[go: up one dir, main page]

JP3619098B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP3619098B2
JP3619098B2 JP2000003007A JP2000003007A JP3619098B2 JP 3619098 B2 JP3619098 B2 JP 3619098B2 JP 2000003007 A JP2000003007 A JP 2000003007A JP 2000003007 A JP2000003007 A JP 2000003007A JP 3619098 B2 JP3619098 B2 JP 3619098B2
Authority
JP
Japan
Prior art keywords
solar cell
parallel
output
cell module
rectangular plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000003007A
Other languages
Japanese (ja)
Other versions
JP2000150947A (en
Inventor
勉 村上
明治 高林
浩史 山本
信善 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19136392A external-priority patent/JP3201540B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000003007A priority Critical patent/JP3619098B2/en
Publication of JP2000150947A publication Critical patent/JP2000150947A/en
Application granted granted Critical
Publication of JP3619098B2 publication Critical patent/JP3619098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Description

【0001】
【産業上の利用分野】
本発明は太陽電池モジュールに係り、特に家屋の屋根等の建築物あるいは構造物に取り付ける太陽電池モジュールに関するものである。
【0002】
【従来の技術】
近年、深刻なエネルギー問題が叫ばれるなか、太陽エネルギーは、石油、石炭等の化石エネルギーのように枯渇せず、また大気汚染、炭酸ガス発生等環境を破壊しない、いわゆるクリーンエネルギーの一つとして注目を集めている。
【0003】
なかでも太陽電池発電は、将来、火力、原子力、ヂーゼル発電といった在来の方式に代わる代替エネルギーとして期待されている。
【0004】
この太陽電池の材質としては様々なものがあるが、シリコンを用いたものが多数市販されており、これらは大別して単結晶シリコン、多結晶シリコンを用いた結晶系シリコン太陽電池と、非晶質(アモルファス)シリコン太陽電池に分けられる。
【0005】
結晶系シリコン太陽電池は、光(太陽)エネルギーを電気エネルギーに変換する性能を表わす変換効率が、非晶質シリコン太陽電池に比して高いが、反面、素子自体が応力に弱く割れ易いため、強固な封止構造やフレームを必要とする。また、現状では、単位電力量当りのコストが高いという特徴がある。
【0006】
一方非晶質シリコン太陽電池は、現在のところ変換効率が結晶系シリコン太陽電池より低いが、光吸収性が高く、比較的厚さの薄い膜の堆積によって太陽電池を形成可能であることや、アモルファスの性質を生かし、基板としてガラスやステンレススチールや、さらにポリイミド系シート等様々な材料が選択できること、さらに大面積化が容易であること等の特徴がある。更に製造コストも結晶系に比して比較的低くできる可能性があると言われており、将来、一般家庭のレベルから大規模な発電所レベルまで広範囲に渡る普及が予想されている。
【0007】
現在市販されている太陽電池モジュールは、電卓等の部品として用いられるものを除くと、大別してその外形が10cm角程度の比較的小型のものと30cm以上の大型のものとに分けられる。
【0008】
小型のものは屋外、屋内用のものがあるが、大型のものは主として屋外での使用が目的であり、地上あるいは建築物の屋根上や、壁面に設置して使用されることが多い。特に建築物の屋根上に設置される場合、現在まで多くの場合、屋根上に一旦金属製の架台を組み、その架台上に太陽電池モジュールを設置して使用するのが通例であった。
【0009】
【発明が解決しようとする課題】
しかしながら、前述した屋根上に太陽電池を設置するための架台は、安全上十分な強度をもった構造が必要とされ、さらに建築物に関する法律上の規定を満足することが要求されるため、架台本体の価格や設置工費が大きくなるという問題がある。
【0010】
また、現状では、架台として金属製の骨組みを組み合わせた構造体を屋根上に設置して用いるものが多いが、これらは景観を考えたデザインのものは少なく、地域の景観を乱す原因になるという問題がある。また複数個の太陽電池モジュールを屋根上に設置する場合、個々の出力ケーブルのモジュール外部での配線の接続方法が、システムとして考えられていない場合が多く、そのため出力ケーブルの接続が煩雑となり、これによっても景観を損ねるという問題がある。
【0011】
これらの問題を解決する方法のひとつとして、屋根材に直接太陽電池を取り付ける方法が考えられている。この方法は、架台が不要になる点で有効ではあるが、出力ケーブル及び出力接続部材を、雨水や湿気その他の外的環境から保護するための保護カバーを必要とするものが多い。しかしながら、屋根との視覚的な違和感のないように考えてデザインされた保護カバーは少なく、やはり景観を損ねてしまうという問題がある。
【0012】
さらに、この保護カバーが太陽電池モジュールの受光面よりも突出していると、保護カバーの作り出す陰によって、新たな問題が発生することがある。
【0013】
図7は従来の屋根上に設置された太陽電池の一例を示す平面図である。図において、501は並列接続された太陽電池素子の最大単位(以下、並列太陽電池素子と言う)であり、本従来例では13枚の並列太陽電池素子501を直列に接続して太陽電池パネル21とし、この太陽電池パネル1を8枚、更に直列に接続して、1つの太陽電池モジュールとしている。
【0014】
図において、23はこれらの太陽電池パネル21の接続部を保護する継目カバー部材(保護カバー)であり、30はこの継目カバー部材23により入射光が遮られて生じた陰である。図に示されるように本例では、並列太陽電池素子501は、その長手方向を継目カバー部材23の長手方向と平行な方向に配列して、電気的に直列に接続されて構成されている。ところが、この配列方法では、図に示されるように並列太陽電池素子501の内、5枚の全体が陰に入ってしまい、その部分の並列太陽電池素子501からの出力は、ほとんど期待出来ない。その結果、入射光量の低下による出力電流の減少のみならず、出力電圧が減少する。このため例えば、太陽電池の出力を、直接、蓄電池に充電しようとするような場合、出力電圧が蓄電池の充電電圧を越えない為、太陽電池モジュール全体の出力は0でないにもかかわらず、充電されないという問題が生じる。
【0015】
図8は、このような太陽電池モジュールによって蓄電池に充電する場合の概略構成を示す図であるが、仮に1枚の太陽電池パネル21の出力が25W、16Vであるとすると、8枚で16×8=128Vとなり、これは120V用の蓄電池を充電するには十分な電圧となる。ところが、前述の図7に示したように、13枚の並列太陽電池素子501の内の5枚が出力0Vとなると、1枚の太陽電池パネル1の出力は、16×(13−5)/13=約9.85Vに低下してしまう。これが8枚の太陽電池パネル21に対して発生したとすると、本来128Vの電圧が期待されるところに、約9.85×8=78.8Vしか出力されず、120V用の蓄電池の充電は不可能となってしまう。
そこで、本発明は、並列太陽電池素子501の1枚分の面積全体が覆われることはないようにして、出力電圧の減少を抑えることを課題とする。
【0016】
【課題を解決するための手段】
上述した課題を解決するために、本発明の太陽電池モジュールは、太陽電池パネルを搭載した複数の矩形板状部材と、隣接する前記矩形板状部材の結合部及び前記太陽電池の接続部の保護を行なう継目カバー部材と、前記継目カバー部材を押さえる複数の継目カバー押え部材とを有し、前記太陽電池パネルを構成する、電気的に並列接続された太陽電池素子の最大単位の長手方向を、前記継目カバー部材の長手方向と実質的に垂直な方向になるように配列し、該最大単位を電気的に直列接続したことを特徴とする。
【0017】
また、前記太陽電池パネルが、少なくともその表面保護材と裏面保護材と太陽電池素子とを接着剤を用いて真空ラミネート加工して構成されたことを特徴とする。また、前記太陽電池パネルを、接合部材及び/又は接着剤によって、直接前記矩形板状部材に固定したことを特徴とする。
【0018】
【作用】
本発明の太陽電池モジュールは、その太陽電池を構成する電気的に並列接続された太陽電池素子の最大単位(並列太陽電池素子)の長手方向を、継目カバー部材の長手方向とは、実質的に垂直になる方向に配列して形成されているため、継目カバー部材による陰が生じても、並列太陽電池素子単位の1枚全体を覆い隠すことは少なくなる。
【0019】
また、接続部が継目カバー部材の内部に格納されるため、デザイン上も美しくまとまる。また太陽電池パネルを真空ラミネート加工により一体的に形成することにより、ハトメ等の接合部材や接着剤を用いて矩形板状部材への固定が容易にできる。
【0020】
【実施例】
以下、本発明の太陽電池モジュールの実施例についてを図面を参照して詳しく説明する。
(実施例1)
以下、本発明の実施例について説明する。但し、本発明は、以下に述べた太陽電池の製法、構造、外形、工程、手順、及び屋根材の材質、構造、外形、工程、手順に限られるものではない。
【0021】
図1は本実施例の太陽電池モジュールの部分的な斜視図であり、図において、501は電気的に並列接続された太陽電池素子の最大単位(並列太陽電池素子)である。また21はこれらの並列太陽電池素子501を直列に接続して構成した太陽電池パネルであり、また22は太陽電池パネル21を載置するための矩形板状部材であり、23は各太陽電池パネル21の接続部を保護するための継目カバー部材である。また24は継目カバー押え部材、25は接合部材としてのハトメ、26は出力ケーブル、27はコネクター等の出力接続部材である。
【0022】
また図2は、本実施例の太陽電池モジュールの全体を示す平面図であり、図2に示すように本実施例の太陽電池モジュールは、電気的に並列接続された最大単位である並列太陽電池素子501を、その長手方向を継目カバー部材23の長手方向とは実質的に垂直な向きに13枚配列し、この13枚を電気的に直列に接続して1枚の太陽電池パネル21を構成し、更に8枚の太陽電池パネル21を電気的に直列に接続して構成されている。
【0023】
本実施例では、図2に示されるように、継目カバー部材23による陰30が生じても、並列太陽電池素子501の1枚分の面積全体が覆われることはない。そのため、それぞれの並列太陽電池素子501の出力電流は減少しても、出力電圧が減少することはなく、全体として期待どおりの出力電圧を得ることができる。
【0024】
本実施例に用いる太陽電池としては、非晶質太陽電池素子を用い、ステンレススチール基板上に非晶質シリコン薄膜をRFグロー放電法を用いて、基板側からn,i,p,n,i,pの順に堆積し、透明電極を蒸着した後、小部分に分離し、櫛形電極を付け、各小部分を電気的に並列接続し、縦約100mm、横約300mmの並列太陽電池素子501とした。次にこれを、縦方向に13枚、約1mmの間隔で隣接するように配列させ、銅製テープを用いて電気的に直列接続したものを一組として太陽電池パネル21とし、これを8組作製した。
【0025】
また、本実施例では、最終的に8枚の太陽電池パネル21を電気的に直列接続することを考慮し、太陽電池を屋根材に接合した時点で、太陽電池パネル21の下側左端の素子の形成されていない部分に陰極、下側右端の同様の部分に陽極の出力端子を設置できるように、前記の銅製テープを用いて太陽電池パネル21の裏面に配線を施した。またその際、ステンレススチール製基板と銅製テープの絶縁の為、ポリエステルテープを用いた。
【0026】
また上記の太陽電池パネル21の表面及び裏面保護材として、予め表面をプラズマ処理された厚さ100μm、縦1500mm、横320mmのシート状のテドラーフィルムを、また接着剤としてシート状のEVA(エチレン・ビニル・アセテート)を用いて、約100℃で真空ラミネート加工し、一枚の太陽電池パネル21とした。
【0027】
そして太陽電池パネル21の余白部分(素子の形成されていない部分)の左右端部に出力端子を設けて、出力ケーブル26として断面積1.25mm、長さ1mの銅製のケーブルをプラス、マイナスの各出力端子に半田付けし、シリコンゴムを用いて半田付け部分を絶縁防水した。出力ケーブル26のもう一方の端には出力接続部材27としてプラス側には雄型、マイナス側には雌型の100V,15Aの2Pの防水コネクタを取り付けた。こうして作製した太陽電池パネル21の一枚分の最大出力は約25Wであった。
【0028】
次に屋根材として以下のものを用意した。まず矩形板状部材22は一方の表面をガルバリウム処理された鋼板製で、厚さ0.35mm、長さ3000mm、幅約350mmのものである。これを図4のように、向かい合う2辺の端から約15mm折り曲げ、短手方向の断面が「コ」の字になるようにしたものを8個用いた。
【0029】
継目カバー部材23は、矩形板状部材22と同じ材質で厚さ0.35mm、長さ3000mm、幅90mmの板状鋼板を図3(b)のように、短手方向の断面幅が約30mmの「コ」の字となるように折り曲げ、さらに長手方向の辺を端から約5mm内側へ折り曲げたものを9個用いた。但しこれらの部材の長手方向の端部は、図3(a)に示すように蓋状に形成されている。
【0030】
継目カバー押え部材24は、矩形板状部材22及び継目カバー部材23と同じ材質で厚さ0.35mm、長さ100mm、幅85mmの板状鋼板を、図5のように短手方向の断面が「コ」の字になるように両端から各々30mm折り曲げ、さらに外側へ15mm折り曲げ、さらに内側へ約5mm折り曲げたものを36個用いた。
【0031】
以下に太陽電池パネル21と矩形板状部材22の接合手順を示す。
【0032】
用意した矩形板状部材22の表面には、各々予め作製しておいた太陽電池パネル21を1枚ずつ、但し前述の並列接続された縦約10cm、横約30cmの並列太陽電池素子501の長手方向(横方向)が、矩形板状部材22の長手方向に実質的に垂直になるように配置し、矩形板状部材22の折り曲げられた部分のうち太陽電池21の出力ケーブル26にあたる部分には、図4に示すように、各々出力ケーブル26が通るだけの切り欠き601を設け、出力ケーブル26を外側に出した。
【0033】
次に裏面保護材のテドラーの表面に、市販のシリコン系接着剤を塗布して太陽電池パネル21を矩形板状部材22の表面に接着した後、さらにラミネートされた太陽電池パネル21の太陽電池素子以外の部分の四隅に、直径約10mmのハトメ25を用いて、矩形板状部材22と太陽電池パネル21を接合した。
【0034】
これらの屋根材及び太陽電池を、屋根を模した縦3m、横15mの傾斜した木製の板上に、矩形板状部材22の長手方向が屋根の上下方向に一致し、折り曲げた部分が上方を向き、隣接する矩形板状部材22と各々25mmの間隔をもつように配置して固定した。その後それらの間隔部分の長手方向に約1000mmに一個の割合で継目カバー押え部材24を配置し、固定した。
【0035】
太陽電池の出力接続部材27として雄型及び雌型防水コネクタは、隣接する矩形板状部材22の間隔部分に配置し、直列接続のために雄型と隣の雌型、雌型と隣の雄型をはめ込んだ。
【0036】
最後にこれらの継目カバー押え部材24には、前述の継目カバー部材23が上方からはめ込まれ、屋根材の継目が形成され、本発明の太陽電池モジュールが完成した。図6は、この継目部分の構成を示す断面図である。
【0037】
なお、本実施例の部材の上述した長さ、厚さ等の数値は、特にこれらに限られるものではない。
(実験例1)
実施例1で作製した本発明の太陽電池素子の配列を有する太陽電池モジュールを用いて、本発明の並列太陽電池素子501の配列の有効性を確認する実験を行なった。本実験例に用いた太陽電池素子は、実施例1と同様にステンレススチール基板上に非晶質シリコン薄膜をRFグロー放電法を用いて基板側からn,i,p,n,i,pの順に堆積し、透明電極を蒸着した後、小部分に分離し、櫛形電極を付け、それぞれの小部分を電気的に並列接続して、縦約100mm、横300mmの並列太陽電池素子501としたものを用いた。
【0038】
本実験例においては、前記の並列太陽電池素子の単位501を、図2に示すように、その長手方向が継目カバー部材23の長手方向に、実質的に垂直になるようにして配列し、合計13枚を電気的に直列接続し、これを一組として8組用意した。
【0039】
以下、上記の太陽電池素子の真空ラミネートの材料、手順と、出力端子、出力ケーブル及び防水コネクタの材質、取り付けは実施例1と同様とした。各々の太陽電池パネル21の出力は約25Wだった。
【0040】
本実験は、太陽の高度が一年を通じて最も低く、従って物体の作る影がもっとも長い12月に行なった。まず実施例1の屋根を模した木製板及び太陽電池モジュールを水平面に対して30度傾斜し、かつ太陽電池が真南を向いた状態で、周囲に障害物のない平地に設置した。そして実施例1で直列接続した太陽電池の出力を、図8に示すような逆流防止手段を備えた120V用蓄電池システムに接続して、充電される電圧及び電流を常時測定記録した。同時に、今回用いた個々の太陽電池パネル21を構成する縦約10cm、横約30cmの並列太陽電池素子501が、継目カバー部材23の作る影によって、どの程度覆われるかを目視で観察した。
【0041】
その結果、前述のいずれの並列太陽電池素子501も継目カバー部材23の作る影によって1枚分の面積が完全に覆われることは観測されず、また、太陽電池の出力が急激に著しく減少することも観測されず、当初の目的が達せられた。
(比較例1)
実験例1に対する比較例として、並列太陽電池素子501の配列が本発明の配列とは異なる太陽電池モジュールを試作し、実験例1と同様の実験を行なった。この実験では、個々の太陽電池パネル21の電気的に並列接続された太陽電池素子の最大単位501の長手方向を、継目カバー部材23の長手方向に平行な方向に一致させて配置した。
【0042】
本比較例に用いた並列太陽電池素子501は、実験例1で用いたものと同じものを用い、図7に示すように、その長手方向が継目カバー部材23の長手方向に平行になるように5枚並べ、その側方に同様に4枚、さらにその側方に同様に4枚、各々の間隔が約1mmとなるように、合計13枚配列し、これら13枚を電気的に直列接続して太陽電池パネル21とし、これを一組として8組用意した。
【0043】
以下、上記の太陽電池素子の真空ラミネートの材料、手順と、出力端子、出力ケーブル及び防水コネクタの材質、取り付けは実験例1と同様とした。各々の太陽電池パネル21の出力は約25Wだった。また屋根材も実験例1と同様のものを同数用いた。
【0044】
これらの屋根材及び太陽電池を、実験例1と同様の屋根を模した木製板上に、実験例1と同様の方法で固定し、太陽電池パネル8枚を直列接続し、最後に継目カバー23をはめ込んで太陽電池モジュールを完成させた。
【0045】
次に、この太陽電池モジュールを用いて、実験例1と同様に、12月に、屋根を模した木製板及び太陽電池モジュールを、水平面に対して30度傾斜し、かつ太陽電池が真南を向いた状態で、周囲に障害物のない平地に設置した。
【0046】
そして本比較例で作製した太陽電池モジュールの出力を、実験例1と同じ、図8に示す逆流防止手段を備えた120V用蓄電池システムに接続し、充電される電圧及び電流を常時測定記録した。また同時に、個々の並列太陽電池素子の単位501の受光面にできる継目カバー23による影のかかり方を目視で観察した。
【0047】
その結果、太陽南中時前後の約2時間を除いて、継目カバー23の影は、各々の矩形板状部材22上の太陽電池パネル21の1枚につき、少なくとも1枚以上の前記の並列太陽電池素子の単位501を完全に覆っており、それに対応して、蓄電池に充電される電力が低下し、さらに充電が行われない場合も観測された。
【0048】
これは前記の並列太陽電池素子の単位501が、1枚あるいは複数枚完全に継目カバー部材23の作った影に覆われたことにより、出力電流のみならず出力電圧が著しく低下し、蓄電池システムの充電電圧を満足することが困難となったことを示すものである。
【0049】
【発明の効果】
以上詳細に説明したように、本発明の太陽電池モジュールによれば、太陽電池モジュールを設置する架台が不要となるため、架台費用が不要となるのみでなく、屋根上への設置作業が簡略化し、作業者の安全性も向上する。
【0050】
さらに架台が不要になることと合わせて、出力ケーブル及び出力接続部材が屋根材の継目カバー部材の内側に収納されることによって、デザイン的に美しくまとまり、地域の景観に及ぼす悪影響も除去することができる。
【0051】
また出力ケーブル及び出力接続部材が屋根材の継目カバー部材の内側に収納されることは、雨水や積雪等の外的環境からの出力ケーブル及び出力接続部材の長期的な保護が可能であり、漏電や感電、断線の防止に役立つ。
【0052】
また各々の太陽電池において、電気的に並列接続された太陽電池素子の最大単位(並列太陽電池素子)の長手方向を、屋根材の継目カバー部材の長手方向に実質的に垂直な方向に配置することによって、屋根材の継目カバー部材が作り出す影が、個々の並列太陽電池素子の少なくとも一枚の受光面を完全に覆い、結果として太陽電池モジュールの出力が著しく減少することを防ぐことができる。
【0053】
さらに前記の太陽電池において、少なくとも表面保護材と裏面保護材と非晶質シリコン太陽電池素子とを接着剤を用いて真空ラミネート加工したことにより、例えば裏面保護材の表面に接着剤を塗布したり、太陽電池素子以外の余白部分にハトメ等を用いることができ、前記矩形板状部材に接合することが容易になるという効果が得られる。
【0054】
加えて、この真空ラミネート加工により、外的環境に対する耐久性を十分満足し、かつ強固なフレームを必要としない為、太陽電池の生産工程を減少させ、結果として生産性の向上、生産コストの低下が可能となる効果が得られる。
本発明によれば、電気的に並列接続された太陽電池素子の最大単位の長手方向を、前記継目カバー部材の長手方向と実質的に垂直な方向になるように配列することで、並列太陽電池素子501の1枚分の面積全体が覆われることはないようにして、出力電圧の減少を抑えるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例の屋根材と太陽電池の設置状態を示した概略斜視図である。
【図2】本発明の実施例の太陽電池モジュールの概略平面図である。
【図3】実施例で用いた屋根材のうち、継目カバー部材の外形及び長手方向に垂直な面の断面を示した概略斜視図である。
【図4】実施例で用いた屋根材のうち、矩形板状部材の外形を示した概略斜視図である。
【図5】実施例で用いた屋根材のうち、継目カバー押え部材の外形を示した概略斜視図である。
【図6】実施例で用いた各屋根材、及び各太陽電池の接続箇所の構造を示す概略断面図である。
【図7】従来例の配列による太陽電池モジュールを示す概略平面図である。
【図8】太陽電池モジュールを用いた蓄電池充電システムの一例を説明するための図である。
【符号の説明】
21 太陽電池パネル
22 矩形板状部
23 継目カバー部
24 継目カバー押え部
25 接合部材(ハトメ
26 出力ケーブ
27 出力接続部材(コネクタ
28 屋根または構造
30 継目カバー部材による
501 電気的に並列接続された最大単位の太陽電池素子(並列太陽電池素子
601 出力ケーブルを通す切り欠き
[0001]
[Industrial application fields]
The present invention relates to a solar cell module, and more particularly to a solar cell module attached to a building or structure such as a roof of a house.
[0002]
[Prior art]
In recent years, when serious energy problems have been screamed, solar energy is attracting attention as one of the so-called clean energy that does not deplete like fossil energy such as oil and coal and does not destroy the environment such as air pollution and carbon dioxide generation. Collecting.
[0003]
In particular, solar power generation is expected as an alternative energy to replace conventional methods such as thermal power, nuclear power, and diesel power generation in the future.
[0004]
There are various types of materials for this solar cell, but many of those using silicon are commercially available. These are roughly divided into crystalline silicon solar cells using single crystal silicon and polycrystalline silicon, and amorphous silicon cells. It can be divided into (amorphous) silicon solar cells.
[0005]
Crystalline silicon solar cells have higher conversion efficiency, which represents the ability to convert light (solar) energy into electrical energy, compared to amorphous silicon solar cells, but the elements themselves are vulnerable to stress and are susceptible to cracking, A strong sealing structure and frame are required. In addition, there is a feature that the cost per unit power is high at present.
[0006]
On the other hand, amorphous silicon solar cells have a lower conversion efficiency than crystalline silicon solar cells at present, but have high light absorption and can form solar cells by depositing a relatively thin film, Taking advantage of the amorphous nature, various materials such as glass, stainless steel, and polyimide-based sheets can be selected as the substrate, and the area can be easily increased. Furthermore, it is said that there is a possibility that the manufacturing cost can be made relatively lower than that of the crystal system, and in the future, it is expected to spread over a wide range from the level of ordinary households to the level of large power plants.
[0007]
The solar cell modules currently on the market, excluding those used as parts such as calculators, are roughly classified into relatively small ones having a 10 cm square shape and large ones having a size of 30 cm or more.
[0008]
The small ones are for outdoor and indoor use, but the large ones are mainly intended for outdoor use, and are often installed on the ground or on the roof of buildings or on wall surfaces. In particular, when installed on the roof of a building, in many cases, it has been usual to assemble a metal base on the roof once and install and use a solar cell module on the base.
[0009]
[Problems to be solved by the invention]
However, the above-mentioned platform for installing solar cells on the roof is required to have a structure with sufficient strength for safety and to satisfy the legal regulations regarding buildings. There is a problem that the price of the main body and the installation cost are increased.
[0010]
Also, at present, there are many things that use a structure that combines a metal framework on the roof as a pedestal, but there are few things that are designed with the landscape in mind, and it will cause the local landscape to be disturbed There's a problem. In addition, when multiple solar cell modules are installed on the roof, the connection method of the wiring of each output cable outside the module is often not considered as a system, which makes the connection of the output cable complicated. There is also a problem of damaging the landscape.
[0011]
As a method for solving these problems, a method of directly attaching a solar cell to a roof material is considered. Although this method is effective in that a frame is not required, many methods require a protective cover for protecting the output cable and the output connecting member from rainwater, moisture and other external environments. However, there are few protective covers that are designed so that there is no visual discomfort with the roof.
[0012]
Furthermore, if this protective cover protrudes beyond the light receiving surface of the solar cell module, a new problem may occur due to the shade created by the protective cover.
[0013]
FIG. 7 is a plan view showing an example of a solar cell installed on a conventional roof. In the figure, reference numeral 501 denotes a maximum unit of solar cell elements connected in parallel (hereinafter referred to as a parallel solar cell element). In this conventional example, 13 parallel solar cell elements 501 are connected in series to form a solar cell panel 21. 8 solar cell panels 1 are further connected in series to form one solar cell module.
[0014]
In the figure, reference numeral 23 denotes a seam cover member (protective cover) for protecting the connection portions of these solar cell panels 21, and 30 is a shade generated by blocking incident light by the seam cover member 23. As shown in the figure, in this example, the parallel solar cell elements 501 are configured such that their longitudinal directions are arranged in a direction parallel to the longitudinal direction of the joint cover member 23 and are electrically connected in series. However, in this arrangement method, as shown in the figure, five of the parallel solar cell elements 501 are shaded, and almost no output from the parallel solar cell element 501 can be expected. As a result, not only the output current is reduced due to a decrease in the amount of incident light, but also the output voltage is reduced. For this reason, for example, when the output of the solar cell is to be directly charged to the storage battery, the output voltage does not exceed the charge voltage of the storage battery, so the output of the entire solar cell module is not charged even though it is not zero. The problem arises.
[0015]
FIG. 8 is a diagram showing a schematic configuration when a storage battery is charged by such a solar cell module. If the output of one solar cell panel 21 is 25 W and 16 V, 8 × 16 × 8 = 128V, which is a voltage sufficient to charge a 120V storage battery. However, as shown in FIG. 7 described above, when 5 of the 13 parallel solar cell elements 501 have an output of 0 V, the output of one solar cell panel 1 is 16 × (13-5) / 13 = approximately 9.85V. If this occurs for the eight solar cell panels 21, only about 9.85 × 8 = 78.8V is output where the voltage of 128V is expected, and charging of the 120V storage battery is not possible. It becomes possible.
Therefore, an object of the present invention is to prevent a reduction in output voltage by preventing the entire area of one parallel solar cell element 501 from being covered.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, a solar cell module according to the present invention includes a plurality of rectangular plate-like members on which a solar cell panel is mounted, a joint between adjacent rectangular plate-like members, and protection of a connection portion of the solar cell. And a plurality of seam cover pressing members that press the seam cover member, and the longitudinal direction of the maximum unit of the electrically connected solar cell elements constituting the solar cell panel, The seam cover members are arranged so as to be in a direction substantially perpendicular to the longitudinal direction of the seam cover members, and the maximum units are electrically connected in series.
[0017]
The solar cell panel is characterized in that it is formed by vacuum laminating at least a surface protective material, a back surface protective material, and a solar cell element using an adhesive. Moreover, the said solar cell panel was directly fixed to the said rectangular plate-shaped member with the joining member and / or the adhesive agent, It is characterized by the above-mentioned .
[0018]
[Action]
In the solar cell module of the present invention, the longitudinal direction of the maximum unit (parallel solar cell elements) of the electrically connected solar cell elements constituting the solar cell is substantially the same as the longitudinal direction of the joint cover member. Since they are formed so as to be arranged in the vertical direction, even if shadowing is caused by the seam cover member, it is less likely to cover one entire parallel solar cell element unit.
[0019]
In addition, since the connecting portion is stored inside the joint cover member, the design is beautifully organized. Further, by integrally forming the solar cell panel by vacuum laminating, it can be easily fixed to the rectangular plate member using a bonding member such as eyelet or an adhesive.
[0020]
【Example】
Hereinafter, embodiments of the solar cell module of the present invention will be described in detail with reference to the drawings.
(Example 1)
Examples of the present invention will be described below. However, the present invention is not limited to the solar cell manufacturing method, structure, external shape, process, procedure, and roof material, structure, external shape, process, and procedure described below.
[0021]
FIG. 1 is a partial perspective view of the solar cell module of the present embodiment, in which 501 is the maximum unit (parallel solar cell device) of solar cell devices electrically connected in parallel. Further, 21 is a solar cell panel configured by connecting these parallel solar cell elements 501 in series, 22 is a rectangular plate member for placing the solar cell panel 21, and 23 is each solar cell panel. 21 is a seam cover member for protecting the connection portion 21. Reference numeral 24 denotes a seam cover pressing member, 25 denotes an eyelet as a joining member, 26 denotes an output cable, and 27 denotes an output connecting member such as a connector.
[0022]
The Figure 2 is a plan view showing an entire solar cell module of the present embodiment, the solar cell module of the present embodiment, as shown in FIG. 2, electrically connected in parallel parallel solar cell is the maximum unit Thirteen elements 501 are arranged such that the longitudinal direction thereof is substantially perpendicular to the longitudinal direction of the seam cover member 23, and the 13 elements are electrically connected in series to form one solar cell panel 21. Furthermore, eight solar cell panels 21 are electrically connected in series.
[0023]
In the present embodiment, as shown in FIG. 2 , even when the shadow 30 is generated by the joint cover member 23, the entire area of one parallel solar cell element 501 is not covered. Therefore, even if the output current of each parallel solar cell element 501 decreases, the output voltage does not decrease, and the expected output voltage can be obtained as a whole.
[0024]
As a solar cell used in this example, an amorphous solar cell element is used, and an amorphous silicon thin film is formed on a stainless steel substrate by using the RF glow discharge method, and n, i, p, n, i from the substrate side. , P in order, after vapor-depositing transparent electrodes, separating into small parts, attaching comb-shaped electrodes, electrically connecting the small parts in parallel, and a parallel solar cell element 501 having a length of about 100 mm and a width of about 300 mm did. Next, 13 pieces are arranged in the vertical direction so as to be adjacent to each other at an interval of about 1 mm, and are electrically connected in series using a copper tape to form a solar cell panel 21 as a set, and 8 sets are produced. did.
[0025]
In addition, in this embodiment, considering that the eight solar cell panels 21 are finally electrically connected in series, the element at the lower left side of the solar cell panel 21 when the solar cells are joined to the roofing material. Wiring was applied to the back surface of the solar cell panel 21 using the copper tape so that the cathode could be placed on the part where no electrode was formed and the output terminal of the anode was placed on the same part at the lower right end. At that time, polyester tape was used to insulate the stainless steel substrate and the copper tape.
[0026]
Further, as a protective material for the front and back surfaces of the solar cell panel 21, a sheet-shaped Tedlar film having a thickness of 100 μm, a length of 1500 mm and a width of 320 mm that has been previously plasma-treated, and a sheet-like EVA (ethylene -Vinyl acetate) was used for vacuum laminating at about 100 ° C. to obtain a single solar cell panel 21.
[0027]
Then, output terminals are provided at the left and right end portions of the blank portion (the portion where no element is formed) of the solar cell panel 21, and a copper cable having a cross-sectional area of 1.25 mm 2 and a length of 1 m is added as the output cable 26. Each of the output terminals was soldered and the soldered portion was insulated and waterproofed using silicon rubber. At the other end of the output cable 26, an output connection member 27 was attached with a 2P waterproof connector of 100V, 15A of a male type on the plus side and a female type on the minus side. The maximum output for one solar cell panel 21 thus produced was about 25 W.
[0028]
Next, the following materials were prepared as roofing materials. First, the rectangular plate-like member 22 is made of a steel plate whose one surface is galvaluated, and has a thickness of 0.35 mm, a length of 3000 mm, and a width of about 350 mm. As shown in FIG. 4 , 8 pieces were used that were bent about 15 mm from the ends of the two opposite sides and the cross-section in the short direction was a “U”.
[0029]
The joint cover member 23 is a plate-shaped steel plate made of the same material as the rectangular plate member 22 and having a thickness of 0.35 mm, a length of 3000 mm, and a width of 90 mm, as shown in FIG. Nine pieces were used that were bent so that the “U” shape was formed, and the sides in the longitudinal direction were bent inward by about 5 mm from the end. However longitudinal ends of these members are formed in the lid-like shape as shown in FIG. 3 (a).
[0030]
The seam cover pressing member 24 is a plate steel plate having the same material as that of the rectangular plate member 22 and the seam cover member 23 and having a thickness of 0.35 mm, a length of 100 mm, and a width of 85 mm . 36 pieces each of which was folded 30 mm from both ends so as to form a “U” shape, further bent 15 mm outward, and further bent approximately 5 mm inward were used.
[0031]
Below, the joining procedure of the solar cell panel 21 and the rectangular plate-shaped member 22 is shown.
[0032]
On the surface of the prepared rectangular plate-like member 22, one solar cell panel 21 prepared in advance is provided, but the length of the parallel solar cell elements 501 having a length of about 10 cm and a width of about 30 cm connected in parallel as described above. The direction (lateral direction) is arranged so as to be substantially perpendicular to the longitudinal direction of the rectangular plate member 22, and the portion corresponding to the output cable 26 of the solar cell 21 among the bent portions of the rectangular plate member 22 As shown in FIG. 4 , a cutout 601 is provided so that each output cable 26 can pass through, and the output cable 26 is extended to the outside.
[0033]
Next, after applying a commercially available silicon-based adhesive to the surface of the back surface protective material Tedlar to adhere the solar cell panel 21 to the surface of the rectangular plate member 22, the solar cell element of the further laminated solar cell panel 21 The rectangular plate member 22 and the solar cell panel 21 were joined to each other at the four corners using eyelets 25 having a diameter of about 10 mm.
[0034]
These roofing materials and solar cells are placed on an inclined wooden plate that is 3 m long and 15 m wide, simulating the roof, and the longitudinal direction of the rectangular plate member 22 coincides with the vertical direction of the roof. Oriented and fixed so as to have an interval of 25 mm between each adjacent rectangular plate member 22. Thereafter, the seam cover pressing member 24 was arranged and fixed at a rate of about 1000 mm in the longitudinal direction of the interval portion.
[0035]
The male and female waterproof connectors as the output connection member 27 of the solar cell are arranged in the space between the adjacent rectangular plate-like members 22, and the male type and the adjacent female type and the female type and the adjacent male type are connected for series connection. Inserted the mold.
[0036]
Finally, the seam cover member 23 is fitted into the seam cover pressing member 24 from above to form a seam of a roof material, and the solar cell module of the present invention is completed. FIG. 6 is a cross-sectional view showing the configuration of the joint portion.
[0037]
The numerical values such as the above-described length and thickness of the members of the present embodiment are not particularly limited to these.
(Experimental example 1)
Using the solar cell module having the arrangement of the solar cell elements of the present invention produced in Example 1, an experiment for confirming the effectiveness of the arrangement of the parallel solar cell elements 501 of the present invention was conducted. As in Example 1, the solar cell element used in this experimental example is obtained by applying an amorphous silicon thin film on a stainless steel substrate to n, i, p, n, i, p from the substrate side using the RF glow discharge method. After sequentially depositing and vapor-depositing a transparent electrode, it is separated into small parts, comb electrodes are attached, and each small part is electrically connected in parallel to form a parallel solar cell element 501 having a length of about 100 mm and a width of 300 mm. Was used.
[0038]
In the present experimental example, the units 501 of the parallel solar cell elements are arranged so that the longitudinal direction thereof is substantially perpendicular to the longitudinal direction of the joint cover member 23 as shown in FIG. Thirteen sheets were electrically connected in series, and eight sets were prepared.
[0039]
Hereinafter, the material and procedure for vacuum lamination of the solar cell element, the materials for the output terminal, the output cable, and the waterproof connector, and the attachment were the same as those in Example 1. The output of each solar cell panel 21 was about 25W.
[0040]
This experiment was conducted in December, when the altitude of the sun is the lowest throughout the year and therefore the shadow made by the object is the longest. First, the wooden board and the solar cell module imitating the roof of Example 1 were installed on a flat ground free from obstacles in the state where the solar cell module was inclined 30 degrees with respect to the horizontal plane and the solar cell faced true south. And the output of the solar cell connected in series in Example 1 was connected to the storage battery system for 120V provided with the backflow prevention means as shown in FIG. 8 , and the voltage and electric current charged were always measured and recorded. At the same time, the degree to which the parallel solar cell elements 501 of about 10 cm in length and about 30 cm in width constituting the individual solar cell panels 21 used this time were covered by the shadow made by the joint cover member 23 was visually observed.
[0041]
As a result, it is not observed that any one of the above-mentioned parallel solar cell elements 501 is completely covered by the shadow formed by the seam cover member 23, and the output of the solar cell is drastically reduced. Was not observed, and the original purpose was achieved.
(Comparative Example 1)
As a comparative example with respect to Experimental Example 1, a solar cell module in which the arrangement of parallel solar cell elements 501 is different from the arrangement of the present invention was prototyped, and the same experiment as in Experimental Example 1 was performed. In this experiment, the longitudinal direction of the maximum unit 501 of the solar cell elements electrically connected in parallel of the individual solar cell panels 21 is arranged to coincide with the direction parallel to the longitudinal direction of the joint cover member 23.
[0042]
The parallel solar cell element 501 used in this comparative example is the same as that used in Experimental Example 1, and its longitudinal direction is parallel to the longitudinal direction of the joint cover member 23 as shown in FIG. Arrange 5 sheets, arrange 4 sheets on the side, and 4 sheets on the side, a total of 13 sheets so that the distance between them is about 1 mm. These 13 sheets are electrically connected in series. The solar cell panel 21 was prepared, and eight sets were prepared as one set.
[0043]
Hereinafter, the materials and procedures for vacuum lamination of the solar cell element, the materials for the output terminal, the output cable, and the waterproof connector, and the attachment thereof were the same as in Experimental Example 1. The output of each solar cell panel 21 was about 25W. Further, the same number of roofing materials as those in Experimental Example 1 were used.
[0044]
These roofing materials and solar cells are fixed on a wooden board simulating the same roof as in Experimental Example 1 by the same method as in Experimental Example 1, eight solar cell panels are connected in series, and finally the seam cover 23 is connected. To complete the solar cell module.
[0045]
Next, using this solar cell module, in the same manner as in Experimental Example 1, in December, a wooden board and a solar cell module simulating a roof are inclined by 30 degrees with respect to the horizontal plane, and the solar cell goes south. Installed on a flat surface with no obstacles around.
[0046]
And the output of the solar cell module produced by this comparative example was connected to the 120V storage battery system provided with the backflow prevention means shown in FIG . At the same time, the shadowing by the joint cover 23 formed on the light receiving surface of the unit 501 of each parallel solar cell element was visually observed.
[0047]
As a result, except for about two hours before and after the solar time in the sun, the shadow of the seam cover 23 is at least one or more of the parallel suns per solar panel 21 on each rectangular plate member 22. It was observed that the unit 501 of the battery element was completely covered, and correspondingly, the power charged in the storage battery was lowered and further charging was not performed.
[0048]
This is because the unit 501 of the parallel solar cell elements is completely covered with the shadow made by the seam cover member 23, so that not only the output current but also the output voltage is significantly reduced. This indicates that it has become difficult to satisfy the charging voltage.
[0049]
【The invention's effect】
As described above in detail, according to the solar cell module of the present invention, since a gantry for installing the solar cell module is not necessary, not only the gantry cost is unnecessary, but also the installation work on the roof is simplified. The safety of workers is also improved.
[0050]
In addition to the fact that the gantry is not required, the output cable and output connecting member are housed inside the roofing joint cover member, so that it is beautifully designed and eliminates the adverse effects on the local landscape. it can.
[0051]
In addition, the fact that the output cable and the output connection member are housed inside the roof joint cover member can protect the output cable and the output connection member from the external environment such as rainwater and snow, and can prevent leakage. Useful for preventing electric shocks and disconnections.
[0052]
In each solar cell, the longitudinal direction of the maximum unit (parallel solar cell element) of the electrically connected solar cell elements is arranged in a direction substantially perpendicular to the longitudinal direction of the seam cover member of the roofing material. Accordingly, it is possible to prevent the shadow produced by the seam cover member of the roof material from completely covering at least one light receiving surface of each of the parallel solar cell elements, and as a result, the output of the solar cell module is not significantly reduced.
[0053]
Furthermore, in the solar cell, at least the surface protective material, the back surface protective material, and the amorphous silicon solar cell element are vacuum-laminated using an adhesive, so that, for example, an adhesive is applied to the surface of the back surface protective material. In addition, an eyelet or the like can be used for a blank portion other than the solar cell element, and an effect of facilitating joining to the rectangular plate member can be obtained.
[0054]
In addition, this vacuum laminating process sufficiently satisfies the external environment and does not require a strong frame, reducing the solar cell production process, resulting in improved productivity and lower production costs. The effect which becomes possible is acquired.
According to the present invention, the parallel solar cells are arranged by arranging the longitudinal direction of the maximum unit of the solar cell elements electrically connected in parallel so as to be substantially perpendicular to the longitudinal direction of the joint cover member. There is an effect that the entire area of one element 501 is not covered so as to suppress a decrease in output voltage.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an installation state of a roof material and a solar cell according to an embodiment of the present invention.
FIG. 2 is a schematic plan view of a solar cell module according to an embodiment of the present invention.
FIG. 3 is a schematic perspective view showing a cross section of a surface perpendicular to the outer shape and the longitudinal direction of a seam cover member among the roofing materials used in the examples.
FIG. 4 is a schematic perspective view showing an outer shape of a rectangular plate member among roof materials used in Examples.
FIG. 5 is a schematic perspective view showing an outer shape of a seam cover pressing member among the roofing materials used in the examples.
FIG. 6 is a schematic cross-sectional view showing the structure of each roofing material used in the examples and the connection location of each solar cell.
FIG. 7 is a schematic plan view showing a solar cell module according to a conventional arrangement.
FIG. 8 is a diagram for explaining an example of a storage battery charging system using a solar cell module.
[Explanation of symbols]
21 solar cell panel 22 rectangular plate member 23 seam cover member 24 seam cover holding member 25 joining member (grommet)
26 Output cable 27 output connection member (connector)
Largest unit of the solar cell element 28 due to the roof or structure 30 seam cover member is negative 501 electrically connected in parallel (parallel solar cell element)
601 Notch through the output cable

Claims (3)

太陽電池パネルを搭載した複数の矩形板状部材と、隣接する前記矩形板状部材の結合部及び前記太陽電池パネルの接続部の保護を行なう継目カバー部材と、前記継目カバー部材を押さえる複数の継目カバー押え部材とを有し、
前記太陽電池パネルを構成する、電気的に並列接続された太陽電池素子の最大単位の長手方向を、前記継目カバー部材の長手方向と実質的に垂直な方向になるように配列し、該最大単位を電気的に直列接続したことを特徴とする太陽電池モジュール。
A plurality of rectangular plate-like members on which solar cell panels are mounted, a joint cover member that protects a connecting portion of the adjacent rectangular plate-like members and a connection portion of the solar cell panel, and a plurality of seams that hold down the seam cover member A cover holding member,
The longest unit of electrically connected solar cell elements constituting the solar cell panel is arranged so as to be in a direction substantially perpendicular to the longitudinal direction of the joint cover member, and the maximum unit A solar cell module characterized in that they are electrically connected in series.
前記太陽電池パネルが、少なくともその表面保護材と裏面保護材と太陽電池素子とを接着剤を用いて真空ラミネート加工して構成されたことを特徴とする請求項1に記載の太陽電池モジュール。The solar cell module according to claim 1, wherein the solar cell panel is configured by vacuum laminating at least a surface protective material, a back surface protective material, and a solar cell element using an adhesive. 前記太陽電池パネルを、接合部材及び/又は接着剤によって、直接前記矩形板状部材に固定したことを特徴とする請求項1に記載の太陽電池モジュール。The solar cell module according to claim 1, wherein the solar cell panel is directly fixed to the rectangular plate member by a bonding member and / or an adhesive.
JP2000003007A 1992-06-26 2000-01-11 Solar cell module Expired - Fee Related JP3619098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003007A JP3619098B2 (en) 1992-06-26 2000-01-11 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19136392A JP3201540B2 (en) 1992-06-26 1992-06-26 Solar cell and method of manufacturing the same
JP2000003007A JP3619098B2 (en) 1992-06-26 2000-01-11 Solar cell module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19136392A Division JP3201540B2 (en) 1992-06-26 1992-06-26 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000150947A JP2000150947A (en) 2000-05-30
JP3619098B2 true JP3619098B2 (en) 2005-02-09

Family

ID=34276918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003007A Expired - Fee Related JP3619098B2 (en) 1992-06-26 2000-01-11 Solar cell module

Country Status (1)

Country Link
JP (1) JP3619098B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592537B1 (en) 2004-02-05 2009-09-22 John Raymond West Method and apparatus for mounting photovoltaic modules
US7406800B2 (en) 2004-05-18 2008-08-05 Andalay Solar, Inc. Mounting system for a solar panel
US8919052B2 (en) 2007-04-06 2014-12-30 Zep Solar, Llc Pivot-fit frame, system and method for photovoltaic modules
US8938919B2 (en) 2007-09-21 2015-01-27 Andalay Solar, Inc. Electrical connectors for solar modules
EP2449598B1 (en) 2009-07-02 2018-05-30 SolarCity Corporation Array of photovoltaic modules interlocked together
US9518596B2 (en) 2009-07-02 2016-12-13 Solarcity Corporation Pivot-fit frame, system and method for photovoltaic modules
US20120298188A1 (en) 2009-10-06 2012-11-29 Zep Solar, Inc. Method and Apparatus for Forming and Mounting a Photovoltaic Array
USD759464S1 (en) 2010-07-02 2016-06-21 Solarcity Corporation Leveling foot
JP5909499B2 (en) 2010-12-09 2016-04-26 ソーラーシティ コーポレーション Skirt for photovoltaic array
CA2820935A1 (en) 2010-12-09 2012-06-14 Zep Solar, Inc. Pivot-fit connection apparatus and system for photovoltaic modules
AU2012220665B2 (en) 2011-02-22 2017-04-13 Solarcity Corporation Pivot-fit frame, system and method for photovoltaic modules
USD765591S1 (en) 2011-12-09 2016-09-06 Solarcity Corporation Panel skirt and photovoltaic panel
US9320926B2 (en) 2012-06-28 2016-04-26 Solarcity Corporation Solar panel fire skirt

Also Published As

Publication number Publication date
JP2000150947A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
ES2887981T3 (en) PV Roof Tile Packing System and Procedure
JP3619098B2 (en) Solar cell module
US20120060902A1 (en) System and method for frameless laminated solar panels
JP2005011869A (en) Solar cell module and its manufacturing method
US20120031465A1 (en) Solar module in an insulating glass composite method for production and use
CA2617819A1 (en) Photovoltaic roofing panel
JP3005123B2 (en) Installation method of roof and solar panel
CN111654240A (en) Photovoltaic installation system
US20110174365A1 (en) System and method for forming roofing solar panels
CN212518906U (en) Photovoltaic installation system
CN212518908U (en) Low-line-loss photovoltaic installation system
ES2604963T3 (en) Photovoltaic panel
JPH11214734A (en) SOLAR CELL MODULE, ITS MANUFACTURING METHOD, ITS WORKING METHOD, AND SOLAR CELL POWER GENERATION SYSTEM
JP2777444B2 (en) Installation method of roof-mounted solar cell device
CN213296923U (en) Integrative sub-assembly of various steel tile of photovoltaic
JP2003332608A (en) Method for repairing solar cell array
JP3633944B2 (en) Solar cell module and solar cell array using the same
CN212518909U (en) Photovoltaic installing system walk line structure
EP4346093B1 (en) Photovoltaic module and method for preparing the same
JP3715876B2 (en) Thin film solar cell module
JP2006269608A (en) Process for manufacturing solar cell module
CN220984536U (en) Semi-flexible light photovoltaic module
EP4345915A1 (en) Photovoltaic module and method for folding the same
JP3106778B2 (en) Solar cell module
JPH09186354A (en) Installation structure of solar cell module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees