピーカ7が設けられ、前部座席の受聴点のエラー信号を検出するマイク8aと後部座席の受聴点のエラー信号を検出するマイク8bとが設けられた車室内騒音低減装置1では、上記補償係数CLM0 は、スピーカ7とマイク8a間の経路のスピーカ/マイク間車内伝達特性C11に対応する補償係数C110 とスピーカ7とマイク8b間の経路のスピーカ/マイク間車内伝達特性C21に対応する補償係数C210 の2つが存在する。
【0006】
上記各スピーカ/マイク間の車内伝達特性CLMに対応する上記各補償係数CLM0 は、例えば、図6に示すようなシステム同定により求められる。すなわち、上記各スピーカ/マイク間の車内伝達特性CLMを未知の系30とし、この未知の系30に入力された所定のランダムノイズと、適応フィルタ(CLM0 適応フィルタ)31に入力された上記ランダムノイズとの加算結果が0に収束するようにLMS演算回路(CLM0 −LMS演算回路)32で、上記CLM0 適応フィルタ31のフィルタ係数を更新し、このフィルタ係数を上記各補償係数CLM0 とする。このシステム同定により求められた上記各スピーカ/マイク間の車内伝達特性CLMの一例を図5に示す。
【0007】
この図5からも明らかなように、スピーカ/マイク間車内伝達特性C11は、スピーカ7とマイク8aとの距離が短いため波形の収束が速く、補償係数C110 は約30タップ程度の長さで近似できる。これに対し、スピーカ/マイク間車内伝達特性C21は、スピーカ7とマイク8bとの距離が長いため、長いディレイ(スピーカ7からマイク8bに音が到達するのに生じる遅れ)の後、波形は車内の残響特性等の影響を受けてゆっくり収束するため、補償係数C210 は約90タップ程度の長さが必要となる。
【0008】
【発明が解決しようとする課題】
しかし、従来のLMSアルゴリズムを利用した車室内騒音低減装置では、DSP(digital signal processor)の演算可能総タップ数を各補償係数CLM0 毎に同じタップ数で表現するようにしているため、各補償係数CLM0 は、補償係数C110 を表現するのに必要な30タップと、補償係数C210 を表現するのに必要な90タップの略中間のタップ数で表現するようにしていた。例えば、DSPの演算可能総タップ数が120タップに設定された場合、補償係数C110 と補償係数C210 は、それぞれ60タップで表現していた。
【0009】
このため、スピーカ/マイク間車内伝達特性C11は補償係数C110 によって確実に表現されるが、スピーカ/マイク間車内伝達特性C21は補償係数C210 によって確実に表現することができず、マイク8bの受聴点の消音性能が低下するといった問題がある。
【0010】
また、補償係数C110 と補償係数C210 を、それぞれ90タップで表現できるようにDSPの演算可能総タップ数を確保すれば、各スピーカ/マイク間車内伝達特性CLMを確実に表現することができるが、補償係数C110 において無駄な演算が増加するといった問題や、上記DSPの演算可能総タップ数の確保のため、消音システムに、より高い演算能力を有するDSPを用いなければならない等の問題が生じる。
【0011】
本発明は、上記事情に鑑みてなされたもので、各補償係数をそれぞれ的確に表現して、従来の演算能力であっても、各受聴点における消音性能を最適に保つことのできる車室内騒音低減装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1記載の車室内騒音低減装置は、エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成するキャンセル信号合成手段と、上記キャンセル信号を騒音に対する相殺音として音源から発生する相殺音発生手段と、複数の受聴点を設定し、これら各受聴点における騒音低減状態を誤差信号として検出する複数の誤差信号検出手段と、上記キャンセル信号が上記キャンセル信号合成手段から出力され上記複数の誤差信号として戻ってくるまでの複数の経路に対応する各車内伝達特性を表現する各補償係数のタップ数を、全ての補償係数のタップ数の総和を予め設定しておいた値の範囲内に制限して、それぞれの補償係数毎に設定すると共に、上記各補償係数のタップ値を設定する補償係数設定手段と、上記騒音振動源信号を上記補償係数設定手段で設定した上記各補償係数と合成する入力信号補償手段と、上記入力信号補償手段からの各信号と上記複数の誤差信号とに基づき上記適応フィルタのフィルタ係数を更新するフィルタ係数更新手段とを備えた車室内騒音低減装置において、上記補償係数設定手段は、第一の補償係数のタップ数とタップ値を予め設定した収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定し、上記第一の補償係数とは異なる他の補償係数のタップ数とタップ値を上記収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定して、全ての補償係数のタップ数とタップ値の設定を行った後に、上記全ての補償係数のタップ数の総和を求め、該タップ数の総和が上記予め設定しておいた値の範囲を越える場合には、上記収束判定エラー量を変更して再び上記各補償係数のタップ数とタップ値の設定を行うものである。
【0013】
【作 用】
上記構成において、予め、補償係数設定手段で、キャンセル信号がキャンセル信号合成手段から出力され複数の誤差信号として戻ってくるまでの複数の経路に対応する各車内伝達特性を表現する各補償係数のタップ数を、全ての補償係数のタップ数の総和を予め設定しておいた値の範囲内に制限して、それぞれの補償係数毎に設定すると共に、上記各補償係数のタップ値を設定しておく。次に、エンジンの振動騒音を主要因として車室内に騒音が発生すると、上記キャンセル信号合成手段で、エンジン振動と相関の高い騒音振動源信号を適応フィルタにより上記キャンセル信号として合成し、相殺音発生手段で、上記キャンセル信号を騒音に対する相殺音として音源から発生する。複数の受聴点における騒音低減状態は、複数の誤差信号検出手段で、それぞれに対応する誤差信号として検出され、一方、入力信号補償手段で、上記騒音振動源信号を上記補償係数設定手段で設定した上記各補償係数と合成する。そして、フィルタ係数更新手段で、上記複数の誤差信号と上記入力信号補償手段からの各信号とに基づき上記適応フィルタのフィルタ係数を更新する。この際、上記補償係数設定手段は、第一の補償係数のタップ数とタップ値を予め設定した収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定し、上記第一の補償係数とは異なる他の補償係数のタップ数とタップ値を上記収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定して、全ての補償係数のタップ数とタップ値の設定を行った後に、上記全ての補償係数のタップ数の総和を求め、該タップ数の総和が上記予め設定しておいた値の範囲を越える場合には、上記収束判定エラー量を変更して再び上記各補償係数のタップ数とタップ値の設定を行う。
【0014】
【実施例】
以下、図面に基づいて本発明の実施例を説明する。
図1〜図5は本発明の一実施例を示し、図1は車室内騒音低減装置のシステム概略図、図2は入力信号変換回路の説明図、図3は補償係数決定手順を示すフローチャート、図4は騒音低減を行う車室内の平面図、図5は図4のスピーカ/マイク間の車内伝達特性の説明図である。
【0015】
図1において、符号1は車室内騒音低減装置を示し、4サイクルエンジンのイグニッションコイル(共に図示せず)へのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に対しても出力される。
【0016】
この入力信号変換回路2は、図2に示すように、波形成形回路2aと間引回路2bとで構成されており、この入力信号変換回路2に入力された上記Ig パルス信号は、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、キャンセル信号合成手段としての適応フィルタ3および入力信号補償手段としてのスピーカ/マイク間伝達特性補償回路(以下「CLM0 回路」と略称)4a,4bに出力される。
【0017】
これは、4サイクルエンジン関連の振動騒音は、エンジンが2回転(720℃A)で吸入・圧縮・爆発・排気の4行程を完了するために、エンジン2回転を1周期とする振動騒音となっており、周波数領域ではエンジン回転の0.5次成分を基本波とし、その高次成分が主体となったスペクトルとなっている(0.5×n(n:整数)次成分により構成されている)ためである。従って、Ig パルス信号を前述のように成形・加工することにより、消音したい振動騒音と極めて相関の高いプライマリソースPs を得ることができる。
【0018】
また、上記適応フィルタ3は、フィルタ係数更新手段としてのLMS演算回路5により更新可能なフィルタ係数W(n) を有するFIR(Finite Impulse Response )フィルタであり、所定のタップ数(例えば、512タップ)に形成されている。この適応フィルタ3に入力された上記プライマリソースPs は、上記フィルタ係数W(n) と畳み込み積和され、キャンセル信号として出力信号処理回路6を介し相殺音発生手段としてのスピーカ7から相殺音を発生するようになっている。
【0019】
上記出力信号処理回路6は、D/A変換器,アナログフィルタ回路(波形整形や特定の周波数域のみ通過させることを目的としたフィルタ回路)およびアンプ回路等により構成されている。
【0020】
また、上記スピーカ7は、例えば図4に示すように、車内の前側に配設されており、車内の受聴点、すなわち、前部座席の乗員の耳位置に近接する位置には、誤差信号検出手段としてのエラーマイク8aが、後部座席の乗員の耳位置に近接する位置には、誤差信号検出手段としてのエラーマイク8bが、それぞれ設けられている。
【0021】
上記各エラーマイク8a,8bにて検出された騒音低減状態を示す誤差信号(相殺音とエンジン関連の振動騒音との干渉の結果を示す信号;エラー信号)は、それぞれアンプ回路,フィルタ回路およびA/D変換器等からなる入力信号処理回路9a,9bを介し上記LMS演算回路5に入力されるようになっている。
【0022】
一方、前記CLM0 回路4aには、上記適応フィルタ3から出力された信号が、上記出力信号処理回路6を介し上記スピーカ7から相殺音として発生され、スピーカ/マイク間伝達特性C11の影響を受けて上記エラーマイク8aにて検出され、上記入力信号処理回路9aを介し上記LMS演算回路5に入力されるまでの時間の遅れや、諸特性を有限のインパルスレスポンスで近似した補償係数C110 が、後述する補償係数設定手段としてのシステム同定回路10で予め決定され設定されており、入力されたプライマリソースPs に、上記補償係数C110 を畳み込み積和することで補償して上記LMS演算回路5に信号を出力する回路に形成されている。
【0023】
同様に、前記CLM0 回路4bには、上記適応フィルタ3から出力された信号が、上記出力信号処理回路6を介し上記スピーカ7から相殺音として発生され、スピーカ/マイク間伝達特性C21の影響を受けて上記エラーマイク8bにて検出され、上記入力信号処理回路9bを介し上記LMS演算回路5に入力されるまでの時間の遅れや、諸特性の変化を有限のインパルスレスポンスで近似した補償係数C210 が、上記システム同定回路10で予め決定され設定されており、入力されたプライマリソースPs に、上記補償係数C210 を畳み込み積和することで補償して上記LMS演算回路5に信号を出力する回路に形成されている。
【0024】
また、上記LMS演算回路5では、上記各入力信号処理回路9a,9bからの各エラー信号と、上記CLM0 回路4a,4bで補償された各プライマリソースPs とから、周知のLMSアルゴリズムにより前記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する回路に構成されている。ここで、上記スピーカ7と接続された上記適応フィルタ3のフィルタ係数W(n) の係数更新は次式により行われる。更新後のi番目のフィルタ係数をWi(n+1),更新するi番目のフィルタ係数をWi(n),ステップサイズをμ,No.Lの上記各エラーマイク8a,8b(上記エラーマイク8aをNo.1、上記エラーマイク8bをNo.2とする)からの信号をeL(n),上記各補償係数CLM0 のi番目の係数をCLiM0,プライマリソースPs のi個前の値をx(n−1) とすると、
Wi(n+1)=Wi(n)−μΣeL(n)・ΣCLiM0・x(n−1) ・・・・・・(1)
さらに、上記システム同定回路10は、後述する補償係数決定手順に従い、上記補償係数C110 および上記補償係数C210 を演算し、上記各CLM0 回路4a,4bに上記補償係数C110 および上記補償係数C210 を設定する回路で、主に、ランダムノイズ発生部11と、CLM0 適応フィルタ12と、CLM0 タップ数・タップ値演算回路13と、CLM0 メモリ部14と、システム同定スイッチ部15および加算部16等とから構成されている。
【0025】
上記ランダムノイズ発生部11は、上記各補償係数C110 ,C210 を求めるシステム同定の際に、デジタル信号化された所定のランダムノイズRN を発生して、前記出力信号処理回路6と、上記CLM0 適応フィルタ12と、上記CLM0 タップ数・タップ値演算回路13とに、上記ランダムノイズRN を入力するように接続されている。
【0026】
また、上記CLM0 適応フィルタ12は、上記CLM0 タップ数・タップ値演算回路13によりフィルタ係数Wc のタップ数およびタップ値が更新されるFIRフィルタで、このCLM0 適応フィルタ12に入力された上記ランダムノイズRN は、上記フィルタ係数Wc と畳み込み積和され上記加算部16に出力される。
【0027】
さらに、上記システム同定スイッチ部15は、システム同定時に、上記CLM0 タップ数・タップ値演算回路13により、前記入力信号処理回路9aあるいは前記入力信号処理回路9bのどちらか一方からの信号を、このシステム同定回路10に入力して上記加算部16に出力するようになっている。
【0028】
上記加算部16での加算結果(上記CLM0 適応フィルタ12からの信号と上記入力信号処理回路9aあるいは上記入力信号処理回路9bのどちらか一方からの信号との加算結果)は、上記CLM0 タップ数・タップ値演算回路13に出力される。
【0029】
また、上記CLM0 タップ数・タップ値演算回路13では、上記補償係数決定手順に従い、上記出力信号処理回路6→上記スピーカ7→上記スピーカ/マイク間伝達特性C11→上記エラーマイク8a→上記入力信号処理回路9a、あるいは、上記出力信号処理回路6→上記スピーカ7→上記スピーカ/マイク間伝達特性C21→上記エラーマイク8b→上記入力信号処理回路9bの経路を未知の系とし、これら2つの未知の系を係数列で表現するための必要なタップ数とタップ値とを求めるとともに、決定したタップ数とタップ値に基づき、これらの値を上記各補償係数C110 ,C210 として、上記各CLM0 回路4a,4bに設定する回路である。
【0030】
すなわち、上記補償係数決定手順に従い、システムの演算可能な範囲内での上記CLM0 適応フィルタ12の上記フィルタ係数Wc の様々なタップ数において、上記ランダムノイズRN を、上記CLM0 適応フィルタ12と上記一方の未知の系とに入力し、上記CLM0 適応フィルタ12からの信号と上記一方の未知の系からの信号との加算結果が所定の値以内に収束するように上記フィルタ係数Wc のタップ値を周知のLMS演算により求め、これらの値を上記各補償係数C110 ,C210 として、上記各CLM0 回路4a,4bに設定するのである。
【0031】
また、上記CLM0 メモリ部14には、上記補償係数C110 と上記補償係数C210 の2つの領域が確保され、上記CLM0 タップ数・タップ値演算回路13と接続されており、このCLM0 タップ数・タップ値演算回路13の演算に応じて、演算途中の補償係数C110 と補償係数C210 、あるいは、決定した補償係数C110 と補償係数C210 のRAM回路となっている。
【0032】
尚、図4中、符号Sa は車室内の消音エリアを示す。
次に、上記システム同定回路10で実行される補償係数決定手順を図3のフローチャートを基に説明する。
【0033】
まず、ステップ(以下Sと略称)101で、出力信号処理回路6→スピーカ7→スピーカ/マイク間伝達特性C11→エラーマイク8a→入力信号処理回路9aの経路(C11のパス)について、システム同定を実行する。すなわち、システム同定スイッチ部15を、上記入力信号処理回路9aからの信号が、このシステム同定回路10に入力され上記加算部16に出力されるように動作させた後、ランダムノイズ発生部11から上記C11のパスと、CLM0 適応フィルタ12およびCLM0 タップ数・タップ値演算回路13とに、上記ランダムノイズRN を入力し、上記CLM0 適応フィルタ12からの信号と上記C11のパスからの信号との加算部16での加算結果が最小となるように、上記CLM0 タップ数・タップ値演算回路13で、上記CLM0 適応フィルタ12のフィルタ係数Wc のタップ値を周知のLMS演算により更新する。
【0034】
次いで、S102に進み、上記S101の上記C11のパスについてのシステム同定の結果が、予め設定しておいた値(収束判定エラー量)以内に収束しているか否か判定し、収束している場合にはS103に進み、収束していない場合にはS104に進む。
【0035】
そして、上記S102での判定の結果、収束していると判定されてS103に進むと、上記CLM0 適応フィルタ12のフィルタ係数Wc のタップ数を予め設定しておいた数量(例えば、10タップ)減らし、再び、上記C11のパスについてのシステム同定を実行し、S105に進む。
【0036】
S105に進むと、上記S103の上記C11のパスについてのシステム同定の結果が、上記収束判定エラー量以内に収束しているか否か判定し、収束している場合にはS103に戻り、収束していない場合にはS104に進む。
【0037】
すなわち、上記S101〜上記S105は、システム同定の結果が、収束判定エラー量以内に収束しなくなるまで上記フィルタ係数Wc のタップ数を減らしていく手順となっている。
【0038】
そして、上記S102あるいは上記S105で、システム同定の結果が予め設定しておいた値以内に収束せず、S104に進むと、上記フィルタ係数Wc のタップ数を予め設定しておいた数量(上記S103で減ずるタップ数より小さな値で、例えば、2タップ)増加し、再び、上記C11のパスについてのシステム同定を実行し、S106に進む。
【0039】
上記S106に進むと、上記S104の上記C11のパスについてのシステム同定の結果が、上記収束判定エラー量以内に収束しているか否か判定し、収束している場合には、以上の手順で決定したタップ数とタップ値を補償係数C110 としてS107に進み、収束していない場合にはS104に戻り、上記C11のパスについてのシステム同定を繰り返す。
【0040】
上記S106で、収束していると判定されS107に進むと、システムの全CLMのパスについてのシステム同定が終了したか否か(全ての補償係数CLM0 のタップ数とタップ値の決定が終了したか否か)の判定が行われる。すなわち、これまでの例では、C11のパスについて説明してきたが、このS107で、上記出力信号処理回路6→上記スピーカ7→上記スピーカ/マイク間伝達特性C21→エラーマイク8b→入力信号処理回路9bの経路(C21のパス)のシステム同定が終了したか否かが判定され、終了していない場合には、前記S101に戻り、C21のパスについて、上記システム同定スイッチ部15を、上記入力信号処理回路9bからの信号が、このシステム同定回路10に入力され上記加算部16に出力されるように動作させた後、上記C11のパスの補償係数C110 と同様に、タップ数とタップ値を定め、補償係数C210 を決定する。
【0041】
そして、上記S107で、システムの全CLMのパスについてのシステム同定(全ての補償係数CLM0 のタップ数とタップ値の決定)が終了していると判定されると、S108に進み、全ての補償係数CLM0 のタップ数が、システムが演算可能な総タップ数(例えば、120タップ)であるか否かの判定が行われ、演算可能な総タップ数である場合(例えば、補償係数C110 が30タップで補償係数C210 が90タップである場合)には、S109に進み、以上のシステム同定によって決定された補償係数C110 と補償係数C210 とをCLM0 メモリ部14に記憶し、この補償係数決定手順を終了し、一方、演算可能な総タップ数とならない場合(例えば、補償係数C110 が40タップで補償係数C210 が100タップである場合)には、S110に進み、上記収束判定エラー量を変更して、再び、S101から、この補償係数決定手順を実行する。尚、上述の例では、補償係数C110 を求めた後、補償係数C210 を求めるようにしているが、補償係数C210 を求めてから補償係数C110 を求めるようにしても良い。
【0042】
以上のように、各補償係数CLM0 のタップ数とタップ値とを、それぞれの補償係数CLM0 が表現する経路について、演算可能な総タップ数の範囲内で最適な値に決定して、各CLM0 回路4a,4bに設定することにより、各受聴点における消音性能を最適に保つことが可能となる。
【0043】
次に、本実施例の車室内騒音低減装置1の動作について説明する。
まず、システム同定回路10で、上述の補償係数決定手順に従い、補償係数C110 と補償係数C210 とを決定し、各CLM0 回路4a,4bに設定しておく。
【0044】
そして、エンジンの振動騒音が、エンジンからマウント(いずれも図示せず)等を伝達して車内音となり、また、吸気や排気の音等も車室内に伝播すると、これらのエンジン関連振動騒音は、周波数領域では、いずれも0.5×n(n:整数)次成分の周波数スペクトルにより主に構成されており、各々の振動源に対する車体伝達特性が乗ぜられて各受聴点(前部座席の乗員の耳位置に近接する位置と後部座席の乗員の耳位置に近接する位置)に達する。
【0045】
一方、エンジンのイグニッションコイル(共に図示せず)へのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に入力され、波形成形回路2aと間引回路2bにより、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、適応フィルタ3と上記CLM0 回路4a,4bとに出力される。
【0046】
上記適応フィルタ3に入力されたプライマリソースPs は、この適応フィルタ3のフィルタ係数W(n) との畳み込み積和により、振動騒音を相殺するキャンセル信号として出力信号処理回路6を介しスピーカ7に出力され、このスピーカ7から上記各受聴点における振動騒音に対する相殺音として出力される。このとき、上記スピーカ7から前部座席の乗員の耳位置に近接する位置の受聴点への相殺音は、スピーカ/マイク間伝達特性C11を受けて、また、上記スピーカ7から後部座席の乗員の耳位置に近接する位置の受聴点への相殺音は、スピーカ/マイク間伝達特性C21を受けて上記各受聴点に達する。
【0047】
このため、上記各受聴点では、上記エンジン関連の振動騒音と上記相殺音とが干渉して振動騒音が低減させられると同時に、上記各受聴点の近傍に配設されているエラーマイク8a,8bにより、振動騒音と相殺音との干渉の結果が検出され、エラー信号として、入力信号処理回路9a,9bを介してLMS演算回路5に入力される。
【0048】
また、上記各CLM0 回路4a,4bに入力されたプライマリソースPs は、前記システム同定回路10により、予め設定されている補償係数C110 と補償係数C210 とそれぞれ畳み込み積和され、上記LMS演算回路5に出力される。
【0049】
そして、上記LMS演算回路5で、上記入力信号処理回路9a,9bからのエラー信号と、上記各CLM0 回路4a,4bで補償されたプライマリソースPs とから、LMSアルゴリズムにより上記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する。
【0050】
このように、本実施例では、適応フィルタから出力され、LMS演算回路に入力される各パスに対応する各補償係数CLM0 を、演算可能な範囲で必要なタップ数・タップ値を用いてそれぞれ最適に表現し、これらの補償係数CLM0 を用いて消音制御の演算を行うようにしているため、システムのDSPが従来の演算能力であっても、各受聴点における消音性能を安定して最適に保つことができる。
【0051】
尚、本実施例では、プライマリソースPs としてIg パルスを用いるように構成しているが、他のエンジン関連の振動騒音と相関の高い信号(例えば、燃料噴射パルスTi 等)をプライマリソースPs としても良い。
【0052】
また本実施例では、スピーカ1個、エラーマイク2個の2つのパスを有するLMSアルゴリズムを利用した消音システムの例について説明したが、他のMEFX−LMSアルゴリズムを利用した消音システム(例えば、マイク4個、スピーカ4個で16個のパスを有する)等のシステム)についても適用可能である。
【0053】
【発明の効果】
以上、説明したように本発明によれば、キャンセル信号がキャンセル信号合成手段から出力され誤差信号として戻ってくるまでの経路に応じた車内伝達特性を表現するタップ数とタップ値とを演算能力範囲内で算出し補償係数として設定する補償係数設定手段を車室内騒音低減装置に備えたので、上記各経路毎に各補償係数をそれぞれ的確に表現して、従来の演算能力であっても、各受聴点における消音性能を最適に保つことが可能となる。
【図面の簡単な説明】
【図1】車室内騒音低減装置のシステム概略図
【図2】入力信号変換回路の説明図
【図3】補償係数決定手順を示すフローチャート
【図4】騒音低減を行う車室内の平面図
【図5】図4のスピーカ/マイク間の車内伝達特性の説明図
【図6】一般的なシステム同定の概念説明図
【符号の説明】
1 車室内騒音低減装置
3 適応フィルタ(キャンセル信号合成手段)
4a CLM0 回路(入力信号補償手段)
4b CLM0 回路(入力信号補償手段)
5 LMS演算回路(フィルタ係数更新手段)
6 キャンセル信号判定回路(キャンセル信号比較手段)
7 スピーカ(相殺音発生手段)
8a エラーマイク(誤差信号検出手段)
8b エラーマイク(誤差信号検出手段)
10 システム同定回路(補償係数設定手段)
CLM スピーカ/マイク間伝達特性
CLM0 補償係数
Ps プライマリソース(騒音振動源信号)
W(n) フィルタ係数
【産業上の利用分野】
本発明は、エンジンの振動騒音を主要因として発生する車室内の騒音を、相殺音と干渉させて低減させる車室内騒音低減装置に関する。
【0002】
【従来の技術】
エンジンの振動騒音を主要因として発生する車室内騒音に対し、この騒音と同一振幅で逆位相となる音(相殺音)を音源から発生させ、車室内騒音を低減させる種々の技術が提案されている。
【0003】
また、最近では、例えば特開平3−178846号公報等に示されるように、LMS(Least Mean Square) アルゴリズム、或いは、このLMSアルゴリズムを多チャンネルに拡大したMEFX−LMS(Multiple Error Filtered X−LMS) アルゴリズムを利用した車室内騒音低減装置が提案され、一部実用化され始めている。
【0004】
一般に、このLMSアルゴリズムを利用した車室内騒音低減装置では、エンジン振動を主要因として発生する車室内騒音を消音する場合、エンジン振動と相関の高い信号を騒音振動源信号(プライマリソース)として検出し、このプライマリソースから適応フィルタによって騒音に対する相殺音を合成してスピーカから発生する。そして、受聴点における騒音低減状態を誤差信号(エラー信号)としてマイクにより検出し、このエラー信号と、上記プライマリソースに補償係数CLM0 (主にスピーカ/マイク間の車内伝達特性を有限のインパルスレスポンスで表現した係数列;LはマイクNo. 、MはスピーカNo. を示す添字)を合成した信号とからLMSアルゴリズムにより上記適応フィルタのフィルタ係数W(n) を更新して受聴点における騒音低減を最適な値とするようになっている。
【0005】
ところで、例えば図4に示すように、車室内の前側に相殺音を発するスピーカ7が設けられ、前部座席の受聴点のエラー信号を検出するマイク8aと後部座席の受聴点のエラー信号を検出するマイク8bとが設けられた車室内騒音低減装置1では、上記補償係数CLM0 は、スピーカ7とマイク8a間の経路のスピーカ/マイク間車内伝達特性C11に対応する補償係数C110 とスピーカ7とマイク8b間の経路のスピーカ/マイク間車内伝達特性C21に対応する補償係数C210 の2つが存在する。
【0006】
上記各スピーカ/マイク間の車内伝達特性CLMに対応する上記各補償係数CLM0 は、例えば、図6に示すようなシステム同定により求められる。すなわち、上記各スピーカ/マイク間の車内伝達特性CLMを未知の系30とし、この未知の系30に入力された所定のランダムノイズと、適応フィルタ(CLM0 適応フィルタ)31に入力された上記ランダムノイズとの加算結果が0に収束するようにLMS演算回路(CLM0 −LMS演算回路)32で、上記CLM0 適応フィルタ31のフィルタ係数を更新し、このフィルタ係数を上記各補償係数CLM0 とする。このシステム同定により求められた上記各スピーカ/マイク間の車内伝達特性CLMの一例を図5に示す。
【0007】
この図5からも明らかなように、スピーカ/マイク間車内伝達特性C11は、スピーカ7とマイク8aとの距離が短いため波形の収束が速く、補償係数C110 は約30タップ程度の長さで近似できる。これに対し、スピーカ/マイク間車内伝達特性C21は、スピーカ7とマイク8bとの距離が長いため、長いディレイ(スピーカ7からマイク8bに音が到達するのに生じる遅れ)の後、波形は車内の残響特性等の影響を受けてゆっくり収束するため、補償係数C210 は約90タップ程度の長さが必要となる。
【0008】
【発明が解決しようとする課題】
しかし、従来のLMSアルゴリズムを利用した車室内騒音低減装置では、DSP(digital signal processor)の演算可能総タップ数を各補償係数CLM0 毎に同じタップ数で表現するようにしているため、各補償係数CLM0 は、補償係数C110 を表現するのに必要な30タップと、補償係数C210 を表現するのに必要な90タップの略中間のタップ数で表現するようにしていた。例えば、DSPの演算可能総タップ数が120タップに設定された場合、補償係数C110 と補償係数C210 は、それぞれ60タップで表現していた。
【0009】
このため、スピーカ/マイク間車内伝達特性C11は補償係数C110 によって確実に表現されるが、スピーカ/マイク間車内伝達特性C21は補償係数C210 によって確実に表現することができず、マイク8bの受聴点の消音性能が低下するといった問題がある。
【0010】
また、補償係数C110 と補償係数C210 を、それぞれ90タップで表現できるようにDSPの演算可能総タップ数を確保すれば、各スピーカ/マイク間車内伝達特性CLMを確実に表現することができるが、補償係数C110 において無駄な演算が増加するといった問題や、上記DSPの演算可能総タップ数の確保のため、消音システムに、より高い演算能力を有するDSPを用いなければならない等の問題が生じる。
【0011】
本発明は、上記事情に鑑みてなされたもので、各補償係数をそれぞれ的確に表現して、従来の演算能力であっても、各受聴点における消音性能を最適に保つことのできる車室内騒音低減装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1記載の車室内騒音低減装置は、エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成するキャンセル信号合成手段と、上記キャンセル信号を騒音に対する相殺音として音源から発生する相殺音発生手段と、複数の受聴点を設定し、これら各受聴点における騒音低減状態を誤差信号として検出する複数の誤差信号検出手段と、上記キャンセル信号が上記キャンセル信号合成手段から出力され上記複数の誤差信号として戻ってくるまでの複数の経路に対応する各車内伝達特性を表現する各補償係数のタップ数を、全ての補償係数のタップ数の総和を予め設定しておいた値の範囲内に制限して、それぞれの補償係数毎に設定すると共に、上記各補償係数のタップ値を設定する補償係数設定手段と、上記騒音振動源信号を上記補償係数設定手段で設定した上記各補償係数と合成する入力信号補償手段と、上記入力信号補償手段からの各信号と上記複数の誤差信号とに基づき上記適応フィルタのフィルタ係数を更新するフィルタ係数更新手段とを備えた車室内騒音低減装置において、上記補償係数設定手段は、第一の補償係数のタップ数とタップ値を予め設定した収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定し、上記第一の補償係数とは異なる他の補償係数のタップ数とタップ値を上記収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定して、全ての補償係数のタップ数とタップ値の設定を行った後に、上記全ての補償係数のタップ数の総和を求め、該タップ数の総和が上記予め設定しておいた値の範囲を越える場合には、上記収束判定エラー量を変更して再び上記各補償係数のタップ数とタップ値の設定を行うものである。
【0013】
【作 用】
上記構成において、予め、補償係数設定手段で、キャンセル信号がキャンセル信号合成手段から出力され複数の誤差信号として戻ってくるまでの複数の経路に対応する各車内伝達特性を表現する各補償係数のタップ数を、全ての補償係数のタップ数の総和を予め設定しておいた値の範囲内に制限して、それぞれの補償係数毎に設定すると共に、上記各補償係数のタップ値を設定しておく。次に、エンジンの振動騒音を主要因として車室内に騒音が発生すると、上記キャンセル信号合成手段で、エンジン振動と相関の高い騒音振動源信号を適応フィルタにより上記キャンセル信号として合成し、相殺音発生手段で、上記キャンセル信号を騒音に対する相殺音として音源から発生する。複数の受聴点における騒音低減状態は、複数の誤差信号検出手段で、それぞれに対応する誤差信号として検出され、一方、入力信号補償手段で、上記騒音振動源信号を上記補償係数設定手段で設定した上記各補償係数と合成する。そして、フィルタ係数更新手段で、上記複数の誤差信号と上記入力信号補償手段からの各信号とに基づき上記適応フィルタのフィルタ係数を更新する。この際、上記補償係数設定手段は、第一の補償係数のタップ数とタップ値を予め設定した収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定し、上記第一の補償係数とは異なる他の補償係数のタップ数とタップ値を上記収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定して、全ての補償係数のタップ数とタップ値の設定を行った後に、上記全ての補償係数のタップ数の総和を求め、該タップ数の総和が上記予め設定しておいた値の範囲を越える場合には、上記収束判定エラー量を変更して再び上記各補償係数のタップ数とタップ値の設定を行う。
【0014】
【実施例】
以下、図面に基づいて本発明の実施例を説明する。
図1〜図5は本発明の一実施例を示し、図1は車室内騒音低減装置のシステム概略図、図2は入力信号変換回路の説明図、図3は補償係数決定手順を示すフローチャート、図4は騒音低減を行う車室内の平面図、図5は図4のスピーカ/マイク間の車内伝達特性の説明図である。
【0015】
図1において、符号1は車室内騒音低減装置を示し、4サイクルエンジンのイグニッションコイル(共に図示せず)へのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に対しても出力される。
【0016】
この入力信号変換回路2は、図2に示すように、波形成形回路2aと間引回路2bとで構成されており、この入力信号変換回路2に入力された上記Ig パルス信号は、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、キャンセル信号合成手段としての適応フィルタ3および入力信号補償手段としてのスピーカ/マイク間伝達特性補償回路(以下「CLM0 回路」と略称)4a,4bに出力される。
【0017】
これは、4サイクルエンジン関連の振動騒音は、エンジンが2回転(720℃A)で吸入・圧縮・爆発・排気の4行程を完了するために、エンジン2回転を1周期とする振動騒音となっており、周波数領域ではエンジン回転の0.5次成分を基本波とし、その高次成分が主体となったスペクトルとなっている(0.5×n(n:整数)次成分により構成されている)ためである。従って、Ig パルス信号を前述のように成形・加工することにより、消音したい振動騒音と極めて相関の高いプライマリソースPs を得ることができる。
【0018】
また、上記適応フィルタ3は、フィルタ係数更新手段としてのLMS演算回路5により更新可能なフィルタ係数W(n) を有するFIR(Finite Impulse Response )フィルタであり、所定のタップ数(例えば、512タップ)に形成されている。この適応フィルタ3に入力された上記プライマリソースPs は、上記フィルタ係数W(n) と畳み込み積和され、キャンセル信号として出力信号処理回路6を介し相殺音発生手段としてのスピーカ7から相殺音を発生するようになっている。
【0019】
上記出力信号処理回路6は、D/A変換器,アナログフィルタ回路(波形整形や特定の周波数域のみ通過させることを目的としたフィルタ回路)およびアンプ回路等により構成されている。
【0020】
また、上記スピーカ7は、例えば図4に示すように、車内の前側に配設されており、車内の受聴点、すなわち、前部座席の乗員の耳位置に近接する位置には、誤差信号検出手段としてのエラーマイク8aが、後部座席の乗員の耳位置に近接する位置には、誤差信号検出手段としてのエラーマイク8bが、それぞれ設けられている。
【0021】
上記各エラーマイク8a,8bにて検出された騒音低減状態を示す誤差信号(相殺音とエンジン関連の振動騒音との干渉の結果を示す信号;エラー信号)は、それぞれアンプ回路,フィルタ回路およびA/D変換器等からなる入力信号処理回路9a,9bを介し上記LMS演算回路5に入力されるようになっている。
【0022】
一方、前記CLM0 回路4aには、上記適応フィルタ3から出力された信号が、上記出力信号処理回路6を介し上記スピーカ7から相殺音として発生され、スピーカ/マイク間伝達特性C11の影響を受けて上記エラーマイク8aにて検出され、上記入力信号処理回路9aを介し上記LMS演算回路5に入力されるまでの時間の遅れや、諸特性を有限のインパルスレスポンスで近似した補償係数C110 が、後述する補償係数設定手段としてのシステム同定回路10で予め決定され設定されており、入力されたプライマリソースPs に、上記補償係数C110 を畳み込み積和することで補償して上記LMS演算回路5に信号を出力する回路に形成されている。
【0023】
同様に、前記CLM0 回路4bには、上記適応フィルタ3から出力された信号が、上記出力信号処理回路6を介し上記スピーカ7から相殺音として発生され、スピーカ/マイク間伝達特性C21の影響を受けて上記エラーマイク8bにて検出され、上記入力信号処理回路9bを介し上記LMS演算回路5に入力されるまでの時間の遅れや、諸特性の変化を有限のインパルスレスポンスで近似した補償係数C210 が、上記システム同定回路10で予め決定され設定されており、入力されたプライマリソースPs に、上記補償係数C210 を畳み込み積和することで補償して上記LMS演算回路5に信号を出力する回路に形成されている。
【0024】
また、上記LMS演算回路5では、上記各入力信号処理回路9a,9bからの各エラー信号と、上記CLM0 回路4a,4bで補償された各プライマリソースPs とから、周知のLMSアルゴリズムにより前記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する回路に構成されている。ここで、上記スピーカ7と接続された上記適応フィルタ3のフィルタ係数W(n) の係数更新は次式により行われる。更新後のi番目のフィルタ係数をWi(n+1),更新するi番目のフィルタ係数をWi(n),ステップサイズをμ,No.Lの上記各エラーマイク8a,8b(上記エラーマイク8aをNo.1、上記エラーマイク8bをNo.2とする)からの信号をeL(n),上記各補償係数CLM0 のi番目の係数をCLiM0,プライマリソースPs のi個前の値をx(n−1) とすると、
Wi(n+1)=Wi(n)−μΣeL(n)・ΣCLiM0・x(n−1) ・・・・・・(1)
さらに、上記システム同定回路10は、後述する補償係数決定手順に従い、上記補償係数C110 および上記補償係数C210 を演算し、上記各CLM0 回路4a,4bに上記補償係数C110 および上記補償係数C210 を設定する回路で、主に、ランダムノイズ発生部11と、CLM0 適応フィルタ12と、CLM0 タップ数・タップ値演算回路13と、CLM0 メモリ部14と、システム同定スイッチ部15および加算部16等とから構成されている。
【0025】
上記ランダムノイズ発生部11は、上記各補償係数C110 ,C210 を求めるシステム同定の際に、デジタル信号化された所定のランダムノイズRN を発生して、前記出力信号処理回路6と、上記CLM0 適応フィルタ12と、上記CLM0 タップ数・タップ値演算回路13とに、上記ランダムノイズRN を入力するように接続されている。
【0026】
また、上記CLM0 適応フィルタ12は、上記CLM0 タップ数・タップ値演算回路13によりフィルタ係数Wc のタップ数およびタップ値が更新されるFIRフィルタで、このCLM0 適応フィルタ12に入力された上記ランダムノイズRN は、上記フィルタ係数Wc と畳み込み積和され上記加算部16に出力される。
【0027】
さらに、上記システム同定スイッチ部15は、システム同定時に、上記CLM0 タップ数・タップ値演算回路13により、前記入力信号処理回路9aあるいは前記入力信号処理回路9bのどちらか一方からの信号を、このシステム同定回路10に入力して上記加算部16に出力するようになっている。
【0028】
上記加算部16での加算結果(上記CLM0 適応フィルタ12からの信号と上記入力信号処理回路9aあるいは上記入力信号処理回路9bのどちらか一方からの信号との加算結果)は、上記CLM0 タップ数・タップ値演算回路13に出力される。
【0029】
また、上記CLM0 タップ数・タップ値演算回路13では、上記補償係数決定手順に従い、上記出力信号処理回路6→上記スピーカ7→上記スピーカ/マイク間伝達特性C11→上記エラーマイク8a→上記入力信号処理回路9a、あるいは、上記出力信号処理回路6→上記スピーカ7→上記スピーカ/マイク間伝達特性C21→上記エラーマイク8b→上記入力信号処理回路9bの経路を未知の系とし、これら2つの未知の系を係数列で表現するための必要なタップ数とタップ値とを求めるとともに、決定したタップ数とタップ値に基づき、これらの値を上記各補償係数C110 ,C210 として、上記各CLM0 回路4a,4bに設定する回路である。
【0030】
すなわち、上記補償係数決定手順に従い、システムの演算可能な範囲内での上記CLM0 適応フィルタ12の上記フィルタ係数Wc の様々なタップ数において、上記ランダムノイズRN を、上記CLM0 適応フィルタ12と上記一方の未知の系とに入力し、上記CLM0 適応フィルタ12からの信号と上記一方の未知の系からの信号との加算結果が所定の値以内に収束するように上記フィルタ係数Wc のタップ値を周知のLMS演算により求め、これらの値を上記各補償係数C110 ,C210 として、上記各CLM0 回路4a,4bに設定するのである。
【0031】
また、上記CLM0 メモリ部14には、上記補償係数C110 と上記補償係数C210 の2つの領域が確保され、上記CLM0 タップ数・タップ値演算回路13と接続されており、このCLM0 タップ数・タップ値演算回路13の演算に応じて、演算途中の補償係数C110 と補償係数C210 、あるいは、決定した補償係数C110 と補償係数C210 のRAM回路となっている。
【0032】
尚、図4中、符号Sa は車室内の消音エリアを示す。
次に、上記システム同定回路10で実行される補償係数決定手順を図3のフローチャートを基に説明する。
【0033】
まず、ステップ(以下Sと略称)101で、出力信号処理回路6→スピーカ7→スピーカ/マイク間伝達特性C11→エラーマイク8a→入力信号処理回路9aの経路(C11のパス)について、システム同定を実行する。すなわち、システム同定スイッチ部15を、上記入力信号処理回路9aからの信号が、このシステム同定回路10に入力され上記加算部16に出力されるように動作させた後、ランダムノイズ発生部11から上記C11のパスと、CLM0 適応フィルタ12およびCLM0 タップ数・タップ値演算回路13とに、上記ランダムノイズRN を入力し、上記CLM0 適応フィルタ12からの信号と上記C11のパスからの信号との加算部16での加算結果が最小となるように、上記CLM0 タップ数・タップ値演算回路13で、上記CLM0 適応フィルタ12のフィルタ係数Wc のタップ値を周知のLMS演算により更新する。
【0034】
次いで、S102に進み、上記S101の上記C11のパスについてのシステム同定の結果が、予め設定しておいた値(収束判定エラー量)以内に収束しているか否か判定し、収束している場合にはS103に進み、収束していない場合にはS104に進む。
【0035】
そして、上記S102での判定の結果、収束していると判定されてS103に進むと、上記CLM0 適応フィルタ12のフィルタ係数Wc のタップ数を予め設定しておいた数量(例えば、10タップ)減らし、再び、上記C11のパスについてのシステム同定を実行し、S105に進む。
【0036】
S105に進むと、上記S103の上記C11のパスについてのシステム同定の結果が、上記収束判定エラー量以内に収束しているか否か判定し、収束している場合にはS103に戻り、収束していない場合にはS104に進む。
【0037】
すなわち、上記S101〜上記S105は、システム同定の結果が、収束判定エラー量以内に収束しなくなるまで上記フィルタ係数Wc のタップ数を減らしていく手順となっている。
【0038】
そして、上記S102あるいは上記S105で、システム同定の結果が予め設定しておいた値以内に収束せず、S104に進むと、上記フィルタ係数Wc のタップ数を予め設定しておいた数量(上記S103で減ずるタップ数より小さな値で、例えば、2タップ)増加し、再び、上記C11のパスについてのシステム同定を実行し、S106に進む。
【0039】
上記S106に進むと、上記S104の上記C11のパスについてのシステム同定の結果が、上記収束判定エラー量以内に収束しているか否か判定し、収束している場合には、以上の手順で決定したタップ数とタップ値を補償係数C110 としてS107に進み、収束していない場合にはS104に戻り、上記C11のパスについてのシステム同定を繰り返す。
【0040】
上記S106で、収束していると判定されS107に進むと、システムの全CLMのパスについてのシステム同定が終了したか否か(全ての補償係数CLM0 のタップ数とタップ値の決定が終了したか否か)の判定が行われる。すなわち、これまでの例では、C11のパスについて説明してきたが、このS107で、上記出力信号処理回路6→上記スピーカ7→上記スピーカ/マイク間伝達特性C21→エラーマイク8b→入力信号処理回路9bの経路(C21のパス)のシステム同定が終了したか否かが判定され、終了していない場合には、前記S101に戻り、C21のパスについて、上記システム同定スイッチ部15を、上記入力信号処理回路9bからの信号が、このシステム同定回路10に入力され上記加算部16に出力されるように動作させた後、上記C11のパスの補償係数C110 と同様に、タップ数とタップ値を定め、補償係数C210 を決定する。
【0041】
そして、上記S107で、システムの全CLMのパスについてのシステム同定(全ての補償係数CLM0 のタップ数とタップ値の決定)が終了していると判定されると、S108に進み、全ての補償係数CLM0 のタップ数が、システムが演算可能な総タップ数(例えば、120タップ)であるか否かの判定が行われ、演算可能な総タップ数である場合(例えば、補償係数C110 が30タップで補償係数C210 が90タップである場合)には、S109に進み、以上のシステム同定によって決定された補償係数C110 と補償係数C210 とをCLM0 メモリ部14に記憶し、この補償係数決定手順を終了し、一方、演算可能な総タップ数とならない場合(例えば、補償係数C110 が40タップで補償係数C210 が100タップである場合)には、S110に進み、上記収束判定エラー量を変更して、再び、S101から、この補償係数決定手順を実行する。尚、上述の例では、補償係数C110 を求めた後、補償係数C210 を求めるようにしているが、補償係数C210 を求めてから補償係数C110 を求めるようにしても良い。
【0042】
以上のように、各補償係数CLM0 のタップ数とタップ値とを、それぞれの補償係数CLM0 が表現する経路について、演算可能な総タップ数の範囲内で最適な値に決定して、各CLM0 回路4a,4bに設定することにより、各受聴点における消音性能を最適に保つことが可能となる。
【0043】
次に、本実施例の車室内騒音低減装置1の動作について説明する。
まず、システム同定回路10で、上述の補償係数決定手順に従い、補償係数C110 と補償係数C210 とを決定し、各CLM0 回路4a,4bに設定しておく。
【0044】
そして、エンジンの振動騒音が、エンジンからマウント(いずれも図示せず)等を伝達して車内音となり、また、吸気や排気の音等も車室内に伝播すると、これらのエンジン関連振動騒音は、周波数領域では、いずれも0.5×n(n:整数)次成分の周波数スペクトルにより主に構成されており、各々の振動源に対する車体伝達特性が乗ぜられて各受聴点(前部座席の乗員の耳位置に近接する位置と後部座席の乗員の耳位置に近接する位置)に達する。
【0045】
一方、エンジンのイグニッションコイル(共に図示せず)へのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に入力され、波形成形回路2aと間引回路2bにより、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、適応フィルタ3と上記CLM0 回路4a,4bとに出力される。
【0046】
上記適応フィルタ3に入力されたプライマリソースPs は、この適応フィルタ3のフィルタ係数W(n) との畳み込み積和により、振動騒音を相殺するキャンセル信号として出力信号処理回路6を介しスピーカ7に出力され、このスピーカ7から上記各受聴点における振動騒音に対する相殺音として出力される。このとき、上記スピーカ7から前部座席の乗員の耳位置に近接する位置の受聴点への相殺音は、スピーカ/マイク間伝達特性C11を受けて、また、上記スピーカ7から後部座席の乗員の耳位置に近接する位置の受聴点への相殺音は、スピーカ/マイク間伝達特性C21を受けて上記各受聴点に達する。
【0047】
このため、上記各受聴点では、上記エンジン関連の振動騒音と上記相殺音とが干渉して振動騒音が低減させられると同時に、上記各受聴点の近傍に配設されているエラーマイク8a,8bにより、振動騒音と相殺音との干渉の結果が検出され、エラー信号として、入力信号処理回路9a,9bを介してLMS演算回路5に入力される。
【0048】
また、上記各CLM0 回路4a,4bに入力されたプライマリソースPs は、前記システム同定回路10により、予め設定されている補償係数C110 と補償係数C210 とそれぞれ畳み込み積和され、上記LMS演算回路5に出力される。
【0049】
そして、上記LMS演算回路5で、上記入力信号処理回路9a,9bからのエラー信号と、上記各CLM0 回路4a,4bで補償されたプライマリソースPs とから、LMSアルゴリズムにより上記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する。
【0050】
このように、本実施例では、適応フィルタから出力され、LMS演算回路に入力される各パスに対応する各補償係数CLM0 を、演算可能な範囲で必要なタップ数・タップ値を用いてそれぞれ最適に表現し、これらの補償係数CLM0 を用いて消音制御の演算を行うようにしているため、システムのDSPが従来の演算能力であっても、各受聴点における消音性能を安定して最適に保つことができる。
【0051】
尚、本実施例では、プライマリソースPs としてIg パルスを用いるように構成しているが、他のエンジン関連の振動騒音と相関の高い信号(例えば、燃料噴射パルスTi 等)をプライマリソースPs としても良い。
【0052】
また本実施例では、スピーカ1個、エラーマイク2個の2つのパスを有するLMSアルゴリズムを利用した消音システムの例について説明したが、他のMEFX−LMSアルゴリズムを利用した消音システム(例えば、マイク4個、スピーカ4個で16個のパスを有する)等のシステム)についても適用可能である。
【0053】
【発明の効果】
以上、説明したように本発明によれば、キャンセル信号がキャンセル信号合成手段から出力され誤差信号として戻ってくるまでの経路に応じた車内伝達特性を表現するタップ数とタップ値とを演算能力範囲内で算出し補償係数として設定する補償係数設定手段を車室内騒音低減装置に備えたので、上記各経路毎に各補償係数をそれぞれ的確に表現して、従来の演算能力であっても、各受聴点における消音性能を最適に保つことが可能となる。
【図面の簡単な説明】
【図1】車室内騒音低減装置のシステム概略図
【図2】入力信号変換回路の説明図
【図3】補償係数決定手順を示すフローチャート
【図4】騒音低減を行う車室内の平面図
【図5】図4のスピーカ/マイク間の車内伝達特性の説明図
【図6】一般的なシステム同定の概念説明図
【符号の説明】
1 車室内騒音低減装置
3 適応フィルタ(キャンセル信号合成手段)
4a CLM0 回路(入力信号補償手段)
4b CLM0 回路(入力信号補償手段)
5 LMS演算回路(フィルタ係数更新手段)
6 キャンセル信号判定回路(キャンセル信号比較手段)
7 スピーカ(相殺音発生手段)
8a エラーマイク(誤差信号検出手段)
8b エラーマイク(誤差信号検出手段)
10 システム同定回路(補償係数設定手段)
CLM スピーカ/マイク間伝達特性
CLM0 補償係数
Ps プライマリソース(騒音振動源信号)
W(n) フィルタ係数
Claims (1)
- エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成するキャンセル信号合成手段と、
上記キャンセル信号を騒音に対する相殺音として音源から発生する相殺音発生手段と、
複数の受聴点を設定し、これら各受聴点における騒音低減状態を誤差信号として検出する複数の誤差信号検出手段と、
上記キャンセル信号が上記キャンセル信号合成手段から出力され上記複数の誤差信号として戻ってくるまでの複数の経路に対応する各車内伝達特性を表現する各補償係数のタップ数を、全ての補償係数のタップ数の総和を予め設定しておいた値の範囲内に制限して、それぞれの補償係数毎に設定すると共に、上記各補償係数のタップ値を設定する補償係数設定手段と、
上記騒音振動源信号を上記補償係数設定手段で設定した上記各補償係数と合成する入力信号補償手段と、
上記入力信号補償手段からの各信号と上記複数の誤差信号とに基づき上記適応フィルタのフィルタ係数を更新するフィルタ係数更新手段とを備えた車室内騒音低減装置において、
上記補償係数設定手段は、第一の補償係数のタップ数とタップ値を予め設定した収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定し、上記第一の補償係数とは異なる他の補償係数のタップ数とタップ値を上記収束判定エラー量に対するシステム同定の収束状態により上記タップ数を増減処理して設定して、全ての補償係数のタップ数とタップ値の設定を行った後に、上記全ての補償係数のタップ数の総和を求め、該タップ数の総和が上記予め設定しておいた値の範囲を越える場合には、上記収束判定エラー量を変更して再び上記各補償係数のタップ数とタップ値の設定を行うことを特徴とする車室内騒音低減装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03122294A JP3621714B2 (ja) | 1994-03-01 | 1994-03-01 | 車室内騒音低減装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03122294A JP3621714B2 (ja) | 1994-03-01 | 1994-03-01 | 車室内騒音低減装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07239691A JPH07239691A (ja) | 1995-09-12 |
JP3621714B2 true JP3621714B2 (ja) | 2005-02-16 |
Family
ID=12325413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03122294A Expired - Fee Related JP3621714B2 (ja) | 1994-03-01 | 1994-03-01 | 車室内騒音低減装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3621714B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6466616B1 (en) | 1999-07-02 | 2002-10-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Power efficient equalization |
-
1994
- 1994-03-01 JP JP03122294A patent/JP3621714B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07239691A (ja) | 1995-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3410141B2 (ja) | 車室内騒音低減装置 | |
EP0903726B1 (en) | Active acoustic noise and echo cancellation system | |
JP4077383B2 (ja) | 能動型振動騒音制御装置 | |
JP5189307B2 (ja) | 能動型騒音制御装置 | |
JPH06230788A (ja) | 車室内騒音低減装置 | |
JP4881913B2 (ja) | 能動型騒音制御装置 | |
JPH0720884A (ja) | 車室内騒音低減装置 | |
JP3410129B2 (ja) | 車室内騒音低減装置 | |
JP3621714B2 (ja) | 車室内騒音低減装置 | |
JPH06332470A (ja) | 車室内騒音低減装置 | |
JPH0651787A (ja) | 能動型消音装置 | |
JP2000172281A (ja) | 車室内音制御装置 | |
JPH0883083A (ja) | 車室内騒音低減装置 | |
JP3621718B2 (ja) | 車室内騒音低減装置 | |
JP3621719B2 (ja) | 車室内騒音低減装置 | |
JP3384493B2 (ja) | 車室内こもり音低減装置 | |
JPH0895579A (ja) | 車室内騒音低減装置 | |
JP3674963B2 (ja) | 能動型騒音制御装置及び能動型振動制御装置 | |
JPH09198053A (ja) | 消音装置 | |
JP3544677B2 (ja) | 車室内こもり音低減装置 | |
JPH07168582A (ja) | 車室内騒音低減装置 | |
JPH05333880A (ja) | 車両用能動型騒音制御装置 | |
JP3122192B2 (ja) | 能動型騒音制御装置及び適応騒音制御方法 | |
JPH069298U (ja) | デジタルサウンドプロセッサの自動調整装置 | |
JPH07325586A (ja) | 車室内騒音低減装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041119 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |