JP3617703B2 - Method for producing ZnSe bulk single crystal - Google Patents
Method for producing ZnSe bulk single crystal Download PDFInfo
- Publication number
- JP3617703B2 JP3617703B2 JP21516595A JP21516595A JP3617703B2 JP 3617703 B2 JP3617703 B2 JP 3617703B2 JP 21516595 A JP21516595 A JP 21516595A JP 21516595 A JP21516595 A JP 21516595A JP 3617703 B2 JP3617703 B2 JP 3617703B2
- Authority
- JP
- Japan
- Prior art keywords
- znse
- raw material
- furnace
- single crystal
- sealant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、ZnSe系化合部の薄膜をエピタキシャル成長させ、半導体レーザや発光ダイオード等の青色発光素子を構築するための基板に用いられる高純度のZnSeバルク単結晶の製造方法に関する。
【0002】
【従来の技術】
通常、融液の蒸気圧が高い物質を用いて融液成長させる成長法では、原料を石英アンプルに封入してその中で育成するという方法が採用されている。しかしながら石英ガラスは約1200℃で軟化し始め、それ以上の温度になると変形したり、失透したりするため、ZnSeのように融点が1520℃と高い物質の結晶育成には使用できない。
【0003】
このため、従来ZnSeの融液成長法としては、グラファイトや焼結BN製のルツボに原料を入れ、さらにこのルツボを高圧容器に入れて、Ar等の不活性ガスで加圧し、融液の蒸発をおさえながら結晶の育成を行う高圧溶融法が用いられてきた。
【0004】
【発明が解決しようとする課題】
上記高圧溶融法は、高圧の不活性ガスで融液の蒸発量を低減させながら結晶を育成する方法であるが、通常のルツボ形態から見れば開管系に属し、高圧の不活性ガスはルツボからの原料の損失を小さくするだけであり、融液の蒸発を完全に阻止することができなかった。
【0005】
また、良質の単結晶を得るため、十分に小さい成長速度で長時間の育成を行うには炉内圧を高くする必要があることから、通常は90〜100atm という非常に大きな圧力下で育成を行っていたが、以下のような問題を有していた。
【0006】
上記方法では、育成中に原料の一部が飛散するため、仕込んだ原料の重量に対して結晶の重量が小さくなる他、ルツボから飛散した成分は炉内の低温部に堆積し、炉内を著しく汚染するという欠点があった。
【0007】
さらに原料として用いるZnSeでは、成分蒸気であるZnとSeの分圧と拡散係数が異なるため、融液の組成はSe過剰の方にずれる傾向があり、この融液組成の変動は育成中に組成的過冷却を引き起こし、単結晶化が困難になる上、得られた結晶にも多数の点欠陥が発生し、電気的特性も悪化する要因となっていた。
【0008】
さらに構造的には、ルツボから見れば開管系であることから、炉内を構成する材料物質により結晶が汚染されたり、あるいはルツボ材そのものからの汚染も避けられなかった。
【0009】
したがって本発明の目的は、ルツボからの原料の飛散をおさえて原料の損失と融液組成の変動をなくし、さらに炉内の材料物質やルツボからの汚染を防ぐことにより、高純度で良質な単結晶にするとともに清浄な炉内環境のもとで行うZnSeバルク単結晶の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究した結果、垂直ブリッジマン法または垂直徐冷法によるZnSe融液からの単結晶の育成方法において、無機フッ素化合物やB2 O3 を封止剤として用いれば、これらの封止剤がZnSe融液との相容性、反応性を持たないことから、前述の課題を解決できることを見いだし本発明に到達した。
【0011】
すなわち本発明は第1に、垂直ブリッジマン炉または垂直徐冷炉を用いて、高圧溶融法により融液からZnSeバルク単結晶を製造する方法において、種結晶上に、ZnSe原料、封止剤を底から順次充填したルツボをZnSe融液の蒸気圧以上の不活性ガス高圧炉内でまず該封止剤が融解する温度で一旦加熱を中断して該封止剤のみを融解して下に位置する該原料の表面を覆い、次に再び昇温を始めて該原料を融解することによって、該種結晶の上に単結晶を育成することを特徴とするZnSeバルク単結晶の製造方法;第2に、前記封止剤がB2O3、CaF2、AlF3、LiF、NaF、KFの1種もしくはこれらの共晶混合物から選ばれたものであることを特徴とする上記第1記載のZnSeバルク単結晶の製造方法を提供するものである。
【0012】
【作用】
本発明の実施例で用いた装置は、加圧式単結晶引上げ装置(国際電気社製)を一部改造して垂直ブリッジマン法または垂直徐冷法による育成を可能にしたものである。
【0013】
原料のZnSeとしては、純度6N以上の多結晶体を用いるが、気相輸送法により合成したものや化学蒸着(CVD)法によって得たオプティクス用素材のものであっても構わない。
【0014】
本発明方法における育成方法は、まず結晶育成用にパイロリティック・ボロン・ナイトライド(PBN)製ルツボの底から順に、種結晶、原料、封止剤を充填し、次いで該ルツボをグラファイト製の容器に挿入した状態で炉内のルツボ移動軸に取付けて、所定の炉内位置に設置する。 設置後、炉内をAr、N2 などの不活性ガスで置換し、所定の圧力までガスを導入する。次いで炉内温度を封止剤の融点まで上げ、この封止剤のみを融解して原料の表面を覆うようにした。
【0015】
次いで炉内温度をZnSeの融点付近まで加熱して原料を融解するが、上記封止剤はZnSeとの界面において安定な性質を示すことから、ZnSe融液とも相容性、反応性を持たず、またZnSe融液よりも比重が低いため、ZnSe融液上に浮かび融液表面を覆うことになる。
【0016】
また、封止剤融液上からZnSe融液の蒸気圧以上の圧力を加えることで、ZnSeの蒸発を防ぎながら、この状態を維持して、種結晶の一部を融解させて種付けを行い、その後低温域へルツボ自体を降下させる(垂直ブリッジマン法)か、あるいはヒーター温度を精密に制御しながら降下させる(垂直徐冷法)ことにより、単結晶を育成する。
【0017】
なお、原料のZnSe全てが十分固化したら育成を終了し、炉内をゆっくり冷却しながら室温まで下げた後、結晶をルツボから取り出す。
【0018】
本発明における育成条件を掲げると次の通りである。
ルツボ:口径1インチのパイロリティック・ボロン・ナイトライド(PBN)製
原料融解温度:1650℃(炉内最高温度)
融解時間:3時間
育成速度:3mm/時間
融点付近の温度勾配:30℃/cm
炉内雰囲気:Arガス、3〜50kgf/cm2
原料重量:60〜90g
封止剤重量:30〜40g
なお、封止剤としてはB2 O3 の他、CaF2 、AlF3 、LiF、NaF、KFの組み合わせからなる共晶混合物でもよいことを確認している。
【0019】
以下実施例をもって詳細に説明するが、本発明はこれらに限定されるものではない。
【0020】
【実施例】
図1および図2はいずれも本実施例と比較例で育成されたZnSe単結晶のフォトルミネッセンス スペクトルで試料の励起には超高圧水銀灯の365nm線を用い、図1は測定温度15Kのもの、図2は77Kのものであって、これらをも参照して以下説明する。
【0021】
(1)口径1インチのパイロリティック・ボロン・ナイトライド(PBN)製ルツボに種結晶(4mmφ×30L)、ZnSe原料(オプティクス用素材)87g、封止剤としてB2 O3 34gを順次充填し、高圧炉内に設置した後、該炉内をArガスで置換して、炉内圧を9.5kgf/cm2 に加圧した。
【0022】
(2)次いで炉内を加熱しながら、まず封止剤が融解する温度(B2 O3 420℃)で一旦加熱を中断して封止剤を融解させ、これら融解した封止剤が下に位置する原料のZnSe表面を覆うようにした。
【0023】
(3)次に、再び昇温を始めて、原料を十分に融解(炉内最高温度を1650℃に制御、融解時間3時間)させてから種結晶の上端を融解して種付けを行い、その後、ルツボを3mm/時の割合で降下させながら単結晶を育成した。
【0024】
(4)この結果、結晶は99.9%の高収率で得られ、炉内もほとんど汚れておらず、封止剤のB2 O3 によって原料の飛散が抑えられていることが確認できた。
【0025】
得られた結晶の測定温度15Kにおけるフォトルミネッセンス スペクトル(励起子発光領域)は図1に示す通りで、束縛励起子によるI2 、I1 dなどの発光が見られる他、2.801eV付近には自由励起子(FE)による発光も明瞭に観察された。このことにより本実施例によって得られた結晶は非常に不純物濃度が低く結晶性が良いことが判明した。
【0026】
また測定温度77Kにおけるフォトルミネッセンス スペクトルを示す図2によっても、不純物や欠陥に起因する深い準位からの発光も見られず、良好な品質を有することが明らかである。
【0027】
【比較例】
(1)比較のため封止剤を用いない従来の高圧溶融法で結晶の育成を行った。すなわち口径1インチの焼結BN製ルツボに種結晶、ZnSe原料(オプティクス用素材)81gを充填し、高圧炉内に設置した後、炉内を40kgf/cm2 に加圧した。
【0028】
(2)原料を十分に融解した後、種結晶の上端を融解して種付けを行い、その後ルツボを3mm/時で降下させながら単結晶を育成したところ、結晶の収率は95%であり、高圧炉内にはルツボから飛散したZnSeが付着堆積していた。
【0029】
(3)得られた結晶のフォトルミネッセンス スペクトル(励起子発光領域)を求め図1に示したが、この結果、束縛励起子によるI2 (あるいはI3 )、I1 dが観察されたものの、その発光強度は実施例に示すものと比べて弱い上、自由励起子(FE)による発光も見られなかった。
【0030】
(4)また、図2に示すように、2eV付近に見られる深い準位からの発光が支配的であり、このことから結晶の純度が低いことがわかった。
【0031】
【発明の効果】
以上説明したように、本発明の方法によれば、原料のZnSe融液と相容性、反応性を持たない封止剤を用いることにより、ルツボ内からの原料の飛散を防ぎ結晶収率を向上させる上、炉内の各原料から結晶が汚染するのを防止できるので、高純度な単結晶が得られる。
【図面の簡単な説明】
【図1】実施例および比較例で育成されたZnSe単結晶の測定温度15Kにおけるフォトルミネッセンス スペクトルを示す図である。
【図2】実施例および比較例で育成されたZnSe単結晶の測定温度77Kにおけるフォトルミネッセンス スペクトルを示す図である。[0001]
[Industrial application fields]
The present invention relates to a method for producing a high-purity ZnSe bulk single crystal used for a substrate for epitaxially growing a thin film of a ZnSe-based compound part and constructing a blue light emitting element such as a semiconductor laser or a light emitting diode.
[0002]
[Prior art]
Usually, in a growth method in which a melt is grown using a substance having a high vapor pressure of the melt, a method in which a raw material is enclosed in a quartz ampule and grown therein is employed. However, quartz glass begins to soften at about 1200 ° C., and deforms or devitrifies at higher temperatures, so it cannot be used for crystal growth of a substance having a melting point as high as 1520 ° C. like ZnSe.
[0003]
For this reason, as a conventional ZnSe melt growth method, raw materials are put into a crucible made of graphite or sintered BN, this crucible is put into a high-pressure vessel, and pressurized with an inert gas such as Ar to evaporate the melt. A high-pressure melting method has been used in which crystals are grown while holding down.
[0004]
[Problems to be solved by the invention]
The high-pressure melting method is a method of growing crystals while reducing the amount of evaporation of the melt with a high-pressure inert gas, but it belongs to an open tube system when viewed from a normal crucible form, and the high-pressure inert gas is a crucible. The loss of the raw material from was only reduced, and the evaporation of the melt could not be completely prevented.
[0005]
Also, in order to obtain a high quality single crystal, it is necessary to increase the furnace pressure in order to perform growth for a long time at a sufficiently low growth rate. Therefore, the growth is usually performed under a very large pressure of 90 to 100 atm. However, it had the following problems.
[0006]
In the above method, since a part of the raw material is scattered during the growth, the weight of the crystal becomes smaller than the weight of the charged raw material, and the components scattered from the crucible are deposited in the low temperature part of the furnace, There was a drawback of significant contamination.
[0007]
Furthermore, in ZnSe used as a raw material, since the partial pressure and diffusion coefficient of Zn and Se, which are component vapors, are different, the composition of the melt tends to shift toward Se excess. In addition to causing excessive supercooling, it is difficult to obtain a single crystal, and a large number of point defects are generated in the obtained crystal, resulting in deterioration of electrical characteristics.
[0008]
Furthermore, structurally, since it is an open tube system as seen from the crucible, the crystal is contaminated by the material substance constituting the furnace, or contamination from the crucible material itself cannot be avoided.
[0009]
Therefore, the object of the present invention is to suppress the scattering of the raw material from the crucible, to eliminate the loss of the raw material and the fluctuation of the melt composition, and to prevent the contamination from the material substance and the crucible in the furnace, thereby achieving a high-purity and high-quality unit. Another object of the present invention is to provide a method for producing a ZnSe bulk single crystal which is made into a crystal and is performed in a clean furnace environment.
[0010]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have used an inorganic fluorine compound or B 2 O 3 as a sealing agent in a method for growing a single crystal from a ZnSe melt by a vertical Bridgman method or a vertical slow cooling method. For example, since these sealing agents have no compatibility or reactivity with the ZnSe melt, the inventors have found that the above-mentioned problems can be solved and have reached the present invention.
[0011]
That is, according to the present invention, first, in a method for producing a ZnSe bulk single crystal from a melt by a high-pressure melting method using a vertical Bridgman furnace or a vertical slow cooling furnace, a ZnSe raw material and a sealing agent are placed on the seed crystal from the bottom. The crucibles sequentially filled in the inert gas high-pressure furnace having a vapor pressure higher than that of the ZnSe melt are first stopped at a temperature at which the sealant melts, and only the sealant is melted to be positioned below. A method for producing a ZnSe bulk single crystal, comprising: covering a surface of a raw material, and then growing the single crystal on the seed crystal by starting the temperature rise again and melting the raw material; The ZnSe bulk single crystal as described in the
[0012]
[Action]
The apparatus used in the examples of the present invention is a part of a pressurized single crystal pulling apparatus (manufactured by Kokusai Denki Co., Ltd.), which can be grown by the vertical Bridgman method or the vertical slow cooling method.
[0013]
As the raw material ZnSe, a polycrystalline body having a purity of 6N or more is used, but it may be synthesized by a vapor transport method or may be a material for optics obtained by a chemical vapor deposition (CVD) method.
[0014]
In the growth method in the method of the present invention, first, seed crystals, raw materials, and sealant are filled in order from the bottom of a pyrolytic boron nitride (PBN) crucible for crystal growth, and then the crucible is filled in a graphite container. In the state inserted into the crucible, it is attached to the crucible moving shaft in the furnace and installed at a predetermined position in the furnace. After the installation, the inside of the furnace is replaced with an inert gas such as Ar or N 2, and the gas is introduced to a predetermined pressure. Next, the furnace temperature was raised to the melting point of the sealant, and only this sealant was melted to cover the surface of the raw material.
[0015]
Next, the temperature in the furnace is heated to near the melting point of ZnSe to melt the raw material. However, since the sealing agent exhibits a stable property at the interface with ZnSe, it does not have compatibility or reactivity with the ZnSe melt. Moreover, since the specific gravity is lower than that of the ZnSe melt, it floats on the ZnSe melt and covers the surface of the melt.
[0016]
In addition, by applying a pressure equal to or higher than the vapor pressure of the ZnSe melt from above the sealant melt, while maintaining this state while preventing the evaporation of ZnSe, the seed crystal is partly melted and seeded. Thereafter, the crucible itself is lowered to a low temperature range (vertical Bridgman method) or lowered while precisely controlling the heater temperature (vertical slow cooling method) to grow a single crystal.
[0017]
When all the raw material ZnSe is solidified, the growth is completed, and the furnace is slowly cooled down to room temperature, and then the crystal is taken out from the crucible.
[0018]
The growth conditions in the present invention are as follows.
Crucible: 1 inch Pyrolytic Boron Nitride (PBN) raw material melting temperature: 1650 ° C (maximum temperature in the furnace)
Melting time: 3 hours Growth rate: 3 mm / hour Temperature gradient near melting point: 30 ° C./cm
Furnace atmosphere: Ar gas, 3-50 kgf / cm 2
Raw material weight: 60-90g
Sealant weight: 30-40g
As the sealing agent other B 2 O 3, it was confirmed that CaF 2, AlF 3, LiF, NaF, or eutectic mixture consisting of a combination of KF.
[0019]
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[0020]
【Example】
FIG. 1 and FIG. 2 are photoluminescence spectra of ZnSe single crystals grown in this example and the comparative example, and a 365 nm line of an ultrahigh pressure mercury lamp is used for excitation of the sample, and FIG. 2 is 77K and will be described below with reference to these figures.
[0021]
(1) A 1 inch diameter pyrolytic boron nitride (PBN) crucible is sequentially filled with seed crystal (4 mmφ × 30 L), 87 g ZnSe raw material (material for optics), and 34 g B 2 O 3 as sealant. After being installed in the high pressure furnace, the inside of the furnace was replaced with Ar gas, and the furnace pressure was increased to 9.5 kgf / cm 2 .
[0022]
(2) Next, while heating the inside of the furnace, the heating is first interrupted at a temperature at which the sealant melts (B 2 O 3 420 ° C.) to melt the sealant. The surface of the raw material ZnSe was covered.
[0023]
(3) Next, the temperature rise is started again, the raw material is sufficiently melted (the maximum temperature in the furnace is controlled to 1650 ° C., the melting time is 3 hours), and then the upper end of the seed crystal is melted and seeded. Single crystals were grown while lowering the crucible at a rate of 3 mm / hour.
[0024]
(4) As a result, it was confirmed that the crystals were obtained with a high yield of 99.9%, the furnace was hardly contaminated, and the scattering of the raw material was suppressed by the sealing agent B 2 O 3 . It was.
[0025]
The photoluminescence spectrum (exciton emission region) of the obtained crystal at a measurement temperature of 15 K is as shown in FIG. 1, and light emission such as I 2 and I 1 d due to bound excitons is observed, and in the vicinity of 2.801 eV Luminescence by free excitons (FE) was also clearly observed. This proved that the crystal obtained in this example had a very low impurity concentration and good crystallinity.
[0026]
Also, FIG. 2 showing the photoluminescence spectrum at a measurement temperature of 77 K clearly shows that there is no light emission from a deep level due to impurities and defects, and that it has good quality.
[0027]
[Comparative example]
(1) For comparison, crystals were grown by a conventional high pressure melting method without using a sealant. That is, a 1-inch diameter sintered BN crucible was filled with 81 g of seed crystal and ZnSe raw material (optics raw material) and placed in a high-pressure furnace, and then the inside of the furnace was pressurized to 40 kgf / cm 2 .
[0028]
(2) After sufficiently melting the raw material, the upper end of the seed crystal was melted and seeded, and then a single crystal was grown while lowering the crucible at 3 mm / hour. The yield of the crystal was 95%, ZnSe scattered from the crucible was deposited in the high pressure furnace.
[0029]
(3) The photoluminescence spectrum (exciton emission region) of the obtained crystal was obtained and shown in FIG. 1. As a result, although I 2 (or I 3 ) and I 1 d due to bound excitons were observed, The emission intensity was weaker than that shown in the examples, and no emission due to free excitons (FE) was observed.
[0030]
(4) Further, as shown in FIG. 2, it was found that light emission from a deep level seen in the vicinity of 2 eV is dominant, which indicates that the purity of the crystal is low.
[0031]
【The invention's effect】
As described above, according to the method of the present invention, by using a sealant that is not compatible or reactive with the raw material ZnSe melt, it prevents the scattering of the raw material from the crucible and increases the crystal yield. In addition to the improvement, it is possible to prevent the crystals from being contaminated from the respective raw materials in the furnace, so that a high-purity single crystal can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a photoluminescence spectrum of a ZnSe single crystal grown in an example and a comparative example at a measurement temperature of 15K.
FIG. 2 is a diagram showing a photoluminescence spectrum of a ZnSe single crystal grown in Examples and Comparative Examples at a measurement temperature of 77K.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21516595A JP3617703B2 (en) | 1995-08-01 | 1995-08-01 | Method for producing ZnSe bulk single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21516595A JP3617703B2 (en) | 1995-08-01 | 1995-08-01 | Method for producing ZnSe bulk single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0948699A JPH0948699A (en) | 1997-02-18 |
JP3617703B2 true JP3617703B2 (en) | 2005-02-09 |
Family
ID=16667738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21516595A Expired - Fee Related JP3617703B2 (en) | 1995-08-01 | 1995-08-01 | Method for producing ZnSe bulk single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3617703B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113637861B (en) * | 2021-08-13 | 2022-05-27 | 湘潭大学 | Zn-Se alloy and preparation method and application thereof |
-
1995
- 1995-08-01 JP JP21516595A patent/JP3617703B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0948699A (en) | 1997-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7332028B2 (en) | Method for manipulating a rare earth chloride or bromide or iodide in a crucible comprising carbon | |
CN102803583B (en) | The cultural method of group III metal nitride single crystal and the reaction vessel for the method | |
US4866007A (en) | Method for preparing single-crystal ZnSe | |
US6989059B2 (en) | Process for producing single crystal of compound semiconductor and crystal growing apparatus | |
JP3617703B2 (en) | Method for producing ZnSe bulk single crystal | |
Kutny et al. | AlSb single-crystal grown by HPBM | |
JP2003206200A (en) | P-type GaAs single crystal and method for producing the same | |
US8657955B2 (en) | Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal | |
US4299649A (en) | Vapor transport process for growing selected compound semiconductors of high purity | |
US4439266A (en) | Vapor transport process for growing selected compound semiconductors of high purity | |
JP4463730B2 (en) | Method for producing metal fluoride single crystal | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
RU2189405C1 (en) | METHOD OF PREPARING COMPOUND LiInS2 MONOCRYSTALS | |
JPS589799B2 (en) | Zinc sulfide crystal growth method | |
Capper et al. | B1. 1 Growth of CdTe, CdZnTe and CdTeSe by bulk methods | |
Isshiki et al. | 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials | |
JPS589798B2 (en) | Zinc selenide crystal growth method | |
JP2003119095A (en) | Method for producing single crystal fluoride | |
JPS63274690A (en) | InP single crystal manufacturing method and equipment | |
KR20050010513A (en) | Method for manipulating a rare earth chloride or bromide or iodide in a crucible comprising carbon | |
JP2002241199A (en) | METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL | |
JP2000327496A (en) | Method for producing InP single crystal | |
JPH11322489A (en) | Manufacturing method of semiconductor single crystal | |
JPS63307193A (en) | Method and apparatus for producing single crystals of high dissociation pressure compounds | |
JPH08290991A (en) | Method for growing compound semiconductor single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040206 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041104 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |