JP3616840B2 - Conductivity meter - Google Patents
Conductivity meter Download PDFInfo
- Publication number
- JP3616840B2 JP3616840B2 JP22561397A JP22561397A JP3616840B2 JP 3616840 B2 JP3616840 B2 JP 3616840B2 JP 22561397 A JP22561397 A JP 22561397A JP 22561397 A JP22561397 A JP 22561397A JP 3616840 B2 JP3616840 B2 JP 3616840B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- titanium
- conductivity meter
- layer
- molten salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体ウエハの洗浄工程で使用される純水の純度管理等に用いられる導電率計に関する。
【0002】
【従来の技術】
例えば、半導体ウエハの製造工程において、微細な埃あるいはわずかの汚れの存在も許されないため、純水による洗浄等の洗浄工程が設けられている。この洗浄用の純水も、その成分によってはウエハの表面に影響を与えるため、純水の純度管理を適切に行う必要がある。従来のこのような純度管理を行う際には、純水中に不純物が存在すると導電率が変化することを利用するため、導電率計を用いて監視を行っている。
【0003】
このような導電率計においては、対向して設けた電極に交流電圧を与え、電流変化を検出することにより被検査液体の導電率、比抵抗を測定している。その際に用いる電極の素材としては、チタン、ステンレス、白金、あるいはチタン表面に酸化チタン処理を施したもの他ものが用いられ、また、電極表面にTiN膜、あるいはTiC膜を形成したものが提案されている。
【0004】
【発明が解決しようとする課題】
上記のように電極の素材としてチタンを用いたものにおいては、使用中に表面が酸化し、酸化チタンが表層に形成され、その厚さは徐々に変化し、温度変化等の外乱によって電極特性が変化しやすく、指示に影響が発生し、信頼性が低下する欠点があった。また、ステンレスを用いたものにおいては、前記のチタン極よりも変化の程度は低いものの、やはり比抵抗値が徐々に大となり、指示に影響が生じる欠点は存在する。更に、白金極を用いた場合には、材質的には安定であるものの、その使用に際しては構造上堅牢さが要求され、また、電極自体が高価なものとなる欠点もある。また、チタン表面に酸化チタン処理を施したものにおいては、その酸化チタン層自体が不働体化しているため、表面の変化はないが、その酸化チタン層が絶縁体であるため、温度変化等の外乱の影響を受けやすい欠点がある。
【0005】
更に、電極表面にTiNのコーテイング処理を施したものにおいては、TiN層が高温水中では変成し、TiO2 に成ることが確認されている。即ち、
2TiN+4H2O→2TiO2+2NH3+H2
2TiN+2O2 →2TiO2+N2
の化学変化が考えられ、いずれもTiO2 を生じる。また、電極面にTiC膜を形成したものにおいては、TiC膜の比抵抗は193×10−6Ω・cmと大きく電極のコーテイング材としては不向きである。
【0006】
したがって、本発明は、電極表面が安定化することにより電極の電気特性が安定し、長期的に高い測定精度を維持することができ、信頼性の高い導電率計を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、導電率計の電極表面にホウ化チタン膜を形成したものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するため、純水の純度管理用導電率計の中心電極とその周囲に間隔を有して同心円の円筒状の周辺電極を有し、交流電圧が通電される交流二極式両電極において、該電極の素材はチタン製のものからなり、その表面に、ホウ化チタン膜を形成したものである。
【0009】
【発明の実施の形態】
本発明を適用する導電計の電極部は、図に示すように、中心電極1とその周囲に間隔を有して同心円の円筒状の周辺電極2を有し、ここに交流電圧が通電される。この各電極の素材はチタン製のものとし、その表面に、本発明においてはホウ化チタン(チタンB,チタンB2 )層を形成している。
【0010】
ホウ化チタン層は、固体法、溶融塩浴浸漬法、ペースト法、融塩浴電解法により形成することができる。例えば溶融塩浴法によることができる。この方法においては、ホウ酸、ホウ酸カリュウム、炭酸カリュウム、マグネシュウムなどの混合塩を溶融し、材料や溶融塩の酸化を防ぐためにアルゴンなどの不活性ガスで覆った溶融塩浴に材料を浸し、1023乃至1323Kの温度で処理をする。また、ペースト法によってもチタンB2層を形成することができる。この方法によると、B4C 、Na2B4O7 、NaBF4 、NH4Cl 等の薬剤の混合物をエチルアルコールでペースト状にし、材料の表面に塗布し、乾燥後、B4C を含むアルミナ粉に埋め込み、1123乃至1238Kの温度で大気中にて加熱処理する事によっても得られる。
【0011】
更に、溶融塩浴電解法によることもできる。この方法によってホウ化チタン層を形成するには、厚さ3mmの市販の純チタン圧延板ををエメリー紙で研磨し、トリクロールエタンで洗浄脱脂後、硝酸10%、フッ酸3%の水溶液で酸洗いする。溶融塩浴電解ホウ酸化処理装置としては、黒鉛ルツボを電解槽とし、溶融塩電解質としては無水ホウ砂(Na2B4O7 )を溶融したものを用い、処理前に予備電解を行い、脱水を充分に行った後、試料をカソードで、溶融塩浴に浸し、電解層をアノードとして、処理温度1123乃至1223K、処理時間10.8乃至54ks、電流密度200乃至600A/m2 の条件でホウ化処理を行う。チタンは酸化されやすいので装置内をアルゴン雰囲気として試料を浸す。このように、種々の方法によりチタンに対してホウ化チタン層を生成することができる。
【0012】
上記のように形成されたホウ化チタン層はその比抵抗が6.4×10−6Ω・cmと上記のTiCの193×10−6Ω・cmに比べて小さく、電極のコーテイング材として適していることが明らかである。
【0013】
【発明の効果】
本発明の導電率計は、その電極にホウ化チタン層を形成したので、非常に堅い導電性の膜により耐酸化性、耐熱性に優れ電気的特性が安定する。そして、長期的に高い測定精度を信頼性よく得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例の導電率計の電極部分を示す概略図である。
【符号の説明】
1 中心電極
2 周辺電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductivity meter used for purity control of pure water used in a semiconductor wafer cleaning process.
[0002]
[Prior art]
For example, in the manufacturing process of a semiconductor wafer, the presence of fine dust or slight dirt is not allowed, and therefore a cleaning process such as cleaning with pure water is provided. This pure water for cleaning also has an influence on the surface of the wafer depending on its components, so it is necessary to appropriately manage the purity of the pure water. When performing such conventional purity control, monitoring is performed using a conductivity meter in order to utilize the fact that the conductivity changes when impurities are present in pure water.
[0003]
In such a conductivity meter, an AC voltage is applied to the electrodes provided facing each other, and a change in current is detected to measure the conductivity and specific resistance of the liquid to be inspected. The material of the electrode used at that time is titanium, stainless steel, platinum, or a titanium surface treated with titanium oxide, and the like, and a material with a TiN film or TiC film formed on the electrode surface is proposed. Has been.
[0004]
[Problems to be solved by the invention]
In the case of using titanium as an electrode material as described above, the surface is oxidized during use, titanium oxide is formed on the surface layer, its thickness gradually changes, and the electrode characteristics are affected by disturbances such as temperature changes. There was a drawback that it was easy to change, the instructions were affected, and reliability was lowered. Further, in the case of using stainless steel, although the degree of change is lower than that of the titanium electrode, the specific resistance value gradually increases, and there is a drawback that the instruction is affected. Further, when a platinum electrode is used, although it is stable in terms of material, there is a drawback that structurally robustness is required for its use, and the electrode itself is expensive. In addition, when the titanium surface is treated with titanium oxide, since the titanium oxide layer itself is passivated, there is no change in the surface, but since the titanium oxide layer is an insulator, the temperature change, etc. There is a drawback that is susceptible to disturbances.
[0005]
Furthermore, in the case where the electrode surface is subjected to a coating treatment of TiN, it has been confirmed that the TiN layer is transformed into TiO 2 in high-temperature water. That is,
2TiN + 4H 2 O → 2TiO 2 + 2NH 3 + H 2
2TiN + 2O 2 → 2TiO 2 + N 2
The chemical changes of both are considered, and all produce TiO 2 . In addition, in the case where a TiC film is formed on the electrode surface, the specific resistance of the TiC film is as large as 193 × 10 −6 Ω · cm, which is not suitable as an electrode coating material.
[0006]
Accordingly, an object of the present invention is to provide a highly reliable conductivity meter that can stabilize the electrical characteristics of the electrode by stabilizing the electrode surface, maintain high measurement accuracy in the long term. .
[0007]
[Means for Solving the Problems]
In the present invention, a titanium boride film is formed on the electrode surface of a conductivity meter in order to solve the above problems.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a central electrode of a purity meter for conductivity control of pure water and a concentric cylindrical peripheral electrode around the center electrode, and an alternating current through which an alternating voltage is passed. In both bipolar electrodes, the electrode material is made of titanium, and a titanium boride film is formed on the surface thereof .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As shown in the figure, the electrode part of the electrometer to which the present invention is applied has a central electrode 1 and a cylindrical
[0010]
The titanium boride layer can be formed by a solid method, a molten salt bath immersion method, a paste method, or a molten salt bath electrolysis method. For example, a molten salt bath method can be used. In this method, a mixed salt such as boric acid, boric acid borate, carbonic acid carbonate, or magnesium is melted, and the material is immersed in a molten salt bath covered with an inert gas such as argon in order to prevent oxidation of the material or molten salt. Processing is performed at a temperature of 1023 to 1323K. The titanium B 2 layer can also be formed by a paste method. According to this method, a mixture of drugs such as B 4 C, Na 2 B 4 O 7 , NaBF 4 , NH 4 Cl and the like is pasted with ethyl alcohol, applied to the surface of the material, dried, and then contains B 4 C It can also be obtained by being embedded in alumina powder and heat-treated in the atmosphere at a temperature of 1123 to 1238K.
[0011]
Furthermore, it can also be based on a molten salt bath electrolysis method. In order to form a titanium boride layer by this method, a commercially available pure titanium rolled plate having a thickness of 3 mm is polished with emery paper, washed with trichlorethane, degreased, and then with an aqueous solution of 10% nitric acid and 3% hydrofluoric acid. Pickle. As a molten salt bath electrolytic boration treatment apparatus, a graphite crucible is used as an electrolytic cell, and a molten salt electrolyte obtained by melting anhydrous borax (Na 2 B 4 O 7 ) is used. Then, the sample is immersed in a molten salt bath with the cathode, the electrolytic layer is the anode, the treatment temperature is 1123 to 1223 K, the treatment time is 10.8 to 54 ks, and the current density is 200 to 600 A / m 2. Process. Since titanium is easily oxidized, the sample is immersed in an argon atmosphere inside the apparatus. Thus, a titanium boride layer can be formed with respect to titanium by various methods.
[0012]
The formed titanium boride layer as described above specific resistance is smaller compared to 193 × 10 -6 Ω · cm of 6.4 × 10 -6 Ω · cm and above TiC, suitable as a coating material of the electrode It is clear that
[0013]
【The invention's effect】
In the conductivity meter of the present invention, since the titanium boride layer is formed on the electrode, the very hard conductive film is excellent in oxidation resistance and heat resistance and has stable electrical characteristics. And long-term high measurement accuracy can be obtained with high reliability.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an electrode portion of a conductivity meter according to an embodiment of the present invention.
[Explanation of symbols]
1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22561397A JP3616840B2 (en) | 1997-08-08 | 1997-08-08 | Conductivity meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22561397A JP3616840B2 (en) | 1997-08-08 | 1997-08-08 | Conductivity meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1151890A JPH1151890A (en) | 1999-02-26 |
JP3616840B2 true JP3616840B2 (en) | 2005-02-02 |
Family
ID=16832071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22561397A Expired - Fee Related JP3616840B2 (en) | 1997-08-08 | 1997-08-08 | Conductivity meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3616840B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296263A (en) * | 2000-02-07 | 2001-10-26 | Japan Organo Co Ltd | Conductivity meter, conductivity measuring electrode and manufacturing method thereof |
JP5378715B2 (en) * | 2008-06-27 | 2013-12-25 | エア・ウォーターNv株式会社 | Steel surface treatment method and surface treatment apparatus |
CN104391179B (en) * | 2014-12-16 | 2017-05-24 | 成都光明光电股份有限公司 | Conductivity test device and method for molten glass |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2628990B2 (en) * | 1986-12-19 | 1997-07-09 | 大豊工業株式会社 | Vane |
JP2859967B2 (en) * | 1991-01-24 | 1999-02-24 | 東京窯業株式会社 | Sleeve for die casting machine |
JP2540253B2 (en) * | 1991-08-06 | 1996-10-02 | 品川白煉瓦株式会社 | Conductivity measurement cell |
JPH0649687A (en) * | 1992-07-30 | 1994-02-22 | Kobe Steel Ltd | Wear-resistant surface-coated material |
JPH07230714A (en) * | 1994-02-16 | 1995-08-29 | Murata Mfg Co Ltd | Copper electroconductive paste |
JP3229771B2 (en) * | 1995-04-08 | 2001-11-19 | 株式会社堀場製作所 | Equipment for measuring conductivity or resistivity |
-
1997
- 1997-08-08 JP JP22561397A patent/JP3616840B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1151890A (en) | 1999-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Devilliers et al. | Cr (III) oxidation with lead dioxide-based anodes | |
Okabe et al. | Electrochemical deoxidation of titanium | |
Marrese | Preparation of strongly adherent platinum black coatings | |
Brown et al. | Electrochemical behaviour of aluminium in aqueous caustic solutions | |
US5185075A (en) | Surface treated titanium/titanium alloy articles and process for producing | |
Hussey et al. | The electrochemistry of copper in a room temperature acidic chloroaluminate melt | |
JPH10510881A (en) | Cleaning of aluminum products | |
Dallek et al. | Mechanism of pit initiation on aluminum alloy type 7075 | |
Fonseca et al. | Passivity breakdown of Al 2024-T3 alloy in chloride solutions: a test of the point defect model | |
Barnartt | The Oxygen‐Evolution Reaction at Gold Anodes: I. Accuracy of Overpotential Measurements | |
US20210055248A1 (en) | Reference electrodes for molten salt systems, and related methods and electrochemical systems | |
Vignal et al. | Nanoscopic studies of stainless steel electropolishing | |
Schuldiner et al. | Comparative Activity of (111),(100),(110), and Polycrystalline Platinum Electrodes in H2‐Saturated 1 M H 2 SO 4 under Potentiostatic Control | |
US3554881A (en) | Electrochemical process for the surface treatment of titanium,alloys thereof and other analogous metals | |
JP3616840B2 (en) | Conductivity meter | |
Kulesza et al. | The electrode kinetics of the Fe (CN) 63−/Fe (CN) 64− system on the platinum rotating electrode in the presence of different anions | |
Petrocelli | The electrochemical behavior of aluminum: I. In solutions of cerium sulfate in sulfuric acid | |
JP2574699B2 (en) | Oxygen generating anode and its manufacturing method | |
US5141606A (en) | Method for the electrolytic pickling or degreasing of steel plate | |
JPH11172489A (en) | Production of barium titanate coating film | |
Kisza et al. | An Impedance Study of the Kinetics and Mechanism of the Anodic Reaction on Graphite Anodes in Saturated Cryolite‐Alumina Melts | |
Lantelme et al. | Chronopotentiometric Investigation of the Anodic Reaction in Cryolite Melts: Influence of Dissolved Metal Traces | |
Brookes et al. | The electrochemistry of the boriding of ferrous metal surfaces | |
EP0182479B1 (en) | Nickel sulphate colouring process for anodized aluminium | |
Mazza | Influence of Long Time Polarization on Anodic Breakdown of Titanium in Concentrated NaCl Solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041021 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |