[go: up one dir, main page]

JP3611227B2 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
JP3611227B2
JP3611227B2 JP27865796A JP27865796A JP3611227B2 JP 3611227 B2 JP3611227 B2 JP 3611227B2 JP 27865796 A JP27865796 A JP 27865796A JP 27865796 A JP27865796 A JP 27865796A JP 3611227 B2 JP3611227 B2 JP 3611227B2
Authority
JP
Japan
Prior art keywords
component
weight
resin composition
resin
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27865796A
Other languages
Japanese (ja)
Other versions
JPH10101920A (en
Inventor
譲 澤野
Original Assignee
日本ジーイープラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ジーイープラスチックス株式会社 filed Critical 日本ジーイープラスチックス株式会社
Priority to JP27865796A priority Critical patent/JP3611227B2/en
Publication of JPH10101920A publication Critical patent/JPH10101920A/en
Application granted granted Critical
Publication of JP3611227B2 publication Critical patent/JP3611227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリカ−ボネ−ト(以下では、PCと称することがある)系樹脂を含む樹脂組成物に関する。
【0002】
【発明が解決しようとする課題】
ポリカ−ボネ−ト(PC)樹脂やこれにABS(アクリロニトリル−ブタジエン−スチレン)系樹脂をブレンドしたポリマ−アロイは、電気電子製品、OA機器等に広く使用されている。近年、これらの用途では製品の小型化、軽量化の要請が高まり新しい成形法が試みられたり、使用される樹脂に薄肉成形性能や精密成形性能などが要求されている。電気機器の部品特に可動部品、例えばシャーシ、LDやCDのトレー、軸受け等に使用される場合は成形品の寸法精度や摺動性、耐摩耗性が要求される。
【0003】
この耐摩耗性、摺動性の改良にはポリテトラフルオロエチレン(PTFE:商標 テフロン)を樹脂に添加することが有効であることが一般に知られているが原材料のコストが高い、衝撃強度等にバラツキが生じることがある等の問題があった。
【0004】
そこで本発明は、摺動性に優れた、特に摩擦係数が低減されたPC系樹脂組成物を提供することを目的とする。
【0005】
本発明はさらに、成形品の寸法精度および耐衝撃性に優れたPC系樹脂組成物を提供することを目的とする。
【0006】
本発明はさらに、優れた難燃性を発揮するPC系樹脂組成物を提供することを目的とする。
【0007】
本発明はさらに、上記したようなPC系樹脂組成物を安価に提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、PC/ABS系の樹脂組成物について上記課題解決のため鋭意検討した結果、PC/ABS系の樹脂組成物に低分子量ポリオレフィン、シリコーンオイルまたはシリコーン樹脂微粒子を単独もしくは組み合わせて添加することで摩擦係数を低くすることができ、充填材を併用することで寸法精度を上げることができ、更に難燃性の要求にはリン酸エステル系難燃剤を使用することでUL94 VI〜V0の等級の樹脂組成物が得られることを見出した。
【0009】
すなわち本発明は、
(A)粘度平均分子量10,000〜100,000を有するポリカーボネート系樹脂30〜90重量%、
(B)(a)芳香族ビニル単量体成分、(b)シアン化ビニル単量体成分及び(c)ゴム質重合体を共重合の構成成分として含む共重合体1〜50重量%
(C) 分子量 10,000 以下のポリオレフィン及粒径が 0.5 12 μ m であるシリコーン樹脂微粒子からなる群より選択される物質0.5〜30重量%、及び
(D)(a) 芳香族ビニル単量体成分及び (b) シアン化ビニル単量体成分を共重合体の構成成分として含む共重合体であって、重量平均分子量 15,000 から 200,000 を有する共重合体 1 50 重量 %
を含む樹脂組成物を提供する。
【0010】
【発明の実施の形態】
本発明において使用されるポリカ−ボネ−ト系樹脂は、公知のホスゲン法または、溶融法により作られた芳香族ポリカ−ボネ−トであり、そのようなポリカーボネート系樹脂は、例えば特開昭63−215763号公報及び特開平2−124934号公報に記載されている。原料として使用するジフェノ−ルとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン(いわゆるビスフェノ−ルA);2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン;2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン;1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン;1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロヘキサン;1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロヘキサン;1,1−ビス(4−ヒドロキシフェニル)デカン;1,4−ビス(4−ヒドロキシフェニル)プロパン;1,1−ビス(4−ヒドロキシフェニル)シクロドデカン;1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロドデカン;4,4−ジヒドロキシジフェニルエ−テル;4,4−チオジフェノ−ル;4,4−ジヒドロキシ−3,3−ジクロロジフェニルエ−テル;及び4,4−ジヒドロキシ−2,5−ジヒドロキシジフェニルエ−テル等が挙げられる。また、カ−ボネ−トを導入するための前駆物質としては例えばホスゲン、ジフェニルカーボネート等が挙げられる。
【0011】
本発明においては、ポリカ−ボネ−ト系樹脂は粘度平均分子量(Mv)10,000以上を有することが必要である。粘度平均分子量は好ましくは21,000以上、更に好ましくは22,000以上である。また粘度平均分子量は100,000以下であることが必要であり、実用的には40,000以下である。粘度平均分子量が上記の下限値未満であると物性の低下を招き、また上限値を超えると流動性が損なわれる。本発明において粘度平均分子量(Mv)は、塩化メチレン中、20℃で固有粘度(極限粘度)を測定し、マ−ク フウィンク(Mark−Houwink)の粘度式:
【0012】
【数1】
極限粘度[η]=K(Mv)
(上記式中、K=1.23×10−4、a=0.83である)
を用いて、計算によって求めた。
【0013】
成分(B)は(a) 芳香族ビニル単量体成分、(b) シアン化ビニル単量体成分および(c) ゴム質重合体を含む共重合体である。(a) 芳香族ビニル単量体成分としては、例えばスチレン、α−メチルスチレン、o−,m− もしくはp−メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、p−ter−ブチルスチレン、エチルスチレン、ビニルナフタレン等を挙げることができ、これらを一種または二種以上使用する。好ましくはスチレン、α‐メチルスチレンである。
【0014】
(b) シアン化ビニル単量体成分としては、例えばアクリロニトリル、メタアクリロニトリル等を挙げることができ、これらを一種または二種以上使用する。
【0015】
(c) ゴム質重合体としては、ポリブタジエン、ポリイソプレン、スチレン−ブタジエンのランダム共重合体およびブロック共重合体、該ブロック共重合体の水素添加物、アクリロニトリル−ブタジエン共重合体、ブタジエン−イソプレン共重合体等のジエン系ゴム、エチレン−プロピレンのランダム共重合体及びブロック共重合体、エチレンとα‐オレフィンとの共重合体、エチレン−メタクリレ−ト、エチレン−ブチルアクリレ−トなどのエチレン−不飽和カルボン酸エステルとの共重合体、アクリル酸エステル−ブタジエン共重合体、例えばブチルアクリレ−ト−ブタジエン共重合体などのアクリル系弾性重合体、エチレン−酢酸ビニル等のエチレンと脂肪酸ビニルとの共重合体、エチレン−プロピレン−ヘキサジエン共重合体などのエチレン−プロピレン非共役ジエンタ−ポリマ−、ブチレン−イソブレン共重合体、塩素化ポリエチレン等が挙げられ、これらを一種または2種以上で使用する。好ましいゴム質重合体としては、エチレン−プロピレン非共役ジエンタ−ポリマ−、ジエン系ゴムおよびアクリル系弾性重合体であり、特に好ましくはポリブタジエン及びスチレン−ブタジエン共重合体である。
【0016】
成分(B)共重合体における上記成分の比率は特に制限されず、用途に応じて選択される。
【0017】
成分(B)共重合体には、上記の成分(a) 、(b) および(c) の他に、(d) これらの成分と共重合可能な単量体を本発明の目的を損なわない範囲で使用することができる。そのような共重合可能な単量体としては、アクリル酸、メタアクリル酸などのα、β−不飽和カルボン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチル(メタ)アクリレート、2−エチルヘキシルメタクリレート等のα、β−不飽和カルボン酸エステル類;無水マレイン酸、無水イタコン酸等のα、β−不飽和ジカルボン酸無水物類;マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−フェニルマレイミド、N−o−クロロフェニルマレイミド等のα、β−不飽和ジカルボン酸のイミド化合物類;等を挙げることができ、これらの単量体は一種または二種以上で使用される。
【0018】
成分(B)共重合体としては、(c) ゴム質重合体の存在下にその他の成分がグラフト共重合したグラフト共重合体が好ましく、更に好ましくはABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体)、AES樹脂(アクリロニトリル−エチレン−プロピレン−スチレン共重合体)、ACS樹脂(アクリロニトリル−塩素化ポリエチレン−スチレン共重合体)、AAS樹脂(アクリロニトリル−アクリル系弾性体−スチレン共重合体)である。
【0019】
成分(B)共重合体の製造法に関しては特に制限はなく、塊状重合、溶液重合、塊状懸濁重合、懸濁重合、乳化重合など通常の公知の方法が用いられる。また、別々に共重合した樹脂をブレンドすることによって得ることも可能である。
【0020】
本発明においては、後述する成分(E)充填材が添加された樹脂組成物については、成分(B)が塊状重合または塊状懸濁重合により製造されたものであるときに、物性等において好ましい結果が得られた。
【0021】
次に成分(C)は、分子量 10,000 以下のポリオレフィン及粒径が 0.5 12 μ m であるシリコーン樹脂微粒子から選ばれる物質である。これらのいずれか一つを選択しても、または2種以上を組み合わせて選択してもよい。ポリオレフィンとしては、ポリエチレン、ポリプロピレン等が挙げられるが、ポリエチレンが好ましい。分子量10,000以下のポリエチレンが特に好ましい。シリコーン樹脂微粒子は、3次元架橋構造を有するシリコーン樹脂微粒子であり、そのようなシリコーン樹脂としては、メチルシリコーン樹脂が好ましい。このようなシリコーン樹脂微粒子は、東芝シリコーン株式会社より“トスパール”として入手可能である。
【0022】
本発明の樹脂組成物における成分(A)、(B)および(C)の配合量は、 (A)30〜90重量%、(B)1〜50重量%および(C)0.5〜30重量%である。好ましくは(A)50〜90重量%、(B)1〜50重量%および (C)0.5〜20重量%である。成分(C)の割合が少なすぎると摺動性の向上効果が認められず、また多すぎると物性の低下を招く。
【0023】
発明の樹脂組成物は、成形性(流動性)改善に寄与する成分として、成分(D)(a) 芳香族ビニル単量体成分及び(b) シアン化ビニル単量体成分を含む共重合体を含む。(a) 芳香族ビニル単量体成分および(b) シアン化ビニル単量体成分については、前記した成分(B)において示したものが挙げられる。(a)/(b) の組成比は、特に制限されないが (D)成分中において好ましくは(a) が95〜50重量%、(b) が5〜50重量%であり、更に好ましくは(a) が92〜65重量%、(b) が8〜35重量%である。成分(D)共重合体の好ましい例としては、例えばSAN樹脂(スチレン−アクリロニトリル共重合体)が挙げられる。
【0024】
成分(D)共重合体の製造法に関しては特に制限はなく、上記した成分(B)共重合体と同様の方法が使用できる。
【0025】
本発明においては、成分(D)共重合体の重量平均分子量(Mw)は、好ましくは15,000〜200,000、より好ましくは30,000〜110,000である。
【0026】
本発明の樹脂組成物は、成分(D)を、組成物全体の50重量%以下、好ましくは1〜50重量%の割合で含むことができる。
【0027】
本発明の樹脂組成物はまた、寸法精度および機械的強度を向上させる目的で、成分(E)無機または有機充填材を含むことができる。無機充填材としては、例えばタルク、マイカ、硫酸バリウム、ガラス(ガラス繊維、ミルドガラス、ガラスフレーク、ガラスビーズなど)、炭素繊維、金属粉(例えば銅粉、アルミ粉等)、クレー、酸化チタン、カーボンブラック、チタン酸カリウム等が挙げられる。また、有機充填材としては、例えばナイロン、アラミドなどの全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエステル、ポリベンゾイミダゾール、ポリイミダゾフェナンスロリンなどの複素環式化合物等が挙げられる。これらの充填材は、シランカップリング剤、チタンカップリング剤等で処理されていてもよい。成分(E)は好ましくは、タルク、マイカ、硫酸バリウム、ガラス繊維、ガラスフレーク、炭素繊維および金属粉から選択される無機充填材である。なお高外観や高い寸法精度が要求される場合、タルクやマイカ等鱗片状の充填材が好ましい。
【0028】
成分(E)は、組成物全体の50重量%以下の割合で含まれることができ、好ましくは1〜50重量%の割合で含まれる。
【0029】
本発明の樹脂組成物はまた、成分(F)ポリオルガノシロキサン及びポリアルキル(メタ)アクリレ−トを含む複合ゴムにビニル系単量体がグラフトしてなる複合ゴム系グラフト共重合体を含むことができる。このような複合ゴム系グラフト共重合体は、ポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分とが交互に絡み合って複合一体化されている構造を有する複合ゴムに、1種または2種以上のビニル系単量体がグラフト重合されてなるものであり得る。このような複合ゴム系グラフト共重合体はそれ自体公知である。
【0030】
このような複合ゴム系グラフト共重合体の製造は、例えば特開昭64−79257号公報、特開平7−207137号公報および特開平7−207132号公報において開示された方法によることができる。
【0031】
このような複合ゴムは、乳化重合法によって好適に製造することができる。まずポリオルガノシロキサンゴムのラテックスを調製し、次にアルキル(メタ)アクリレートゴムの合成用単量体をポリオルガノシロキサンゴムラテックスのゴム粒子に含浸させてから、アルキル(メタ)アクリレートゴムの合成用単量体を重合させるのが好ましい。
【0032】
オルガノシロキサンゴム成分は、例えば以下に示すオルガノシロキサンおよび架橋剤(I)を用いて乳化重合により調製することができ、その際、さらにグラフト交叉剤(I)を併用することができる。
【0033】
オルガノシロキサンとしては、例えば、ジメチルシロキサン等の鎖状オルガノシロキサン、あるいは、3員環以上、好ましくは3〜6員環の各種の環状オルガノシロキサンを用いることができる。例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等が挙げられる。これらのオルガノシロキサンを単独でまたは2種以上混合して用いることができる。これらの使用量は、好ましくはポリオルガノシロキサンゴム成分中50重量%以上、さらに好ましくは70重量%以上である。
【0034】
架橋剤(I)としては、3官能性または4官能性のシラン系架橋剤、例えば、トリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシラン、テトラブトキシシラン等を用いることができる。特に、4官能性の架橋剤が好ましく、この中でもテトラエトキシシランが特に好ましい。架橋剤は単独で用いてもよく、また2種以上併用してもよい。架橋剤の使用量は、ポリオルガノシロキサンゴム成分中0.1〜30重量%が好ましい。
【0035】
グラフト交叉剤(I)としては、次式:
【0036】
【化1】
CH=C(R)−COO−(CH−SiR (3−n)/2 (I−1)
【0037】
【化2】
CH=CH−SiR (3−n)/2 (I−2)
または
【0038】
【化3】
HS−(CH−SiR (3−n)/2 (I−3)
(上記式中、Rは低級アルキル基、例えばメチル基、エチル基、プロピル基等またはフェニル基を表し、Rは水素原子またはメチル基を表し、nは0、1または2を表し、pは1〜6の整数を表す)
で示される単位を形成し得る化合物が用いられる。上記式(I−1)の単位を形成し得る(メタ)アクリロイルオキシシロキサンはグラフト効率が高いため、有効なグラフト鎖を形成することが可能であり、高い耐衝撃性を発現するという点で有利である。なお、式(Iー1) の単位を形成し得るものとしてメタクリロイルオキシシロキサンが特に好ましい。メタクリロイルオキシシロキサンの具体例としては、β−メタクリロイルオキシエチルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルメトキシジメチルシラン、γ−メタクリロイルオキシプロピルトリジメトキシメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルエトキシジエチルシラン、γ−メタクリロイルオキシプロピルジエトキシメチルシラン、δ−メタクリロイルオキシブトキシブチルジエキシメチルシラン等が挙げられる。これ等は単独で用いてもよく、また2種以上併用してもよい。グラフト交叉剤の使用量は、好ましくはポリオルガノシロキサンゴム成分中0〜10重量%である。
【0039】
このポリオルガノシロキサンゴム成分のラテックスの製造は、例えば米国特許第2891920号号明細書、同第3294725号明細書に記載された方法を用いることができる。本発明の実施では、例えばオルガノシロキサンと架橋剤 (I)および所望によりグラフト交叉剤(I)の混合液とを、アルキルベンゼンスルホン酸、アルキルスルホン酸等のスルホン酸系乳化剤の存在下で、例えばホモジナイザー等を用いて水と剪断混合する方法により製造することが望ましい。アルキルベンゼンスルホン酸は、オルガノシロキサンの乳化剤として作用すると同時に重合開始剤ともなるので特に好適である。この際、アルキルベンゼンスルホン酸の金属塩、アルキルスルホン酸の金属塩等を併用すると、グラフト重合を行なう際にポリマーを一定に維持する効果があるので好ましい。
【0040】
次に、上記複合ゴムを構成するポリアルキル(メタ)アクリレートゴム成分は、以下に示すアルキル(メタ)アクリレート、架橋剤(II)およびグラフト交叉剤(II)を用いて合成することができる。
【0041】
アルキル(メタ)アクリレートとしては、例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、2−エチルヘキシルアクリレート等のアルキルアクリレートおよびヘキシルメタクリレート、2−エチルヘキシルメタクリレート、nーラウリルメタクリレート等のアルキルメタクリレートが挙げられ、特にn−ブチルアクリレートの使用が好ましい。
【0042】
架橋剤(II)としては、例えばエチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1, 3−ブチレングリコールジメタクリレート、1, 4−ブチレングリコールジメタクリレート等が挙げられる。
【0043】
グラフト交叉剤(II)としては、例えばアリルメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。アリルメタクリレートは架橋剤としても用いることができる。これ等架橋剤およびグラフト交叉剤は単独で用いてもよく、また2種以上併用してもよい。これ等の架橋剤およびグラフト交叉剤の合計の使用量は、好ましくはポリアルキル(メタ)アクリレートゴム成分中0. 1〜20重量%である。
【0044】
ポリアルキル(メタ)アクリレートゴム成分の重合は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリの水溶液の添加により中和されたポリオルガノシロキサンゴム成分のラテックス中へ上記アルキル(メタ)アクリレート、架橋剤およびグラフト交叉剤を添加し、ポリオルガノシロキサンゴム粒子へ含浸させた後、通常のラジカル重合開始剤を作用させて行なう。重合の進行と共にポリオルガノシロキサンゴムの架橋網目に相互に絡んだポリアルキル(メタ)アクリレートゴムの架橋網目が形成され、実質上分離できない、ポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分との複合ゴムのラテックスが得られる。なお、本発明の実施に際しては、この複合ゴムとしてポリオルガノシロキサンゴム成分の主骨格がジメチルシロキサンの繰り返し単位を有し、ポリアルキル(メタ)アクリレートゴム成分の主骨格がn−ブチルアクリレートの繰り返し単位を有する複合ゴムが好ましく用いられる。
【0045】
このようにして乳化重合により調製された複合ゴムは、ビニル系単量体とグラフト共重合可能である。この複合ゴムをトルエンにより90℃で12時間抽出して測定したゲル含量は80重量%以上であると好ましい。
【0046】
また、難燃性、耐衝撃性、外観等のバランスを満足させるためには、上記の複合ゴムにおけるポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分の割合は、前者が3〜90重量%に対して後者が97〜10重量%であるのが好ましく、また、複合ゴムの平均粒子径は、0.08〜0.6μmであるのが好ましい。
【0047】
上記の複合ゴムにグラフト重合させるビニル系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン等の芳香族アルケニル化合物;メチルメタクリレート、2−エチルヘキシルメタクリレート等のメタクリル酸エステル;メチルアクリレート、エチルアクリレート、ブチルアクリレート等のアクリル酸エステル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物等の各種ビニル系単量体が挙げられ、これらを単独でまたは2種以上組み合わせて用いることができる。特に好ましいビニル系単量体はメチルメタクリレートである。ビニル系単量体は、上記した複合ゴム30〜95重量%に対して5〜70重量%の割合で含まれると好ましい。
【0048】
複合ゴム系グラフト共重合体(F)は、上記ビニル系単量体を上記の複合ゴムのラテックスに加え、ラジカル重合技術によって一段または多段で重合させて得られる複合ゴム系グラフト共重合体ラテックスを、塩化カルシウムまたは硫酸マグネシウム等の金属塩を溶解した熱水中に投入し、塩析、凝固することにより分離、回収することができる。
【0049】
このような複合ゴム系グラフト共重合体(F)は、例えば三菱レイヨン株式会社より、メタブレンS−2001として商業的に入手可能である。
【0050】
成分(F)は、組成物全体の40重量%以下の割合で含まれることができ、好ましくは0.5〜40重量%の割合で含まれる。
【0051】
本発明の樹脂組成物は、難燃剤として成分(G)リン酸エステル系化合物を含むことができ、例えば次式(II):
【0052】
【化4】

Figure 0003611227
(ここで、R、R、RおよびRは、それぞれ独立して、水素原子または有機基を表すが、R=R=R=R=Hの場合を除く。Xは2価以上の有機基を表し、pは0または1であり、qは1以上、例えば30以下の整数、rは0以上の整数を表す。)
で示されるリン酸エステル系化合物が挙げられる。しかし、これらに限定されるものではない。
【0053】
上記式(II)において、有機基とはたとえば、置換されていてもいなくてもよいアルキル基、シクロアルキル基、アリール基等が挙げられる。また、置換されている場合、置換基としては例えばアルキル基、アルコキシ基、アルキルチオ基、ハロゲン、アリール基、アリールオキシ基、アリールチオ基、ハロゲン化アリール基等が挙げられ、またこれ等の置換基を組合せた基(例えばアリールアルコキシアルキル基等)またはこれ等の置換基を酸素原子、イオウ原子、窒素原子等により結合して組合せた基(例えば、アリールスルホニルアリール基等)を置換基として用いてもよい。また、2価以上の有機基とは上記した有機基から、炭素原子に結合している水素原子の1個以上を除いてできる2価以上の基を意味する。例えばアルキレン基、および好ましくは(置換)フェニレン基、多核フェノール類例えばビスフェノール類から誘導されるものが挙げられ、2以上の遊離原子価の相対的位置は任意である。特に好ましいものとして、ヒドロキノン、レゾルシノール、ジフェニロールメタン、ジフェニロールジメチルメタン、ジヒドロキシジフェニル、 p,p′− ジヒドロキシジフェニルスルホン、ビスフェノールA、ビスフェノールS、ジヒドロキシナフタレン等が挙げられる。
【0054】
具体的なリン酸エステル系化合物の例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジイソプロピルフェニルホスフェート、トリス(クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(クロロプロピル)ホスフェート、ビス(2,3−ジブロモプロピル)−2,3− ジクロロプロピルホスフェート、トリス(2,3−ジブロモプロピル)ホスフェートおよびビス(クロロプロピル)モノオクチルホスフェート、ビスフェノールAテトラクレジルジホスフェート、ビスフェノールAテトラキシリルジホスフェート、ヒドロキノンテトラフェニルジホスフェート、ヒドロキノンテトラクレジルジホスフェート、ヒドロキノンテトラキシリルジホスフェート、R〜Rがアルコキシ例えばメトキシ、エトキシおよびプロポキシ、または好ましくは(置換)フェノキシ例えばフェノキシ、メチル(置換)フェノキシであるところのビスフェノールAビスホスフェート、ヒドロキノンビスホスフェート、レゾルシンビスホスフェート、トリオキシベンゼントリホスフェート等のポリホスフェート類が挙げられ、好ましくはトリフェニルホスフェートおよび各種ビスホスフェート類から選択される。
【0055】
成分(G)は、組成物全体の30重量%以下の割合で含まれることができ、好ましくは1〜30重量%、より好ましくは3〜20重量%、特に好ましくは5〜15重量%の割合で含まれる。
【0056】
本発明の組成物にはさらに、滴下防止剤を配合することができる。そのような滴下防止剤として使用することができるフッ素化ポリオレフィンは、商業的にも入手できるし、あるいは公知の方法によって製造することもできる。それは、例えば、遊離基触媒(例えば、ペルオキシ二硫酸ナトリウム、カリウムまたはアンモニウム)を使用しながら水性媒質中において100〜1000psiの圧力および0〜200℃好ましくは20〜100℃の温度下でテトラフルオロエチレンを重合させることによって得られる白色の固体である。詳しくは、ブルベーカー(Brubaker)の米国特許第2393967号明細書を参照することができる。
【0057】
不可欠ではないが、比較的大きな粒子例えば平均粒度0.3〜0.7mm(主として、0.5mm)の粒子の状態にある樹脂を使用することが好ましい。これは0.05〜0.5mmの粒度を有する通常のポリテトラフルオロエチレン粉末よりも良好である。かかる比較的大きな粒度の物質が特に好ましい理由は、それが重合体中に容易に分散し、かつ重合体同志を結合して繊維状材料を作る傾向を示すことにある。かかる好適なポリテトラフルオロエチレンは、ASTMによればタイプ3と呼ばれるもので、実際にはデュポン社(E.I. Dupont de Nemours and Company )から、テフロン6(Teflon 6)として商業的に入手可能である。あるいは、三井デュポンフロロケミカル社のテフロン30Jとして商業的に入手することができる。フッ素化ポリオレフィンは、成分(A)100重量部に対して、好ましくは0.01〜2重量部、より好ましくは0.05〜1.0重量部使用する。組成物の物性を損ねたり、あるいは押出し加工の工程でダイスウェルの発生といった問題が生じたりするので、滴下防止剤は、通常は2重量部を超えては添加しない。
【0058】
なお、本発明の樹脂組成物には、上記の各成分の他にさらに、その物性を損なわない限りにおいて、その目的に応じて樹脂の混合時、成形時等に慣用の他の添加剤、例えば顔料、染料、耐熱剤、酸化劣化防止剤、耐候剤、滑剤、離型剤、結晶核剤、可塑剤、流動性改良剤、帯電防止剤等周知の添加物を配合することができる。
【0059】
本発明の樹脂組成物を製造するための方法に特に制限はなく、通常の方法が満足に使用できる。しかしながら、一般に溶融混合法が望ましい。少量の溶剤の使用も可能であるが、一般に必要はない。装置としては特に押出機、バンバリーミキサー、ローラー、ニーダー等を例として挙げることができる。これ等装置を回分的または連続的に運転することができる。また、成分の混合順序は特に限定されない。
【0060】
【実施例】
以下、実施例に即して本発明をさらに開示する。なお、以下の実施例において使用した物質は、次のようなものであった。
必須成分:
成分(A)
PC:ビスフェノールAのポリカーボネート、LEXAN(商品名;日本ジーイープラスチックス(株)製)、塩化メチレン中、20℃で測定した固有粘度0.50dl/g、Mv=約22,000(計算値)
成分(B)
ABS−1:ABS樹脂、サンタック AT−05 (商標;三井東圧化学 (株)製)
ABS−2:ABS樹脂、UX050(商標;宇部サイコン(株)製)
成分(C)
低分子量PE:低分子量ポリエチレン、HIWAX110(商標;三井石油化学(株)製
リコーン樹脂微粒子:トスパール120(商標;東芝シリコーン(株)製)
成分(C)の比較成分(従来の摺動性改良剤)
ポリテトラフルオロエチレン(PTFE):LUBRON L−5(商標;ダイキン工業 (株)製
分(D)
SAN:SAN樹脂、SR05B(商標;宇部サイコン(株)製)
任意成分:
成分(E)
無機充填材:タルク、HS−T(商標;林化成 (株) 製)
成分(F)
メタブレン S−2001(商標)(メチルメタクリレートー ブチルアクリレート- ジメチルシロキサンコポリマー、三菱レイヨン(株))
成分(G)
レゾルシノールジホスフェート:CR733S(商標;大八化学(株)製)
滴下防止剤
ポリテトラフルオロエチレン(PTFE):テフロン30J(商標;三井デュポンフロロケミカル(株)製)。
【0061】
実施例1〜4および比較例1〜5
表1および2に示した各成分を、東芝機械(株)製の二軸押出機を用い、スクリュー回転数200rpm、バレル温度270〜280℃の押出し条件にて、押出しを行ない、所定長さに切断してペレットを製造した。
【0062】
このように製造されたペレットを用い、東洋機械金属(株)製の80t射出成形機により難燃性試験用の試験片を成形した。成形条件は、バレル温度260℃、金型温度50℃に設定した。他の物性測定も、この試験片を使用した。
【0063】
各物性評価試験は次のようにして行った。結果を表1および2に示す。
(1) アイゾット衝撃強度
ASTM D256にしたがって、1/8”ノッチ付アイゾット衝撃強度を測定した。
(2) 引張り強度
ASTM D638にしたがって測定した。
(3) 曲げ強度および曲げ弾性率
ASTM D790にしたがって測定した。
(4) メルトインデックス(MI)
ASTM D1238にしたがって、260 ℃で、5kg荷重にて測定した。
(5) 荷重たわみ温度
ASTM D648にしたがって、厚み1/4 インチの試験片を荷重18.6kg/cmにて測定した。
(6) 難燃性試験
UL94/V0 ,VI ,VIIに準拠した試験を行なった。5個の試験片を、アンダーライターズラボラトリーインクのブレテン94”材料分類のための燃焼試験”(以下、UL−94という)に示される試験方法に従って、厚み1/16インチで試験した。この試験方法により、供試材料を、5個の試料の結果に基づいてUL−94 V−0 、V−I 、V−IIのいずれかの等級に評価した。UL−94についての各Vの等級の基準は概略以下の通りである。
【0064】
V−0 :点火炎を取り除いた後の平均火炎保持時間が10秒以下であり、かつ全試料とも脱脂綿に着火する微粒炎を落下しない。
【0065】
V−I :点火炎を取り除いた後の平均火炎保持時間が30秒以下であり、かつ全試料とも脱脂綿に着火する微粒炎を落下しない。
【0066】
V−II:点火炎を取り除いた後の平均火炎保持時間が30秒以下であり、かつこれ等の試料が脱脂綿に着火する微粒炎を落下する。
(7) 静摩擦係数、動摩擦係数
JIS K7125に準拠して測定した。摩擦係数測定は、金属に対して、およびガラス繊維20%添加の変性ポリフェニレンオキシド(PPO)樹脂(GF20% M−PPO )成形品に対しての2通りについて評価した。
【0067】
【表1】
Figure 0003611227
【0068】
【表2】
Figure 0003611227
PC/ABS系組成物の摺動性を良好にするために、従来の摺動性改良剤(PTFE)を添加すると、このような多量のPTFEの添加では、アイゾット衝撃強度を低下させることがわかる(比較例2および5)。
【0069】
【発明の効果】
本発明の樹脂組成物から得られる成形品の物性は、従来品に比して優れた摺動性を示す。さらには、特定の難燃剤の配合により優れた難燃性を示す。また、慣用の添加剤の添加により、耐衝撃性、靱性等の機械特性にも優れた成形品を得ることができる。このように、優れた摺動性を備えていることから、本発明の樹脂組成物は、CDトレ−等摺動特性が要求されるOA機器の部品などの安価な材料として、幅広い用途への適用が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition containing a polycarbonate (hereinafter sometimes referred to as PC) resin.
[0002]
[Problems to be solved by the invention]
Polycarbonate (PC) resins and polymer alloys obtained by blending ABS (acrylonitrile-butadiene-styrene) resins with these resins are widely used in electrical and electronic products, office automation equipment, and the like. In recent years, demands for miniaturization and weight reduction of products have increased in these applications, and new molding methods have been attempted, and thin-wall molding performance and precision molding performance have been required for the resins used. When used for parts of electrical equipment, particularly movable parts such as chassis, LD and CD trays, bearings, etc., the dimensional accuracy, slidability and wear resistance of the molded product are required.
[0003]
It is generally known that polytetrafluoroethylene (PTFE: trademark Teflon) is effective for improving the wear resistance and slidability, but the cost of raw materials is high, impact strength, etc. There were problems such as variations.
[0004]
Accordingly, an object of the present invention is to provide a PC-based resin composition having excellent slidability and particularly a reduced friction coefficient.
[0005]
It is another object of the present invention to provide a PC resin composition excellent in dimensional accuracy and impact resistance of a molded product.
[0006]
Another object of the present invention is to provide a PC resin composition that exhibits excellent flame retardancy.
[0007]
Another object of the present invention is to provide a PC-based resin composition as described above at low cost.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on the PC / ABS resin composition for solving the above-mentioned problems, the present inventors added low molecular weight polyolefin, silicone oil, or silicone resin fine particles, alone or in combination, to the PC / ABS resin composition. Thus, the friction coefficient can be lowered, and the dimensional accuracy can be increased by using the filler together. Further, for the requirement of flame retardancy, it is possible to use UL94 VI to V0 by using a phosphate ester flame retardant. It was found that a grade resin composition was obtained.
[0009]
That is, the present invention
(A) 30 to 90% by weight of a polycarbonate-based resin having a viscosity average molecular weight of 10,000 to 100,000
(B) (a) an aromatic vinyl monomer component, (b) a vinyl cyanide monomer component and (c) a copolymer containing 1 to 50% by weight of a rubbery polymer as a constituent component of the copolymer ,
(C) material 0.5 to 30 wt% of a molecular weight of 10,000 or less of Po Riorefi down及 beauty particle size is selected from the group consisting of silicone resin fine particles is 0.5 ~ 12 μ m, and
A copolymer comprising (D) (a) an aromatic vinyl monomer component and (b) a vinyl cyanide monomer component as a constituent component of the copolymer, co-having 200,000 weight average molecular weight of 15,000 heavy assembly 1 to 50 wt%
The resin composition containing this is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The polycarbonate resin used in the present invention is an aromatic polycarbonate prepared by a known phosgene method or a melting method. -215763 and JP-A-2-124934. Examples of diphenols used as raw materials include 2,2-bis (4-hydroxyphenyl) propane (so-called bisphenol A); 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane; 1,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane; 1,1-bis (4-hydroxyphenyl) cyclohexane; 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane; 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane; 1,1-bis (4-hydroxyphenyl) decane; 1,4-bis (4-hydroxyphenyl) propane; 1,1-bis (4-hydroxyphenyl) cyclododecane; 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclododecane; 4,4-dihydroxydiphenyl ether; 4,4-thiodiphenol; 4,4-dihydroxy-3,3-dichlorodiphenyl ether; and 4,4-dihydroxy-2,5-dihydroxydiphenyl ether Is mentioned. Examples of the precursor for introducing the carbonate include phosgene and diphenyl carbonate.
[0011]
In the present invention, the polycarbonate resin is required to have a viscosity average molecular weight (Mv) of 10,000 or more. The viscosity average molecular weight is preferably 21,000 or more, more preferably 22,000 or more. The viscosity average molecular weight is required to be 100,000 or less, and practically 40,000 or less. If the viscosity average molecular weight is less than the above lower limit, the physical properties are lowered, and if it exceeds the upper limit, the fluidity is impaired. In the present invention, the viscosity average molecular weight (Mv) is determined by measuring the intrinsic viscosity (extreme viscosity) at 20 ° C. in methylene chloride, and the viscosity formula of Mark-Houwink:
[0012]
[Expression 1]
Intrinsic viscosity [η] = K (Mv) a
(In the above formula, K = 1.23 × 10 −4 , a = 0.83)
Was obtained by calculation.
[0013]
Component (B) is a copolymer comprising (a) an aromatic vinyl monomer component, (b) a vinyl cyanide monomer component, and (c) a rubbery polymer. (A) As an aromatic vinyl monomer component, for example, styrene, α-methylstyrene, o-, m- or p-methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene , P-ter-butylstyrene, ethylstyrene, vinylnaphthalene, and the like, and these may be used alone or in combination. Styrene and α-methylstyrene are preferred.
[0014]
(B) As a vinyl cyanide monomer component, acrylonitrile, methacrylonitrile, etc. can be mentioned, for example, These are used 1 type, or 2 or more types.
[0015]
(C) Rubbery polymers include polybutadiene, polyisoprene, random copolymers and block copolymers of styrene-butadiene, hydrogenated products of the block copolymers, acrylonitrile-butadiene copolymers, butadiene-isoprene copolymers. Diene rubbers such as polymers, random copolymers and block copolymers of ethylene-propylene, copolymers of ethylene and α-olefins, ethylene-unsaturations such as ethylene-methacrylate, ethylene-butyl acrylate Copolymers with carboxylates, acrylic ester-butadiene copolymers, acrylic elastic polymers such as butyl acrylate-butadiene copolymers, copolymers of ethylene and fatty acid vinyl such as ethylene-vinyl acetate , Ethylene-propylene-hexadiene copolymer, etc. Styrene - propylene nonconjugated Jienta - polymer -, butylene - Isoburen copolymers, chlorinated polyethylene and the like, used in these one or two or more. Preferred rubbery polymers are ethylene-propylene non-conjugated diene polymer, diene rubber and acrylic elastic polymer, particularly preferably polybutadiene and styrene-butadiene copolymer.
[0016]
The ratio of the above components in the component (B) copolymer is not particularly limited, and is selected according to the application.
[0017]
In addition to the above components (a), (b) and (c), the component (B) copolymer includes (d) a monomer copolymerizable with these components and does not impair the purpose of the present invention. Can be used in a range. Examples of such copolymerizable monomers include α, β-unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl ( Α, β-unsaturated carboxylic acid esters such as (meth) acrylate, 2-ethyl (meth) acrylate, 2-ethylhexyl methacrylate; α, β-unsaturated dicarboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; And imide compounds of α, β-unsaturated dicarboxylic acids such as maleimide, N-methylmaleimide, N-ethylmaleimide, N-phenylmaleimide, and N-o-chlorophenylmaleimide; Is used singly or in combination of two or more.
[0018]
As the component (B) copolymer, (c) a graft copolymer obtained by graft copolymerization with other components in the presence of a rubbery polymer is preferable, and an ABS resin (acrylonitrile-butadiene-styrene copolymer is more preferable. ), AES resin (acrylonitrile-ethylene-propylene-styrene copolymer), ACS resin (acrylonitrile-chlorinated polyethylene-styrene copolymer), and AAS resin (acrylonitrile-acrylic elastomer-styrene copolymer).
[0019]
There is no restriction | limiting in particular about the manufacturing method of a component (B) copolymer, Commonly known methods, such as block polymerization, solution polymerization, block suspension polymerization, suspension polymerization, and emulsion polymerization, are used. It can also be obtained by blending separately copolymerized resins.
[0020]
In the present invention, for a resin composition to which a component (E) filler described later is added, when the component (B) is produced by bulk polymerization or bulk suspension polymerization, favorable results in physical properties and the like was gotten.
[0021]
Then component (C) is a substance having a molecular weight of 10,000 or less of Po Riorefi down及 beauty particle size is selected from silicone resin particles is 0.5 ~ 12 μ m. Any one of these may be selected, or two or more may be selected in combination . The port re-olefin, polyethylene, and polypropylene, polyethylene is preferable. Polyethylene having a molecular weight of 10,000 or less is particularly preferred . Shi recone resin particles are silicone resin fine particles having a three-dimensional crosslinked structure, examples of such silicone resins, methyl silicone resins are preferred. Silicone resin particles such as this is available as "Tospearl" from Toshiba Silicone Co., Ltd..
[0022]
The compounding amounts of the components (A), (B) and (C) in the resin composition of the present invention are: (A) 30 to 90% by weight, (B) 1 to 50% by weight and (C) 0.5 to 30 % By weight. Preferably, (A) 50 to 90% by weight, (B) 1 to 50% by weight and (C) 0.5 to 20% by weight. When the proportion of the component (C) is too small, the effect of improving the slidability is not recognized, and when too large, the physical properties are deteriorated.
[0023]
The resin composition of the present invention comprises a component (D) (a) an aromatic vinyl monomer component and (b) a vinyl cyanide monomer component as components that contribute to improving moldability (fluidity). including the union. Examples of the component (a) aromatic vinyl monomer component and the component (b) vinyl cyanide monomer component include those described above for the component (B). The composition ratio of (a) / (b) is not particularly limited, but in component (D), (a) is preferably 95 to 50% by weight, (b) is 5 to 50% by weight, and more preferably ( a) is 92 to 65% by weight, and (b) is 8 to 35% by weight. Preferable examples of the component (D) copolymer include, for example, a SAN resin (styrene-acrylonitrile copolymer).
[0024]
There is no restriction | limiting in particular regarding the manufacturing method of a component (D) copolymer, The method similar to an above-described component (B) copolymer can be used.
[0025]
In the present invention, the weight average molecular weight (Mw) of the component (D) copolymer is preferably 15,000 to 200,000, more preferably 30,000 to 110,000.
[0026]
The resin composition of this invention can contain a component (D) in the ratio of 50 weight% or less of the whole composition, Preferably 1-50 weight%.
[0027]
The resin composition of the present invention can also contain a component (E) inorganic or organic filler for the purpose of improving dimensional accuracy and mechanical strength. Examples of the inorganic filler include talc, mica, barium sulfate, glass (glass fiber, milled glass, glass flake, glass bead, etc.), carbon fiber, metal powder (eg, copper powder, aluminum powder, etc.), clay, titanium oxide, Examples thereof include carbon black and potassium titanate. Examples of the organic filler include heterocyclic compounds such as wholly aromatic polyamides such as nylon and aramid, polyamideimides, polyimides, polyesters, polybenzimidazoles, and polyimidazophenanthrolines. These fillers may be treated with a silane coupling agent, a titanium coupling agent or the like. Component (E) is preferably an inorganic filler selected from talc, mica, barium sulfate, glass fiber, glass flake, carbon fiber and metal powder. When high appearance and high dimensional accuracy are required, scale-like fillers such as talc and mica are preferred.
[0028]
Component (E) can be included in a proportion of 50% by weight or less of the total composition, and preferably in a proportion of 1 to 50% by weight.
[0029]
The resin composition of the present invention also contains a composite rubber-based graft copolymer obtained by grafting a vinyl-based monomer on a composite rubber containing component (F) polyorganosiloxane and polyalkyl (meth) acrylate. Can do. Such a composite rubber-based graft copolymer is a composite rubber having a structure in which a polyorganosiloxane rubber component and a polyalkyl (meth) acrylate rubber component are alternately entangled and integrated into one or two types. The above vinyl monomer may be obtained by graft polymerization. Such composite rubber-based graft copolymers are known per se.
[0030]
Such a composite rubber-based graft copolymer can be produced by the methods disclosed in, for example, JP-A Nos. 64-79257, 7-207137, and 7-207132.
[0031]
Such a composite rubber can be suitably produced by an emulsion polymerization method. First, a latex of polyorganosiloxane rubber is prepared, and then a monomer for synthesizing alkyl (meth) acrylate rubber is impregnated into the rubber particles of polyorganosiloxane rubber latex, followed by synthesis of alkyl (meth) acrylate rubber. It is preferred to polymerize the monomer.
[0032]
The organosiloxane rubber component can be prepared by emulsion polymerization using, for example, the following organosiloxane and crosslinking agent (I), and in this case, a graft crossing agent (I) can be further used in combination.
[0033]
As the organosiloxane, for example, a chain organosiloxane such as dimethylsiloxane, or various cyclic organosiloxanes having 3 or more members, preferably 3 to 6 members, can be used. Examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, and the like. . These organosiloxanes can be used alone or in admixture of two or more. The amount used thereof is preferably 50% by weight or more, more preferably 70% by weight or more in the polyorganosiloxane rubber component.
[0034]
Examples of the crosslinking agent (I) include trifunctional or tetrafunctional silane crosslinking agents such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetrabutoxy. Silane or the like can be used. In particular, tetrafunctional crosslinking agents are preferred, and tetraethoxysilane is particularly preferred among these. A crosslinking agent may be used independently and may be used together 2 or more types. The amount of the crosslinking agent used is preferably 0.1 to 30% by weight in the polyorganosiloxane rubber component.
[0035]
As the graft crossing agent (I), the following formula:
[0036]
[Chemical 1]
CH 2 = C (R 2) -COO- (CH 2) p -SiR 1 n O (3-n) / 2 (I-1)
[0037]
[Chemical 2]
CH 2 = CH-SiR 1 n O (3-n) / 2 (I-2)
Or [0038]
[Chemical 3]
HS- (CH 2) p -SiR 1 n O (3-n) / 2 (I-3)
(In the above formula, R 1 represents a lower alkyl group such as a methyl group, an ethyl group, a propyl group or the like or a phenyl group, R 2 represents a hydrogen atom or a methyl group, n represents 0, 1 or 2, p Represents an integer of 1 to 6)
The compound which can form the unit shown by is used. The (meth) acryloyloxysiloxane capable of forming the unit of the formula (I-1) has a high grafting efficiency, so that it can form an effective graft chain and is advantageous in that high impact resistance is expressed. It is. In addition, methacryloyloxysiloxane is particularly preferable as a unit capable of forming the unit of the formula (I-1). Specific examples of methacryloyloxysiloxane include β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropylmethoxydimethylsilane, γ-methacryloyloxypropyltridimethoxymethylsilane, γ-methacryloyloxypropyltrimethoxysilane, and γ-methacryloyloxy. Examples thereof include propylethoxydiethylsilane, γ-methacryloyloxypropyldiethoxymethylsilane, δ-methacryloyloxybutoxybutyldioxymethylsilane, and the like. These may be used alone or in combination of two or more. The amount of the grafting agent used is preferably 0 to 10% by weight in the polyorganosiloxane rubber component.
[0039]
For the production of the latex of the polyorganosiloxane rubber component, for example, the methods described in US Pat. Nos. 2,891,920 and 3,294,725 can be used. In the practice of the present invention, for example, a mixture of an organosiloxane and a crosslinking agent (I) and optionally a graft crossing agent (I) is mixed with, for example, a homogenizer in the presence of a sulfonic acid-based emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid. It is desirable to manufacture by the method of carrying out shear mixing with water using etc. Alkylbenzenesulfonic acid is particularly suitable because it acts as an emulsifier for organosiloxane and at the same time serves as a polymerization initiator. In this case, it is preferable to use a metal salt of an alkylbenzene sulfonic acid, a metal salt of an alkyl sulfonic acid, or the like, because there is an effect of maintaining the polymer constant during graft polymerization.
[0040]
Next, the polyalkyl (meth) acrylate rubber component constituting the composite rubber can be synthesized using the following alkyl (meth) acrylate, crosslinking agent (II) and graft crossing agent (II).
[0041]
Examples of the alkyl (meth) acrylate include alkyl acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate, and alkyls such as hexyl methacrylate, 2-ethylhexyl methacrylate, and n-lauryl methacrylate. Methacrylate is mentioned, and the use of n-butyl acrylate is particularly preferable.
[0042]
Examples of the crosslinking agent (II) include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate and the like.
[0043]
Examples of the graft crossing agent (II) include allyl methacrylate, triallyl cyanurate, triallyl isocyanurate and the like. Allyl methacrylate can also be used as a crosslinking agent. These crosslinking agents and graft crossing agents may be used alone or in combination of two or more. The total amount of these crosslinking agents and grafting agents used is preferably 0.00% in the polyalkyl (meth) acrylate rubber component. 1 to 20% by weight.
[0044]
The polymerization of the polyalkyl (meth) acrylate rubber component is carried out by adding the above alkyl (meth) acrylate into the latex of the polyorganosiloxane rubber component neutralized by the addition of an aqueous alkali solution such as sodium hydroxide, potassium hydroxide or sodium carbonate. After adding a crosslinking agent and a graft crossing agent and impregnating the polyorganosiloxane rubber particles, a normal radical polymerization initiator is allowed to act. A polyorganosiloxane rubber component and a polyalkyl (meth) acrylate rubber component, which form a crosslinked network of polyalkyl (meth) acrylate rubbers which are entangled with each other as the polymerization progresses, and are substantially inseparable. A composite rubber latex is obtained. In carrying out the present invention, as the composite rubber, the main skeleton of the polyorganosiloxane rubber component has a repeating unit of dimethylsiloxane, and the main skeleton of the polyalkyl (meth) acrylate rubber component is a repeating unit of n-butyl acrylate. A composite rubber having the following is preferably used.
[0045]
The composite rubber thus prepared by emulsion polymerization can be graft copolymerized with a vinyl monomer. The gel content measured by extracting this composite rubber with toluene at 90 ° C. for 12 hours is preferably 80% by weight or more.
[0046]
In order to satisfy the balance of flame retardancy, impact resistance, appearance, etc., the ratio of the polyorganosiloxane rubber component to the polyalkyl (meth) acrylate rubber component in the above composite rubber is 3 to 90 wt. The latter is preferably 97 to 10% by weight with respect to%, and the average particle size of the composite rubber is preferably 0.08 to 0.6 μm.
[0047]
Examples of vinyl monomers to be graft-polymerized on the above composite rubber include aromatic alkenyl compounds such as styrene, α-methylstyrene and vinyltoluene; methacrylic acid esters such as methyl methacrylate and 2-ethylhexyl methacrylate; methyl acrylate and ethyl acrylate And various vinyl monomers such as acrylic acid esters such as butyl acrylate; vinyl cyanide compounds such as acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more. A particularly preferred vinyl monomer is methyl methacrylate. The vinyl monomer is preferably contained in a proportion of 5 to 70% by weight with respect to 30 to 95% by weight of the composite rubber.
[0048]
The composite rubber-based graft copolymer (F) is obtained by adding a composite rubber-based graft copolymer latex obtained by adding the above-mentioned vinyl-based monomer to the above-mentioned composite rubber latex and polymerizing it in one or more stages by radical polymerization technology. It can be separated and recovered by putting it in hot water in which a metal salt such as calcium chloride or magnesium sulfate is dissolved, salting out and solidifying.
[0049]
Such a composite rubber-based graft copolymer (F) is commercially available, for example, as Metabrene S-2001 from Mitsubishi Rayon Co., Ltd.
[0050]
Component (F) can be included in a proportion of 40% by weight or less of the total composition, and preferably in a proportion of 0.5 to 40% by weight.
[0051]
The resin composition of the present invention can contain a component (G) phosphate ester compound as a flame retardant, for example, the following formula (II):
[0052]
[Formula 4]
Figure 0003611227
(Here, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an organic group, except for the case where R 1 = R 2 = R 3 = R 4 = H. X Represents a divalent or higher valent organic group, p is 0 or 1, q represents an integer of 1 or more, for example, 30 or less, and r represents an integer of 0 or more.)
The phosphate ester type compound shown by these is mentioned. However, it is not limited to these.
[0053]
In the above formula (II), examples of the organic group include an alkyl group, a cycloalkyl group, and an aryl group that may or may not be substituted. In addition, when substituted, examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, a halogen, an aryl group, an aryloxy group, an arylthio group, a halogenated aryl group, and the like. A combined group (for example, an arylalkoxyalkyl group) or a group in which these substituents are combined by an oxygen atom, a sulfur atom, a nitrogen atom, or the like (for example, an arylsulfonylaryl group) may be used as a substituent. Good. The divalent or higher organic group means a divalent or higher valent group formed by removing one or more hydrogen atoms bonded to a carbon atom from the above organic group. Examples include alkylene groups, and preferably (substituted) phenylene groups, polynuclear phenols such as those derived from bisphenols, and the relative positions of the two or more free valences are arbitrary. Particularly preferred are hydroquinone, resorcinol, diphenylolmethane, diphenyloldimethylmethane, dihydroxydiphenyl, p, p'-dihydroxydiphenylsulfone, bisphenol A, bisphenol S, dihydroxynaphthalene and the like.
[0054]
Examples of specific phosphate ester compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl phenyl phosphate, octyl diphenyl phosphate, diisopropyl Phenyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2,3-dibromopropyl) -2,3-dichloropropyl phosphate, tris (2,3-dibromopropyl) Phosphate and bis (chloropropyl) monooctyl phosphate, bisphenol A tetracresyl diphosphate, bisphenol A-tetraxyl diphosphate, hydroquinone tetraphenyl diphosphate, hydroquinone tetracresyl diphosphate, hydroquinone tetraxyl diphosphate, R 1 -R 4 are alkoxy such as methoxy, ethoxy and propoxy, or preferably (substituted) phenoxy such as phenoxy, Examples thereof include polyphosphates such as bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, trioxybenzene triphosphate, and the like, which are methyl (substituted) phenoxy, preferably selected from triphenyl phosphate and various bisphosphates. .
[0055]
Component (G) may be included in a proportion of 30% by weight or less of the total composition, preferably 1 to 30% by weight, more preferably 3 to 20% by weight, particularly preferably 5 to 15% by weight. Included.
[0056]
An anti-dripping agent can be further blended in the composition of the present invention. The fluorinated polyolefin that can be used as such an anti-drip agent can be obtained commercially or can be produced by a known method. For example, tetrafluoroethylene at a pressure of 100 to 1000 psi and a temperature of 0 to 200 ° C., preferably 20 to 100 ° C. in an aqueous medium using a free radical catalyst (eg sodium peroxydisulfate, potassium or ammonium). Is a white solid obtained by polymerizing. For details, reference may be made to U.S. Pat. No. 2,393,967 to Brubaker.
[0057]
Although not indispensable, it is preferable to use a resin in a state of relatively large particles, for example, particles having an average particle size of 0.3 to 0.7 mm (mainly 0.5 mm). This is better than normal polytetrafluoroethylene powder having a particle size of 0.05 to 0.5 mm. The reason why such a relatively large particle size material is particularly preferred is that it tends to disperse easily in the polymer and bind the polymers together to make a fibrous material. Such a suitable polytetrafluoroethylene is referred to as Type 3 according to ASTM and is actually commercially available as Teflon 6 from EI DuPont de Nemours and Company. It is. Alternatively, it can be obtained commercially as Teflon 30J from Mitsui DuPont Fluorochemical Co., Ltd. The fluorinated polyolefin is preferably used in an amount of 0.01 to 2 parts by weight, more preferably 0.05 to 1.0 part by weight, based on 100 parts by weight of the component (A). Since the physical properties of the composition are impaired, or problems such as the occurrence of die swell in the extrusion process occur, the anti-dripping agent is usually not added in excess of 2 parts by weight.
[0058]
In addition to the above-mentioned components, the resin composition of the present invention further includes other additives commonly used at the time of resin mixing, molding, etc., depending on the purpose, as long as the physical properties are not impaired. Known additives such as pigments, dyes, heat-resistant agents, antioxidants, weathering agents, lubricants, mold release agents, crystal nucleating agents, plasticizers, fluidity improvers, antistatic agents, and the like can be blended.
[0059]
There is no restriction | limiting in particular in the method for manufacturing the resin composition of this invention, A normal method can be used satisfactorily. However, generally a melt mixing method is desirable. Although a small amount of solvent can be used, it is generally not necessary. As an apparatus, an extruder, a Banbury mixer, a roller, a kneader, etc. can be mentioned as an example. These devices can be operated batchwise or continuously. Moreover, the mixing order of components is not particularly limited.
[0060]
【Example】
Hereinafter, the present invention will be further disclosed in accordance with examples. The substances used in the following examples were as follows.
Essential ingredients:
Ingredient (A)
PC: Polycarbonate of bisphenol A, LEXAN (trade name; manufactured by Nippon GE Plastics Co., Ltd.), intrinsic viscosity of 0.50 dl / g measured at 20 ° C. in methylene chloride, Mv = about 22,000 (calculated value)
Ingredient (B)
ABS-1: ABS resin, Santac AT-05 (trademark; manufactured by Mitsui Toatsu Chemicals)
ABS-2: ABS resin, UX050 (trademark; manufactured by Ube Saikon Co., Ltd.)
Ingredient (C)
Low molecular weight PE: Low molecular weight polyethylene, HIWAX110 (trademark; manufactured by Mitsui Petrochemical Co., Ltd. )
Shi recone resin fine particles: Tospearl 120 (trade mark; manufactured by Toshiba Silicone Co.)
Component (C) comparison component (conventional slidability improver)
Polytetrafluoroethylene (PTFE): LUBRON L-5 (trademark; manufactured by Daikin Industries, Ltd. )
Ingredient (D)
SAN: SAN resin, SR05B (trademark; manufactured by Ube Saikon Co., Ltd.)
Optional ingredients:
Ingredient (E)
Inorganic filler: Talc, HS-T (Trademark; manufactured by Hayashi Kasei Co., Ltd.)
Ingredient (F)
METABLEN S-2001 (trademark) (methyl methacrylate-butyl acrylate-dimethylsiloxane copolymer, Mitsubishi Rayon Co., Ltd.)
Ingredient (G)
Resorcinol diphosphate: CR733S (trademark; manufactured by Daihachi Chemical Co., Ltd.)
Anti-dripping agent polytetrafluoroethylene (PTFE): Teflon 30J (trademark; manufactured by Mitsui DuPont Fluorochemical Co., Ltd.).
[0061]
Examples 1-4 and Comparative Examples 1-5
Each component shown in Tables 1 and 2 was extruded using a twin-screw extruder manufactured by Toshiba Machine Co., Ltd. under the extrusion conditions of a screw rotation speed of 200 rpm and a barrel temperature of 270 to 280 ° C. to a predetermined length. The pellet was manufactured by cutting.
[0062]
Using the pellets thus produced, a test piece for a flame retardancy test was molded by an 80 t injection molding machine manufactured by Toyo Machine Metal Co., Ltd. The molding conditions were set to a barrel temperature of 260 ° C. and a mold temperature of 50 ° C. The test piece was also used for other physical property measurements.
[0063]
Each physical property evaluation test was performed as follows. The results are shown in Tables 1 and 2.
(1) Izod impact strength Izod impact strength with 1/8 "notch was measured according to ASTM D256.
(2) Tensile strength Measured according to ASTM D638.
(3) Flexural strength and flexural modulus Measured according to ASTM D790.
(4) Melt index (MI)
Measured at 260 ° C. with a 5 kg load according to ASTM D1238.
(5) Deflection temperature under load According to ASTM D648, a test piece having a thickness of 1/4 inch was measured at a load of 18.6 kg / cm 2 .
(6) Flame retardancy test A test based on UL94 / V0, VI and VII was performed. Five specimens were tested at 1/16 inch thickness in accordance with the test method shown in Underwriters Laboratory Ink Bulletin 94 “Burn Test for Material Classification” (hereinafter referred to as UL-94). According to this test method, the material under test was evaluated to one of UL-94 V-0, V-I, and V-II based on the results of five samples. The criteria for each V grade for UL-94 are as follows.
[0064]
V-0: The average flame holding time after removing the ignition flame is 10 seconds or less, and all the samples do not drop the fine flame that ignites the absorbent cotton.
[0065]
VI: The average flame holding time after removing the ignition flame is 30 seconds or less, and all the samples do not drop the fine flame that ignites the absorbent cotton.
[0066]
V-II: The average flame holding time after removing the ignition flame is 30 seconds or less, and these samples drop the particulate flame that ignites the absorbent cotton.
(7) Coefficient of static friction and coefficient of dynamic friction Measured according to JIS K7125. The coefficient of friction measurement was evaluated in two ways for a metal and for a modified polyphenylene oxide (PPO) resin (GF 20% M-PPO 3) molded article with 20% glass fiber added.
[0067]
[Table 1]
Figure 0003611227
[0068]
[Table 2]
Figure 0003611227
It can be seen that when a conventional slidability improver (PTFE) is added to improve the slidability of the PC / ABS-based composition, the addition of such a large amount of PTFE decreases the Izod impact strength. (Comparative Examples 2 and 5).
[0069]
【The invention's effect】
The physical properties of the molded product obtained from the resin composition of the present invention exhibit superior slidability as compared with conventional products. Furthermore, the flame retardance which was excellent by the mixing | blending of a specific flame retardant is shown. In addition, by adding conventional additives, a molded product having excellent mechanical properties such as impact resistance and toughness can be obtained. Thus, since the resin composition of the present invention has excellent slidability, the resin composition of the present invention can be used for a wide range of applications as an inexpensive material for OA equipment parts that require sliding characteristics such as a CD tray. Applicable.

Claims (8)

(A)粘度平均分子量10,000〜100,000を有するポリカーボネート系樹脂30〜90重量%、
(B)(a)芳香族ビニル単量体成分、(b)シアン化ビニル単量体成分及び(c)ゴム質重合体を共重合の構成成分として含む共重合体1〜50重量%
(C) 分子量 10,000 以下のポリオレフィン及粒径が 0.5 12 μ m であるシリコーン樹脂微粒子からなる群より選択される物質0.5〜30重量%、及び
(D)(a) 芳香族ビニル単量体成分及び (b) シアン化ビニル単量体成分を共重合体の構成成分として含む共重合体であって、重量平均分子量 15,000 から 200,000 を有する共重合体 1 50 重量 %
を含む樹脂組成物。
(A) 30 to 90% by weight of a polycarbonate-based resin having a viscosity average molecular weight of 10,000 to 100,000
(B) (a) an aromatic vinyl monomer component, (b) a vinyl cyanide monomer component, and (c) a copolymer containing 1 to 50% by weight of a rubbery polymer as a constituent of the copolymer ,
(C) material 0.5 to 30 wt% of a molecular weight of 10,000 or less of Po Riorefi down及 beauty particle size is selected from the group consisting of silicone resin fine particles is 0.5 ~ 12 μ m, and
A copolymer comprising (D) (a) an aromatic vinyl monomer component and (b) a vinyl cyanide monomer component as a constituent component of the copolymer, co-having 200,000 weight average molecular weight of 15,000 heavy assembly 1 to 50 wt%
A resin composition comprising:
成分(B)が、ABS樹脂、AES樹脂、ACS樹脂及びAAS樹脂から選択される請求項1記載の樹脂組成物。2. The resin composition according to claim 1, wherein the component (B) is selected from ABS resin, AES resin, ACS resin, and AAS resin. 成分(C)において、ポリオレフィンがポリエチレンである請求項1または2記載の樹脂組成物。In the component (C), according to claim 1 or 2 resin composition wherein the port Li olefin Gapo Riechiren. さらに(E)無機または有機充填材が、組成物全体の1〜50重量%の割合で含まれる請求項1〜3のいずれか1項記載の樹脂組成物。The resin composition according to any one of claims 1 to 3 , further comprising (E) an inorganic or organic filler in a proportion of 1 to 50% by weight of the total composition. 成分(E)が、タルク、マイカ、硫酸バリウム、ガラス繊維、ガラスフレーク、炭素繊維および金属粉から選択される無機充填材である請求項4記載の樹脂組成物。5. The resin composition according to claim 4, wherein component (E) is an inorganic filler selected from talc, mica, barium sulfate, glass fiber, glass flake, carbon fiber, and metal powder. 成分(B)が、塊状重合により製造された共重合体である請求項4または5記載の樹脂組成物。6. The resin composition according to claim 4, wherein component (B) is a copolymer produced by bulk polymerization. さらに(F)ポリオルガノシロキサン及びポリアルキル(メタ)アクリレ−トを含む複合ゴムにビニル系単量体がグラフトしてなる複合ゴム系グラフト共重合体が、組成物全体の0.5〜40重量%の割合で含まれる請求項1〜6のいずれか1項記載の樹脂組成物。Furthermore, a composite rubber-based graft copolymer obtained by grafting a vinyl monomer on a composite rubber containing (F) polyorganosiloxane and polyalkyl (meth) acrylate is 0.5 to 40% by weight of the total composition. The resin composition according to any one of claims 1 to 6, which is contained in a proportion. さらに(G)リン酸エステル系化合物が、組成物全体の1〜30重量%の割合で含まれる請求項1〜7のいずれか1項記載の樹脂組成物。The resin composition according to any one of claims 1 to 7 , further comprising (G) a phosphoric ester compound in a proportion of 1 to 30% by weight of the whole composition.
JP27865796A 1996-09-30 1996-09-30 Polycarbonate resin composition Expired - Lifetime JP3611227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27865796A JP3611227B2 (en) 1996-09-30 1996-09-30 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27865796A JP3611227B2 (en) 1996-09-30 1996-09-30 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPH10101920A JPH10101920A (en) 1998-04-21
JP3611227B2 true JP3611227B2 (en) 2005-01-19

Family

ID=17600345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27865796A Expired - Lifetime JP3611227B2 (en) 1996-09-30 1996-09-30 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP3611227B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG72917A1 (en) * 1998-01-28 2000-05-23 Gen Electric Flame retardant polycarbonate resin/abs graft copolymer blends
ES2268878T3 (en) 1998-08-28 2007-03-16 Teijin Chemicals, Ltd. A COMPOSITION OF POLYCARBONATE RESIN AND MOLDED ARTICLE.
DE19853105A1 (en) * 1998-11-18 2000-05-25 Bayer Ag Polycarbonate composition useful for production of molded articles contains graft polymer, phosphorous compound and fluorinated polyolefin
JP4517431B2 (en) * 1999-02-26 2010-08-04 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
US6562887B1 (en) * 1999-02-26 2003-05-13 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition
KR100505292B1 (en) * 1999-10-28 2005-08-03 제일모직주식회사 Polycarbonate Resin Composition Having High Impact Resistance
JP2003055525A (en) * 2001-08-21 2003-02-26 Techno Polymer Co Ltd Thermoplastic resin composition
JP4128801B2 (en) * 2002-05-22 2008-07-30 オイレス工業株式会社 Resin composition for sliding member and sliding member
JP4778686B2 (en) * 2004-05-06 2011-09-21 帝人化成株式会社 Sliding polycarbonate resin composition and molded product thereof
JP2007270156A (en) * 2007-06-13 2007-10-18 Ge Plastics Japan Ltd Molded item of polycarbonate-based resin composition
JP2010275346A (en) * 2009-05-26 2010-12-09 Teijin Chem Ltd Glass fiber reinforced resin composition
US8552096B2 (en) 2009-07-31 2013-10-08 Sabic Innovative Plastics Ip B.V. Flame-retardant reinforced polycarbonate compositions
JP6220647B2 (en) * 2012-11-20 2017-10-25 テクノポリマー株式会社 Polycarbonate resin composition and molded product
JP5810142B2 (en) * 2013-09-27 2015-11-11 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article
JP6245072B2 (en) * 2014-05-26 2017-12-13 日信化学工業株式会社 Thermoplastic resin composition, process for producing the same, and molded article using the composition
JP6699174B2 (en) 2014-10-10 2020-05-27 日油株式会社 Surface property improving agent composition, thermoplastic resin composition containing the same, and resin molded article thereof

Also Published As

Publication number Publication date
JPH10101920A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US6613820B2 (en) Polycarbonate resin composition
JP3991032B2 (en) Flame retardant thermoplastic resin composition
JP3784660B2 (en) Flame retardant thermoplastic resin composition
JP3611227B2 (en) Polycarbonate resin composition
WO2003072620A1 (en) Thermoplastic resin composition and engineering plastic composition
JP5030541B2 (en) Polycarbonate resin composition for thin-walled molded article, thin-walled molded article and method for producing the same
KR20010074740A (en) Flame retardant polycarbonate/rubber-modified graft copolymer resin blend having a metallic appearance
KR100373384B1 (en) Polycarbonate Resin Composition
KR101304151B1 (en) Polycarbonate Moulding Materials with Improved Hydrolytic Resistance
JP3611228B2 (en) Polycarbonate resin composition
KR101422661B1 (en) Flameproof Thermoplastic Resin Composition
JP3457799B2 (en) Polycarbonate resin composition
JP2002371177A (en) Polycarbonate resin composition
JP2860856B2 (en) Flame retardant resin composition
JP2007270156A (en) Molded item of polycarbonate-based resin composition
JP4462665B2 (en) Polycarbonate resin composition
JP4100734B2 (en) Thermoplastic resin composition
JPH04285655A (en) Flame retardant resin composition
JP3675493B2 (en) Flame retardant resin composition
KR100433573B1 (en) Flame Retardant Thermoplastic Resin Composition
JPH07238218A (en) Flame-retardant resin composition
JP2977690B2 (en) Impact resistant resin composition
JPH04300937A (en) Flame-retardant resin composition
JPH083397A (en) Flame retardant thermoplastic resin composition
TWI440668B (en) Blend composition of polycarbonate resin and vinyl-based copolymer and molded product made using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term