JP3611015B2 - Method and apparatus for measuring optical properties of phosphor sample - Google Patents
Method and apparatus for measuring optical properties of phosphor sample Download PDFInfo
- Publication number
- JP3611015B2 JP3611015B2 JP36580198A JP36580198A JP3611015B2 JP 3611015 B2 JP3611015 B2 JP 3611015B2 JP 36580198 A JP36580198 A JP 36580198A JP 36580198 A JP36580198 A JP 36580198A JP 3611015 B2 JP3611015 B2 JP 3611015B2
- Authority
- JP
- Japan
- Prior art keywords
- integrating sphere
- phosphor
- phosphor sample
- luminance
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 154
- 230000003287 optical effect Effects 0.000 title claims description 90
- 238000000034 method Methods 0.000 title claims description 8
- 230000005855 radiation Effects 0.000 claims description 108
- 230000005540 biological transmission Effects 0.000 claims description 54
- 238000004364 calculation method Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 17
- 230000005284 excitation Effects 0.000 claims description 15
- 230000004907 flux Effects 0.000 claims description 7
- 229910052724 xenon Inorganic materials 0.000 claims description 7
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005286 illumination Methods 0.000 claims 1
- 238000004020 luminiscence type Methods 0.000 claims 1
- 238000002834 transmittance Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000002070 germicidal effect Effects 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000006121 base glass Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000961787 Josa Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/065—Integrating spheres
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Spectrometry And Color Measurement (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ディスプレイ装置や蛍光ランプで用いられる蛍光体試料の光学特性測定装置に関するものである。
【0002】
【従来の技術】
蛍光体は、CRTディスプレイやプラズマディスプレイなどの各種ディスプレイ装置や、蛍光ランプや水銀ランプなどの光源装置の分野で広く用いられている。
【0003】
これらの装置で使用される蛍光体の特性としては、蛍光体を励起発光させたときの蛍光体の量子効率、蛍光発光の分光スペクトル特性、発光面の輝度特性、蛍光体を励起したときの蛍光発光の立ち上がり時間特性、蛍光体の反射、透過特性などの光学特性が重要である。
【0004】
これらの諸特性の中でも、特に蛍光体がどれくらい明るく発光するものであるかを示す輝度特性が重要である。
【0005】
従来より、蛍光体の輝度特性の測定は、特定波長、特定強度の励起光を蛍光体に照射して特定方向の輝度(または放射輝度)を測定し、輝度が既知の標準蛍光体と比較したり、直接輝度計を用いて測定することにより行なわれている。
【0006】
【発明が解決しようとする課題】
しかしながら従来は、励起光を特定方向から蛍光体に照射したときの輝度特性を測定するものであり、蛍光体層が薄い場合には、励起光の照射方向と、輝度を測定する受光方向により輝度が大きく異なるという問題がある(例えば、A.Bernes et al.:Fluorescent quantum efficiency, JOSA Vol.54,747(1964))。
【0007】
図6は、蛍光体31をガラス面に塗布し、励起光をその蛍光体面の垂直な方向から照射したときの蛍光発光の輝度分布と透過光分布がどのようになるかを定性的に示したものである。
【0008】
図6(a)は透過輝度特性を、図6(b)は透過率特性をそれぞれ示す。
【0009】
輝度特性は、蛍光体31の単位面積当たりの塗布重量すなわち膜厚によって異なり、膜厚の厚い場合の透過輝度特性はa1で示すような分布となり、膜厚が薄い場合にはa2で示すような分布となる。
【0010】
また、膜厚の厚い場合の透過率特性はb1で示すような分布となり、膜厚の薄い場合にはb2で示すような分布となる。
【0011】
このため、例えば蛍光体面の輝度を面に垂直な方向から測定する場合と、面に45度の方向から測定する場合とでは輝度の測定値は異なる。
【0012】
この現象は、塗布した蛍光体の膜厚が薄く、透過率が低い場合に顕著である。
【0013】
したがって、励起光側の蛍光体面の輝度(以下、「拡散反射輝度」と称す。)や励起光側と反対の蛍光体面の輝度(以下、「拡散透過輝度」と称す。)を測定する場合には目的に合わせた測定が必要であり、発光量が問題となる場合には、受光面側に積分球をおくなどの方法により各方向の輝度を積分したものを測定する必要がある。
【0014】
また、蛍光ランプでは、蛍光体を励起する254nmを主体とする紫外放射が拡散光であるため、蛍光ランプに使用する蛍光体の輝度特性を適切に評価しようとすると、蛍光体面に拡散励起光を照射して輝度特性を測定する必要がある。
【0015】
しかしながら、このための簡便な測定方法や測定装置は未だ実用化されていない。
【0016】
本発明は、前記問題点を解決し、蛍光体試料の拡散透過輝度、拡散反射輝度、拡散透過輝度と拡散反射輝度との和などの光学特性を、容易に測定することのできる蛍光体試料の光学特性測定装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の蛍光体光学特性測定装置は、蛍光体試料の光学特性の測定手段を特殊な構成にしたことを特徴とする。
【0018】
この本発明によると、蛍光体試料の光学特性を容易に求めることができる。
【0019】
【発明の実施の形態】
請求項1記載の蛍光体試料の光学特性測定装置は、視放射と蛍光体を励起する紫外放射とを放射し、このうちのいずれか一方を独立的に取り出し投射できるようにした光源部と、前記光源部からの紫外放射および可視放射を拡散放射させる第1の積分球と、前記第1の積分球の内壁面照度を測定するための第1の受光部と、前記第1の積分球によって拡散放射された紫外放射または可視放射を受ける位置に蛍光体試料を保持する試料装着部と、内径と内面反射率とが第1の積分球と同じであり、蛍光体の蛍光発光のうちの励起光投射側の反対側の蛍光発光を捕捉するための第2の積分球と、前記第2の積分球の内壁面照度を測定するための第2の受光部と、演算部とで構成される蛍光体試料の光学特性測定装置であって、前記演算部を、一定量の可視放射F0 を第1の積分球に入れたときの、第1の積分球および第2の積分球の内壁面照度を第1の受光部と第2の受光部とでそれぞれ測定して求めた測定値M10,M20と、第1の積分球にある一定量の紫外放射P0を入れ蛍光体を励起したときの第1の積分球および第2の積分球の内壁面照度を第1の受光部および第2の受光部でそれぞれ測定して求めた測定値M1、M2と、これらの測定値M10、M20、M1、M2をもとに少なくとも蛍光体試料の拡散透過輝度、拡散反射輝度、拡散透過輝度と拡散反射輝度との和のうちの一つ以上を求めるように構成したことを特徴とする。
【0020】
請求項2記載の蛍光体試料の光学特性測定装置は、請求項1において、演算部を、第1の積分球から蛍光体試料に投射される放射を通す開口面積をSとしたときに、下記[式1]により蛍光体試料の拡散透過輝度Ltを求めるよう構成したことを特徴とする。
【0021】
【数9】
【0022】
請求項3記載の蛍光体試料の光学特性測定装置は、請求項1において、演算部を、第1の積分球から蛍光体試料に投射される放射を通す開口面積をSとしたときに、下記[式2]により蛍光体試料の拡散反射輝度Lrを求めるよう構成したことを特徴とする。
【0023】
【数10】
【0024】
請求項4記載の蛍光体試料の光学特性測定装置は、請求項1において、演算部を、第1の積分球から蛍光体試料に投射される放射を通す開口面積をSとしたときに、下記[式3]により蛍光体試料の拡散反射輝度Lrと拡散透過輝度Ltの和Lrtを求めるよう構成したことを特徴とする。
【0025】
【数11】
【0026】
請求項5記載の蛍光体試料の光学特性測定装置は、請求項1において、演算部を、下記[式4]により拡散反射輝度Lrが既知の蛍光体試料の拡散透過輝度Ltと拡散反射輝度Lrの和Lrtを求めるよう構成したことを特徴とする。
【0027】
【数12】
【0028】
請求項6記載の蛍光体試料の光学特性測定装置は、請求項1において、下記[式5]により拡散反射輝度Lrが既知の蛍光体試料の拡散透過輝度Ltを求めるよう構成した演算部と、下記[式5]の装置定数Kを求めるための拡散反射輝度と拡散透過輝度とが既知の標準蛍光体とで構成したことを特徴とする。
【0029】
【数13】
【0030】
請求項7記載の蛍光体試料の光学特性測定装置は、請求項1〜請求項6の何れかにおいて、光源部の光源として少なくとも紫外放射と可視放射とを放射する光源と、光学フィルタと多層膜を塗布した光学ミラーと回折格子との群から選択された分光手段と、を組み合わせて用いたことを特徴とする。
【0031】
請求項8記載の蛍光体試料の光学特性測定装置は、請求項7において、光源としてキセノンランプを使用したことを特徴とする。
【0032】
請求項9記載の蛍光体試料の光学特性測定装置は、請求項1〜請求項6の何れかにおいて、光源部の光源として、紫外放射を放射する光源と、可視放射を放射する光源と、光学フィルタと多層膜を塗布した光学ミラーと回折格子との群から選択される分光手段と、を組み合わせたことを特徴とする。
【0033】
請求項10記載の蛍光体試料の光学特性測定装置は、請求項1〜請求項6のいずれかにおいて、光源部から積分球に投射する紫外放射および可視放射を測定する手段を光源部に内蔵したことを特徴とする。
【0036】
請求項11記載の蛍光体試料の光学特性測定装置は、請求項2において、[式1]の代わりに下記[式1’]を用いることにより蛍光体試料の拡散透過輝度面の光束発散度Mtを求めることを特徴とする。
【0037】
【数15】
【0038】
請求項12記載の蛍光体試料の光学特性測定装置は、請求項1において、[式2]の代わりに下記[式2’]を用いることにより蛍光体試料の拡散反射輝度面の光束発散度Mrを求めることを特徴とする。
【0039】
【数16】
【0040】
請求項13記載の蛍光体試料の光学特性測定方法は、紫外放射および可視放射を拡散放射させる第1の積分球と、内径と内面反射率とが前記第1の積分球と同じであり蛍光体の蛍光発光のうちの励起光投射側の反対側の蛍光発光を捕捉する第2の積分球とを、蛍光体試料を装着するための試料装着部を介し、かつ、前記第1の積分球によって拡散放射された紫外放射または可視放射を受ける位置に当該試料装着部が位置するように接続し、第1の積分球に一定量の可視放射F0を入れて前記第1の積分球および第2の積分球の内壁面照度を前記第1の積分球に設けられた第1の受光部と前記第2の積分球に設けられた第2の受光部とでそれぞれ測定して測定値M10、M20を求め、第1の積分球にある一定量の紫外放射P0を入れて蛍光体を励起したときの第1の積分球および第2の積分球の内壁面照度を第1の受光部および第2の受光部でそれぞれ測定して測定値M1、M2を求め、これらの測定値M10、M20、M1、M2をもとに少なくとも蛍光体試料の拡散透過輝度、拡散反射輝度、拡散透過輝度と拡散反射輝度との和の内の一つ以上を求めることを特徴とする。
【0041】
以下、本発明の各実施の形態を図1〜図5を用いて説明する。
【0042】
(実施の形態1)
図1〜図3は、本発明の(実施の形態1)を示す。
【0043】
従来の光学特性の測定装置とは異なり、この(実施の形態1)では、第1の積分球を用いて拡散励起光を作り、この拡散励起光をガラス基板に塗布した蛍光体に照射して蛍光発光を生じさせ、この蛍光発光の各方向の成分を第2の積分球により積分して蛍光体試料の輝度を求めるよう光学特性の測定装置を構成している。
【0044】
その詳細を以下に述べる。
【0045】
図1は、蛍光体試料の光学特性測定装置を示す。
【0046】
図1(a)に示すように、光学特性を測定するための蛍光体試料30を装着する試料装着部1を介して、光源部2からの紫外放射および可視放射の量を測定する第1の積分球3と、蛍光体の蛍光発光のうちの励起光投射側の反対側の蛍光発光を捕捉するための内径と内面反射率とが第1の積分球3と同じである第2の積分球4とが接続されている。
【0047】
試料装着部1に蛍光体試料30を装着して、光源部2から紫外放射や可視放射が供給され、蛍光体試料30の光学特性が測定される。
【0048】
光源部2は、少なくとも蛍光体を励起する紫外放射と可視放射を放射し、この内のいずれか一方を独立的に取り出し投射できるように構成されている。
【0049】
詳細には、光源部2は、例えば、254nmの紫外放射を放射する殺菌灯10と254nmにピークを持つ狭帯域光学フィルタ12とで構成した紫外放射源と、ハロゲンランプ11と400〜700nmの可視放射を透過する広帯域光学フィルタ13とで構成された可視放射源とから構成される。
【0050】
また、光源部2からの紫外放射および可視放射の量を測定する第1の積分球3には、その内壁面照度を測定するための第1の受光部5が設けられており、同様に第2の積分球4には、第2の積分球4の内壁面照度を測定するための第2の受光部6が設けられている。
【0051】
そして、第1の積分球3は蛍光体に拡散放射を与え、第2の積分球4は、蛍光体試料30を透過した光や拡散透過輝度による光を積分受光するよう構成されている。
【0052】
第1の受光部5と第2の受光部6と光源部2は、測定データをもとに光学特性測定値を演算するための演算部7に繋がっており、この演算部7の演算結果を表示する表示部8と、測定データおよび演算結果を記憶する記憶部9とが設けられている。
【0053】
また、光源部2の出口には、第1の積分球3に投射する可視放射および紫外放射の量を測定する第3の受光部14が設けられている。
【0054】
第3の受光部14は、図1(b)に示すように、紫外放射を受光するための紫外用受光器17と可視放射を受光する可視用受光器16とが設けられており、これらの受光器は回転駆動手段により駆動軸19の周りに回転し、測定対象とする放射の種類に対応して受光器を選択、配置できるようになっている。
【0055】
15は、受光器14からの信号を増幅、表示する増幅・表示部15で、この出力表示値を見て光源部2の紫外放射および可視放射出力をある一定値に調整する。
【0056】
18は、光源部2からある一定量に調整した紫外または可視放射を第1の積分球3に導くための開口である。
【0057】
上記のように構成された光学特性測定装置において、蛍光体試料30の光学特性を測定するに際し、非常に薄い蛍光体を試料装着部1におくことは不可能であるため、実際の測定では、薄いガラス基板に蛍光体を塗布した蛍光体試料30を作成し、その蛍光体試料30の光学特性を測ればよい。
【0058】
上記のように構成された蛍光体試料30の光学特性測定装置において、演算部7は、下記のように構成されている。
【0059】
蛍光体試料30を試料装着部1に装着して、光源部2のハロゲンランプ11と広帯域フィルタ13とで構成される可視放射源から一定量の可視放射F0を入れ、第1の積分球3および第2の積分球4の内壁面照度を第1の受光部5と第2の受光部6とでそれぞれ測定して、測定値M10およびM20を求める。
【0060】
同様に、光源部2の殺菌灯10と狭帯域光学フィルタ12とで構成される紫外放射源から一定量の紫外放射P0を入れ、第1の積分球3および第2の積分球4の内壁面照度を第1の受光部5と第2の受光部6とでそれぞれ測定して、測定値M1、M2を求める。
【0061】
得られた測定値M10、M20、M1、M2のデータを演算部7に送り、記憶部9に記憶する。
【0062】
そして、記憶部9に記憶された測定データF0、M10、M20、M1、M2と、予め記憶させておいた蛍光体試料30の装着部における開口面積Sとをデータ演算部から呼び出して演算し、拡散透過輝度Lt、拡散反射輝度Lr、拡散透過輝度Ltと拡散反射輝度Lrとの和Lrtの内の一つ以上を求め、表示部8に表示する。
【0063】
このとき、可視放射F0の量は、増幅・表示部15の可視用受光器16の出力表示を見てある一定量になるように調整し、紫外放射P0の量は、増幅・表示部15の紫外用受光器17の出力表示を見てある一定量に調整する。
【0064】
なお放射量をF0およびP0に調整するにあたっては、ランプへの電気入力を微調整するか、減光フィルタを用いて調整してもよい。
【0065】
また、光源部2で用いる狭帯域光学フィルタ12としては金属干渉フィルタを、また広帯域光学フィルタ13としてはゼラチンフィルタを用いた。
【0066】
また、受光部3の可視用受光器16および紫外用受光器17としては、シリコンフォトダイオード、光電子増倍管、熱型検出器などを用いた。
【0067】
また、上記(実施の形態1)では光源として殺菌灯10とハロゲンランプ11と狭帯域光学フィルタ12と広帯域光学フィルタ13を用いた例を示したが、本発明はこれに限定されるものではなく、光源部の光源として少なくとも紫外放射と可視放射とを放射する光源と、金属干渉光学フィルタ等の光学フィルタあるいは多層膜を塗布した光学ミラー又は回折格子などの分光手段の何れかとを組み合わせて用いたものであればよく、特に光源となるランプとしては、キセノンランプが好適に使用できる。
【0068】
あるいは、光源部の光源として、少なくとも紫外放射を放射する光源と、少なくとも可視放射を放射する光源と、光学フィルタ、光学ミラー、回折格子などの分光手段の1つないし2つを組み合わせたものが好適に使用できる。
【0069】
また、第1の積分球3および第2の積分球6の内壁表面には、硫酸バリウムを塗布するのがよい。
実施例1
上記のように構成された蛍光体試料の光学特性測定装置において、蛍光体試料の拡散透過輝度Lt、拡散反射輝度Lr、拡散透過輝度Ltと拡散反射輝度Lrとの和Lrtは、以下の手順にて求められる。
【0070】
図2(a)、(b)は、上記(実施の形態1)を示す図1の要部を示す模式図である。
【0071】
光学特性を測る蛍光体試料30の試料装着部1の上下には、第1の積分球3と第2の積分球4とが配置され、第1の積分球3と第2の積分球4の受光窓の上部には、それぞれ第1の受光部5と第2の受光部6とが設けられている。
【0072】
上記のように構成された第1の積分球3と第2の積分球4とは、それぞれ内径および内部反射率が同じであり、光学的に等価と考えられるものとする。
【0073】
まず、図2(a)に示すように、試料蛍光体を試料装着部1に装着し、第1の積分球3に一定量の可視放射F0(lm)を入れると、このうちのβF0が第2の積分球4に入射する。
【0074】
ここでβは、蛍光体試料30を試料装着部1に装着したときの第1の積分球3から第2の積分球4への光束伝達量を評価する指数である。
【0075】
このときの第1の受光部5および第2の受光部6の出力がそれぞれM10、M20であるとすると、蛍光ランプなどの蛍光体塗布膜のようにその膜厚が薄い場合には、近似的に下記[式7]式が成立する。
【0076】
【数17】
【0077】
また、図2(b)に示すように、第1の積分球3にFr、第2の積分球4にFt(lm)の可視放射を入射させると、第1の積分球3および第2の積分球4の出力M1、M2は、下記[式8]で表される。
【0078】
【数18】
【0079】
上記[式8]からF0又はFrを消去すると、透過光束Ftは下記の[式9]にて表される。
【0080】
【数19】
【0081】
図3は、上記図2(a)、(b)と同様に構成された第1の積分球3、第2の積分球4と同一形状・同一光学特性の積分球を示す。
【0082】
第1の積分球3にある一定量の紫外放射P0、例えば254nm放射を入れると、この蛍光体による第1の積分球3への反射光束Frと第2の積分球4への透過光束Ftは、下記の[式10]にて表される。
【0083】
【数20】
【0084】
上記[式9]と[式10]より試料蛍光体の拡散透過輝度Ltは、下記[式11]に示すようになる。
【0085】
【数21】
【0086】
従って、記憶部9に記憶された測定データF0、M10、M20、M1、M2と、予め記憶させておいた蛍光体試料30装着部開口面積Sをデータ演算部から呼び出し、上記[式1]に基づいて演算することで、拡散透過輝度Ltの値が求められ、表示部8にその値が表示される。
【0087】
【数22】
【0088】
また、蛍光体試料30の拡散反射輝度Lrは、上記[式11]を変形して得られる下記[式2]により求められる。
【0089】
【数23】
【0090】
また、拡散透過輝度Ltと拡散反射輝度Lrとの和Lrtは、上記[式1]と[式2]より求めた下記[式3]により得られる。
【0091】
【数24】
【0092】
実施例2
上記実施例1では、拡散透過輝度Lt、拡散反射輝度Lr、拡散透過輝度Ltと拡散反射輝度Lrとの和Lrtのいずれもが未知の場合について述べたが、この実施例2では、拡散反射輝度Lrが既知の蛍光体試料30を用いた場合について述べる。
【0093】
上記実施例1と同様にして測定値M10、M20、M1、M2を求める。
【0094】
そして、拡散透過輝度Ltと拡散反射輝度Lrとの和Lrtは、上記[式9]より求めた下記[式4]により得られる。
【0095】
【数25】
【0096】
また、拡散透過輝度Ltは、下記[式5]により求められる。
【0097】
【数26】
【0098】
上記[式5]は、以下の手順にて求められる。
【0099】
上述の図2(a)において、第1の積分球3に可視放射F0を(1m)を入れると、そのうちのβF0が第2の積分球4に入射する。このときの第1の受光部5の出力がM10、第2の受光部6の出力がM20であるすると、上記実施例1と同様に下記[式12]が成立する。
【0100】
【数27】
【0101】
いま、拡散反射輝度がLr、拡散透過輝度がLtである試料蛍光体を試料装着部1に置き、第2の積分球4に可視放射の代わりに蛍光体を励起する紫外放射、例えば254nm放射を入れ、拡散透過輝度Ltに対応する第2の受光部6の出力をM2とすると、M2は近似的に次式で与えられる。
【0102】
【数28】
【0103】
したがって、測定装置についてKが分かっており、且つ試料蛍光体のLrが分かっている場合には、測定によりM10、M20、M1、M2を求めれば、測定試料の拡散透過輝度Ltは下記の[式14]にて求められる。
【0104】
【数29】
【0105】
測定装置についての定数Kは、以下の測定装置の較正作業を行なうことにより求められる。
【0106】
光源部2のハロゲンランプ11と400−700nmの可視域を透過する広帯域光学フィルタとで構成される可視放射源からある一定量の放射F0が積分球1に投射されるように可視用受光器16の出力表示を見ながら調整する。
【0107】
そして、拡散反射輝度および拡散透過輝度がそれぞれ既知のLr(ref)およびLt(ref)である標準蛍光体を用いて、可視放射に対する第1の積分球3および第2の積分球4の受光部出力M10(ref)、M20(ref)を測定する。
【0108】
このデータを演算部7に送り、下記[式15]にもとづき第1の積分球3から第2の積分球4への光束伝達量を表す指数β(ref)を求め、このデータを記憶部9に送り記憶する。
【0109】
次に、殺菌灯10と狭帯域光学フィルタ12とで構成される紫外放射源から第1の積分球3に紫外放射を供給できるように光源とフィルタを移動させる。
【0110】
そして、紫外放射の量がある一定量P0となるように紫外用受光器17の出力表示を見ながら調整し、第2の受光部6により第2の積分球4の内壁面照度に対応する出力M2(ref)を測定し、演算部7に送る。
【0111】
ここで、先ほど測定したM10(ref)とM20(ref)のデータを呼び出し、下記[式15]に示すように装置定数Kが求められる。これで校正作業が完了である。
【0112】
【数30】
【0113】
(実施の形態2)
図4は、本発明の(実施の形態2)を示す。
【0114】
この(実施の形態2)では、光源部2aの構成を特殊にした点で上記(実施の形態1)と異なるが、それ以外の構成は上記(実施の形態1)とほぼ同様である。
【0115】
詳細には、光源部2aは、紫外放射と可視放射を双方とも放射する光源としてのキセノンランプ20と、光学フィルタとして254nmにピークをもつ狭帯域光学フィルタ22と400〜700nmの範囲の可視放射を透過する広帯域光学フィルタ23とを用いる。21はキセノンランプ20の点灯制御装置である。
【0116】
第1の積分球3に蛍光体を励起するための紫外放射を入れたいときは狭帯域光学フィルタ22を、可視放射を入れたいときは広帯域フィルタ23を、それぞれ回転駆動機構24を通じて選択・配置できるように構成されている。
【0117】
また、25は第1の積分球3に光源部2aから投射する放射の量を測定するための紫外域および可視域に感度を持つ受光器であり、26は受光器25からの信号の増幅・表示部である。
【0118】
受光器25としては、例えばシリコンホトダイーオードなどが使用できる。
【0119】
第1の積分球3に投射する紫外放射の量が、ある一定値P0になるようにするための調整は、キセノンランプ20の点灯制御装置21により行う。また、ある一定の可視放射F0を第1の積分球3に投射するための調整も、同様に点灯制御装置21により行う。
【0120】
上記のように構成された蛍光体試料の光学特性装置において、一定量の可視放射F0あるいは一定量の紫外放射P0を第1の積分球3に入れ、第1の受光部5と第2の受光部6における測定値M10、M20、M1、M2を求め、これらの測定値M10、M20、M1、M2をもとに蛍光体試料30の拡散透過輝度Lt、拡散反射輝度Lr、拡散透過輝度と拡散反射輝度との和Lrtを求める手順については、上記(実施の形態1)と同様である。
【0121】
なお、上記(実施の形態2)において、光源部2aの光源として、キセノンランプ20と光学フィルタを用いた例を示したが、本発明はこれに限定されるものではなく、少なくとも紫外放射と可視放射とを放射する光源と、金属干渉光学フィルタ等の光学フィルタあるいは多層膜を塗布した光学ミラー又は回折格子などの分光手段の何れかとを組み合わせて用いることができる。
【0122】
また、上記(実施の形態2)では、狭帯域光学フィルタ22と広帯域フィルタ23との取り替えを回転駆動機構24を通じて行なうものを示したが、本発明はこれに限定されるものではなく、回転駆動機構24の代りに例えばスライドレールなどを用いてもよい。
【0123】
(実施の形態3)
図5は、本発明の(実施の形態3)を示す。
【0124】
この(実施の形態3)では、蛍光体試料30の透過率を求めるために光源部2bの構成を特殊にした点で図1と異なるが、それ以外の基本的な構成については上記(実施の形態1)とほぼ同様である。
【0125】
光源部2bには、400〜700nmの範囲の可視放射源27が置かれ、その出力を調整するための点灯制御装置28が設けられている。29は、蛍光体の透過率の波長特性が知りたいときに狭帯域光学フィルタが配置できるようにしたフィルタ装着手段である。
【0126】
透過率の測定は、通常は、フィルタが無い状態で測定を行う。
【0127】
すなわち、試料装着部1に蛍光体試料30を装着しない状態で第1の積分球3にある一定量の可視放射F0を入れたときの第1の積分球3および第2の積分球4の内壁面照度を第1の受光部5と第2の受光部6でそれぞれ測定して測定値M100、M200を求める。
【0128】
このデータを演算部に送り、[式12]によりβ00を演算し、このβ00の値と測定データとを記憶部9に記憶させる。
【0129】
次に、試料装着部1に透過率Tを測定しようとする蛍光体試料30を置き、ある一定量の可視放射F0を入れたときの第1の積分球3および第2の積分球4の内壁面照度を第1の受光部5と第2の受光部6でそれぞれ測定して測定値M10、M20を求める。
【0130】
同様にこのデータを演算部に送って[式12]によりβ0を演算し、このβ0の値と測定データとを記憶部9に記憶させる。
【0131】
次に、記憶部から測定データM20、M200と演算結果β0とβ00とを呼び出し、[式6]にもとづいて蛍光体試料30の透過率を演算し、表示部8にその値を表示する。
【0132】
【数31】
【0133】
ここで、Tは蛍光体の透過率である。
【0134】
なお、透過率の測定においては蛍光体試料30を通して透過する光量の比であるため、可視放射の絶対量F0自体に意味は無く、一定値に保持されればよい。このためには、第1の積分球3の第1の受光部5の出力が一定になるようにモニターすればよい。
【0135】
また、ガラス基板に蛍光体を塗布した蛍光体試料30の拡散透過率のデータから蛍光体自体の透過率Tpを求めたい場合には、この蛍光体試料30と基盤ガラスの拡散反射率と基盤ガラスの透過率を測定し、計算によってTpを求めればよい。
【0136】
(実施の形態4)
上記(実施の形態1)において、[式1]の代わりに下記[式1’]のアルゴリズムを用いれば、蛍光体試料30の拡散透過輝度Ltの代りに拡散透過輝度面の光束発散度Mtが求められる。
【0137】
【数32】
【0138】
同様に、[式2]の代わりに下記[式2’]のアルゴリズムを用いれば、蛍光体試料30の拡散反射輝度面Lrの光束発散度Mrが求められる。
【0139】
【数33】
【0140】
なお、上記(実施の形態1)では、演算部7、表示部8、記憶部9のそれぞれが制御部によって制御されている蛍光体試料の光学特性測定装置を用いたが、本発明はこれに限定されるものではなく、演算部7、記憶部9を取り除いた測定装置を用いて、上記と同様に測定値M10、M20、M1、M2を求め、これらの測定値M10、M20、M1、M2をもとに手計算にて、少なくとも蛍光体試料30の拡散透過輝度、拡散反射輝度、拡散透過輝度と拡散反射輝度との和の内の一つ以上を求めるものであってもよい。
【0141】
【発明の効果】
以上のように、本発明の蛍光体試料の光学特性測定装置を用いることで、蛍光体試料に拡散励起光を照射したときの拡散透過輝度、拡散反射輝度などの光学特性を容易に測定することができる。
【0142】
特に、蛍光ランプのガラス管に蛍光体を薄く塗布した場合のように、蛍光体を励起したときの蛍光発光面が完全拡散面から外れた状態における発光輝度や拡散透過輝度を輝度計で測定する場合においても、従来よりも精度よく測定することができる。
【0143】
このことは蛍光発光面の特定方向の輝度よりも発光面からの放射光量が重要であるときには、特に有効である。
【0144】
また、同じ物理的構成で、しかも測定データの演算処理のアルゴリズムを変えるだけで、拡散透過輝度や拡散反射輝度、あるいは拡散透過輝度と拡散反射輝度との和の測定を行なうことができる。
【図面の簡単な説明】
【図1】(実施の形態1)における蛍光体試料の光学特性測定装置の模式図
【図2】(実施の形態2)における蛍光体試料の光学特性測定装置の模式図
【図3】(実施の形態3)における蛍光体試料の光学特性測定装置の模式図
【図4】(実施の形態1)における図1の要部を示す模式図
【図5】図1の要部を示す模式図
【図6】蛍光体発光の輝度分布と透過光分布がどのようになるかを示す模式図
【符号の説明】
1 試料装着部
2 光源部
3 第1の積分球
4 第2の積分球
5 第1の受光部
6 第2の受光部
7 演算部
8 表示部
9 記憶部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring optical properties of a phosphor sample used in a display device or a fluorescent lamp.
[0002]
[Prior art]
Phosphors are widely used in the fields of various display devices such as CRT displays and plasma displays, and light source devices such as fluorescent lamps and mercury lamps.
[0003]
The characteristics of the phosphor used in these devices include the quantum efficiency of the phosphor when the phosphor is excited to emit light, the spectral characteristics of the fluorescence emission, the luminance characteristics of the light emitting surface, and the fluorescence when the phosphor is excited. Optical characteristics such as emission rise time characteristics, phosphor reflection, and transmission characteristics are important.
[0004]
Among these characteristics, the luminance characteristic indicating how bright the phosphor emits light is particularly important.
[0005]
Conventionally, the luminance characteristics of phosphors are measured by irradiating the phosphor with excitation light of a specific wavelength and specific intensity to measure the luminance (or radiance) in a specific direction and comparing it with a standard phosphor with a known luminance. Or by directly measuring with a luminance meter.
[0006]
[Problems to be solved by the invention]
Conventionally, however, it measures the luminance characteristics when the phosphor is irradiated with excitation light from a specific direction. When the phosphor layer is thin, the luminance depends on the irradiation direction of the excitation light and the light receiving direction for measuring the luminance. (For example, A. Bernes et al .: Fluorescent quantum efficiency, JOSA Vol. 54, 747 (1964)).
[0007]
FIG. 6 qualitatively shows how the luminance distribution and the transmitted light distribution of the fluorescence emission are when the phosphor 31 is applied to the glass surface and the excitation light is irradiated from the direction perpendicular to the phosphor surface. Is.
[0008]
6A shows the transmission luminance characteristic, and FIG. 6B shows the transmission characteristic.
[0009]
The luminance characteristic varies depending on the coating weight per unit area of the phosphor 31, that is, the film thickness. The transmission luminance characteristic when the film thickness is large has a distribution as indicated by a1, and when the film thickness is small, it is indicated by a2. Distribution.
[0010]
Further, the transmittance characteristic when the film thickness is thick has a distribution as shown by b1, and when the film thickness is thin, the distribution becomes as shown by b2.
[0011]
For this reason, for example, when the luminance of the phosphor surface is measured from a direction perpendicular to the surface, the measured value of the luminance is different when measured from a direction of 45 degrees to the surface.
[0012]
This phenomenon is remarkable when the thickness of the applied phosphor is thin and the transmittance is low.
[0013]
Therefore, when measuring the luminance of the phosphor surface on the excitation light side (hereinafter referred to as “diffuse reflection luminance”) and the luminance of the phosphor surface opposite to the excitation light side (hereinafter referred to as “diffuse transmission luminance”). Needs to be measured in accordance with the purpose, and when the amount of light emission becomes a problem, it is necessary to measure the luminance integrated in each direction by a method such as placing an integrating sphere on the light receiving surface side.
[0014]
In addition, in a fluorescent lamp, ultraviolet radiation mainly having a wavelength of 254 nm that excites the phosphor is diffused light. Therefore, when an attempt is made to appropriately evaluate the luminance characteristics of the phosphor used in the fluorescent lamp, diffused excitation light is applied to the phosphor surface. It is necessary to measure the luminance characteristics after irradiation.
[0015]
However, a simple measuring method and measuring apparatus for this purpose have not yet been put into practical use.
[0016]
The present invention solves the above-described problems and provides a phosphor sample that can easily measure optical properties such as diffuse transmission luminance, diffuse reflection luminance, and the sum of diffuse transmission luminance and diffuse reflection luminance of the phosphor sample. An object is to provide an optical characteristic measuring apparatus.
[0017]
[Means for Solving the Problems]
The phosphor optical property measuring apparatus of the present invention is characterized in that the means for measuring the optical properties of the phosphor sample has a special configuration.
[0018]
According to the present invention, the optical characteristics of the phosphor sample can be easily obtained.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The optical property measuring apparatus for a phosphor sample according to claim 1 comprises:Visual radiation and ultraviolet radiation that excites phosphorsA light source unit that can radiate and independently extract and project one of these, and ultraviolet radiation and visible radiation from the light source unit.DiffuseA first integrating sphere, a first light receiving unit for measuring an inner wall illuminance of the first integrating sphere, and the first integrating sphere;Diffused byUV or visible radiationIn the position to receiveThe sample mounting portion for holding the phosphor sample has the same inner diameter and inner surface reflectance as the first integrating sphere, and captures the fluorescence emission on the opposite side of the excitation light projection side of the fluorescence emission of the phosphor. A phosphor sample optical property measuring apparatus comprising: a second integrating sphere; a second light receiving unit for measuring an inner wall illuminance of the second integrating sphere; and a computing unit. Arithmetic unit, a certain amount of visible radiation F0 To the first integrating sphereWhen put,Measured value M obtained by measuring the inner wall illuminance of the first integrating sphere and the second integrating sphere with the first light receiving unit and the second light receiving unit, respectively.10, M20And a certain amount of ultraviolet radiation P in the first integrating sphere0Measured value M obtained by measuring the inner wall illuminance of the first integrating sphere and the second integrating sphere when the phosphor is excited and measuring the first and second integrating spheres, respectively.1, M2And these measured values M10, M20, M1, M2Based on the above, at least one of the diffuse transmission luminance, the diffuse reflection luminance, and the sum of the diffuse transmission luminance and the diffuse reflection luminance of the phosphor sample is obtained.
[0020]
The optical property measuring apparatus for a phosphor sample according to claim 2 is the following, when the opening area through which the radiation projected from the first integrating sphere to the phosphor sample is passed is S in claim 1. It is characterized in that the diffuse transmission luminance Lt of the phosphor sample is obtained from [Equation 1].
[0021]
[Equation 9]
[0022]
The optical property measuring apparatus for a phosphor sample according to claim 3 is the optical sample measuring apparatus according to claim 1, in which, in S 1, when the opening area through which the radiation projected from the first integrating sphere to the phosphor sample passes is S, The present invention is characterized in that the diffuse reflection luminance Lr of the phosphor sample is obtained by [Expression 2].
[0023]
[Expression 10]
[0024]
According to a fourth aspect of the present invention, there is provided the optical property measuring apparatus for a phosphor sample according to the first aspect, wherein when the opening area through which the radiation projected from the first integrating sphere is transmitted to the phosphor sample is S, [Equation 3] and diffuse reflection luminance Lr of the phosphor sample and diffusionTransparentThe present invention is characterized in that the sum Lrt of the luminance Lt is obtained.
[0025]
[Expression 11]
[0026]
According to a fifth aspect of the present invention, there is provided the optical property measuring apparatus for a phosphor sample according to the first aspect, wherein the calculation unit includes the diffuse transmission luminance Lt and the diffuse reflection luminance Lr of the phosphor sample whose diffuse reflection luminance Lr is known from The sum Lrt is obtained.
[0027]
[Expression 12]
[0028]
An optical property measuring apparatus for a phosphor sample according to claim 6 is the calculation unit according to claim 1, configured to obtain the diffuse transmission luminance Lt of the phosphor sample whose diffuse reflection luminance Lr is known by the following [Equation 5]: It is characterized in that the diffuse reflection luminance and diffuse transmission luminance for obtaining the device constant K of the following [Equation 5] are composed of a known standard phosphor.
[0029]
[Formula 13]
[0030]
The optical property measuring apparatus for a phosphor sample according to claim 7 according to any one of claims 1 to 6, wherein a light source that emits at least ultraviolet radiation and visible radiation as a light source of the light source unit, an optical filter,Multi-layer coating appliedA spectroscopic means selected from the group of an optical mirror and a diffraction grating is used in combination.
[0031]
According to an eighth aspect of the present invention, there is provided the optical property measuring apparatus for a phosphor sample according to the seventh aspect, wherein a xenon lamp is used as the light source.
[0032]
The optical property measuring apparatus for a phosphor sample according to claim 9 is the optical material measuring device according to any one of claims 1 to 6, wherein the light source unit is a light source that emits ultraviolet radiation, a light source that emits visible radiation, and an optical source. Filter andMulti-layer coating appliedA spectroscopic means selected from the group of an optical mirror and a diffraction grating is combined.
[0033]
The optical property measuring apparatus for a phosphor sample according to claim 10 includes, in any one of claims 1 to 6, a means for measuring ultraviolet radiation and visible radiation projected from the light source section onto the integrating sphere. It is characterized by that.
[0036]
Claim11The optical property measuring apparatus for a phosphor sample described in claim 2 determines the luminous flux divergence Mt on the diffuse transmission luminance surface of the phosphor sample by using the following [Formula 1 ′] instead of [Formula 1]. It is characterized by.
[0037]
[Expression 15]
[0038]
Claim12The optical property measuring apparatus for a phosphor sample described in claim 1 obtains the luminous flux divergence Mr of the diffuse reflection luminance surface of the phosphor sample by using the following [Expression 2 ′] instead of [Expression 2]. It is characterized by.
[0039]
[Expression 16]
[0040]
Claim13The method for measuring the optical properties of the phosphor samples described is for ultraviolet radiation and visible radiation.Diffuse radiationThe first integrating sphere, the second integrating sphere having the same inner diameter and inner surface reflectance as the first integrating sphere, and capturing the fluorescence emission on the side opposite to the excitation light projection side of the fluorescence emission of the phosphor. And, Through the sample mounting portion for mounting the phosphor sample, and connected so that the sample mounting portion is located at a position that receives ultraviolet radiation or visible radiation diffused and emitted by the first integrating sphere,A fixed amount of visible radiation F on the first integrating sphere0And the inner wall surface illuminance of the first integrating sphere and the second integrating sphere is set to the first light receiving portion provided in the first integrating sphere and the second light receiving provided in the second integrating sphere. And measured value M10, M20A certain amount of ultraviolet radiation P in the first integrating sphere0The inner wall surface illuminance of the first integrating sphere and the second integrating sphere when the phosphor is excited with the first and second integrating spheres measured by the first light receiving unit and the second light receiving unit.1, M2These measured values M10, M20, M1, M2Based on the above, at least one of the diffuse transmission luminance, the diffuse reflection luminance, and the sum of the diffuse transmission luminance and the diffuse reflection luminance of the phosphor sample is obtained.
[0041]
Each embodiment of the present invention will be described below with reference to FIGS.
[0042]
(Embodiment 1)
1 to 3 show (Embodiment 1) of the present invention.
[0043]
Unlike the conventional optical characteristic measuring apparatus, in this (Embodiment 1), the first integrating sphere is used to generate diffusion excitation light, and this diffusion excitation light is applied to a phosphor coated on a glass substrate. The optical characteristic measuring device is configured to generate fluorescent light emission and integrate the components in each direction of the fluorescent light emission by a second integrating sphere to obtain the luminance of the phosphor sample.
[0044]
Details are described below.
[0045]
FIG. 1 shows an apparatus for measuring optical properties of a phosphor sample.
[0046]
As shown in FIG. 1 (a), the first amount of ultraviolet radiation and visible radiation from the light source section 2 is measured via the sample mounting section 1 on which a phosphor sample 30 for measuring optical properties is mounted. Integrating sphere 3 and a second integrating sphere having the same inner diameter and inner surface reflectance as those of first integrating sphere 3 for capturing the fluorescence emission on the opposite side of the excitation light projection side of the fluorescence emission of the phosphor. 4 is connected.
[0047]
The phosphor sample 30 is mounted on the sample mounting unit 1, and ultraviolet radiation and visible radiation are supplied from the light source unit 2, and the optical characteristics of the phosphor sample 30 are measured.
[0048]
The light source unit 2 is configured to emit at least ultraviolet radiation and visible radiation that excite the phosphor, and any one of these can be independently extracted and projected.
[0049]
Specifically, the light source unit 2 includes, for example, an ultraviolet radiation source including a germicidal lamp 10 that emits ultraviolet radiation of 254 nm and a narrow-band optical filter 12 having a peak at 254 nm, a halogen lamp 11 and a visible light of 400 to 700 nm. And a visible radiation source composed of a broadband optical filter 13 that transmits radiation.
[0050]
The first integrating sphere 3 for measuring the amount of ultraviolet radiation and visible radiation from the light source section 2 is provided with a first light receiving section 5 for measuring the inner wall surface illuminance. The second integrating sphere 4 is provided with a second light receiving unit 6 for measuring the inner wall illuminance of the second integrating sphere 4.
[0051]
The first integrating sphere 3 applies diffuse radiation to the phosphor, and the second integrating sphere 4 is configured to integrate and receive light transmitted through the phosphor sample 30 and light with diffuse transmission luminance.
[0052]
The first light receiving unit 5, the second light receiving unit 6, and the light source unit 2 are connected to a calculation unit 7 for calculating an optical characteristic measurement value based on the measurement data. A display unit 8 for displaying and a storage unit 9 for storing measurement data and calculation results are provided.
[0053]
Further, a third light receiving unit 14 that measures the amount of visible radiation and ultraviolet radiation projected onto the first integrating sphere 3 is provided at the outlet of the light source unit 2.
[0054]
As shown in FIG. 1B, the third light receiving unit 14 is provided with an ultraviolet light receiver 17 for receiving ultraviolet radiation and a visible light receiver 16 for receiving visible radiation. The light receiver is rotated around the drive shaft 19 by the rotation driving means, and the light receiver can be selected and arranged corresponding to the type of radiation to be measured.
[0055]
Reference numeral 15 denotes an amplification / display unit 15 that amplifies and displays a signal from the light receiver 14 and adjusts the ultraviolet radiation and visible radiation output of the light source unit 2 to a certain constant value by looking at the output display value.
[0056]
Reference numeral 18 denotes an opening for guiding ultraviolet or visible radiation adjusted to a certain amount from the light source unit 2 to the first integrating sphere 3.
[0057]
In the optical property measuring apparatus configured as described above, when measuring the optical property of the phosphor sample 30, it is impossible to place a very thin phosphor on the sample mounting portion 1, so in actual measurement, A phosphor sample 30 in which a phosphor is coated on a thin glass substrate is prepared, and the optical characteristics of the phosphor sample 30 may be measured.
[0058]
In the optical property measuring apparatus for the phosphor sample 30 configured as described above, the calculation unit 7 is configured as follows.
[0059]
A phosphor sample 30 is mounted on the sample mounting portion 1 and a certain amount of visible radiation F is emitted from a visible radiation source composed of the halogen lamp 11 and the broadband filter 13 of the light source portion 2.0, The inner wall surface illuminance of the first integrating sphere 3 and the second integrating sphere 4 is measured by the first light receiving unit 5 and the second light receiving unit 6 respectively, and the measured value M10And M20Ask for.
[0060]
Similarly, a certain amount of ultraviolet radiation P is emitted from an ultraviolet radiation source composed of the germicidal lamp 10 of the light source unit 2 and the narrow-band optical filter 12.0, The inner wall surface illuminance of the first integrating sphere 3 and the second integrating sphere 4 is measured by the first light receiving unit 5 and the second light receiving unit 6 respectively, and the measured value M1, M2Ask for.
[0061]
Obtained measured value M10, M20, M1, M2Is sent to the calculation unit 7 and stored in the storage unit 9.
[0062]
And the measurement data F memorize | stored in the memory | storage part 90, M10, M20, M1, M2And the opening area S in the mounting portion of the phosphor sample 30 stored in advance is calculated by calling from the data calculation unit, and diffuse transmission luminance Lt, diffuse reflection luminance Lr, diffuse transmission luminance Lt, and diffuse reflection luminance Lr, One or more of the sums Lrt are obtained and displayed on the display unit 8.
[0063]
At this time, visible radiation F0Is adjusted so as to be a certain amount when the output display of the visible light receiver 16 of the amplification / display unit 15 is viewed, and the ultraviolet radiation P0This amount is adjusted to a certain fixed amount by looking at the output display of the ultraviolet light receiver 17 of the amplification / display unit 15.
[0064]
The amount of radiation is F0And P0In the adjustment, the electric input to the lamp may be finely adjusted or may be adjusted using a neutral density filter.
[0065]
Further, a metal interference filter was used as the narrow band optical filter 12 used in the light source unit 2, and a gelatin filter was used as the wide band optical filter 13.
[0066]
Further, as the visible light receiver 16 and the ultraviolet light receiver 17 of the light receiving unit 3, a silicon photodiode, a photomultiplier tube, a thermal detector, or the like was used.
[0067]
Further, in the above (Embodiment 1), an example in which the germicidal lamp 10, the halogen lamp 11, the narrow band optical filter 12, and the broadband optical filter 13 are used as the light source is shown, but the present invention is not limited to this. A light source that emits at least ultraviolet radiation and visible radiation as a light source of the light source unit and an optical filter such as a metal interference optical filter or a spectroscopic means such as an optical mirror coated with a multilayer film or a diffraction grating is used in combination. Any xenon lamp can be preferably used as the lamp serving as the light source.
[0068]
Alternatively, as the light source of the light source unit, a combination of at least a light source that emits ultraviolet radiation, a light source that emits at least visible radiation, and one or two spectroscopic means such as an optical filter, an optical mirror, or a diffraction grating is preferable. Can be used for
[0069]
Further, it is preferable to apply barium sulfate to the inner wall surfaces of the first integrating sphere 3 and the second integrating sphere 6.
Example 1
In the optical property measuring apparatus for a phosphor sample configured as described above, the diffuse transmission luminance Lt, the diffuse reflection luminance Lr, and the sum Lrt of the diffuse transmission luminance Lt and the diffuse reflection luminance Lr of the phosphor sample are as follows. Is required.
[0070]
FIGS. 2A and 2B are schematic views showing the main part of FIG. 1 showing the above (Embodiment 1).
[0071]
A first integrating sphere 3 and a second integrating sphere 4 are arranged above and below the sample mounting portion 1 of the phosphor sample 30 for measuring the optical characteristics, and the first integrating sphere 3 and the second integrating sphere 4 A first light receiving unit 5 and a second light receiving unit 6 are provided at the upper part of the light receiving window, respectively.
[0072]
The first integrating sphere 3 and the second integrating sphere 4 configured as described above have the same inner diameter and internal reflectance, and are considered to be optically equivalent.
[0073]
First, as shown in FIG. 2A, a sample phosphor is mounted on the sample mounting portion 1, and a certain amount of visible radiation F is applied to the first integrating sphere 3.0(Lm), βF0Is incident on the second integrating sphere 4.
[0074]
Here, β is an index for evaluating the light flux transmission amount from the first integrating sphere 3 to the second integrating sphere 4 when the phosphor sample 30 is mounted on the sample mounting portion 1.
[0075]
At this time, the outputs of the first light receiving unit 5 and the second light receiving unit 6 are respectively M10, M20In the case where the film thickness is small as in the case of a phosphor coating film such as a fluorescent lamp, the following [Expression 7] is approximately established.
[0076]
[Expression 17]
[0077]
Also figure2As shown in (b), when visible radiation of Fr (lm) is incident on the first integrating sphere 3 and Ft (lm) is incident on the second integrating sphere 4, the first integrating sphere 3 and the second integrating sphere 4 Output M1, M2Is represented by the following [Equation 8].
[0078]
[Expression 18]
[0079]
From above [Formula 8] to F0Alternatively, when Fr is eliminated, the transmitted light flux Ft is expressed by the following [Equation 9].
[0080]
[Equation 19]
[0081]
FIG. 3 shows an integrating sphere having the same shape and the same optical characteristics as the first integrating sphere 3 and the second integrating sphere 4, which are configured in the same manner as FIGS.
[0082]
A certain amount of ultraviolet radiation P in the first integrating sphere 30For example, when radiation of 254 nm is entered, the reflected light beam Fr to the first integrating sphere 3 and the transmitted light beam Ft to the second integrating sphere 4 by this phosphor are expressed by the following [Equation 10].
[0083]
[Expression 20]
[0084]
From the above [Expression 9] and [Expression 10], the diffuse transmission luminance Lt of the sample phosphor is as shown in [Expression 11] below.
[0085]
[Expression 21]
[0086]
Therefore, the measurement data F stored in the storage unit 90, M10, M20, M1, M2Then, the value of the diffuse transmission luminance Lt is obtained by calling the phosphor sample 30 mounting portion opening area S stored in advance from the data calculation unit and calculating based on the above [Expression 1]. The value is displayed in.
[0087]
[Expression 22]
[0088]
Further, the diffuse reflection luminance Lr of the phosphor sample 30 is obtained by the following [Expression 2] obtained by modifying the above [Expression 11].
[0089]
[Expression 23]
[0090]
Further, the sum Lrt of the diffuse transmission luminance Lt and the diffuse reflection luminance Lr is obtained by the following [Expression 3] obtained from [Expression 1] and [Expression 2].
[0091]
[Expression 24]
[0092]
Example 2
In the first embodiment, the case where any of the diffuse transmission luminance Lt, the diffuse reflection luminance Lr, and the sum Lrt of the diffuse transmission luminance Lt and the diffuse reflection luminance Lr has been described is described. In the second embodiment, the diffuse reflection luminance is used. A case where a phosphor sample 30 having a known Lr is used will be described.
[0093]
Measured value M as in Example 1 above10, M20, M1, M2Ask for.
[0094]
The sum Lrt of the diffuse transmission luminance Lt and the diffuse reflection luminance Lr is obtained by the following [Expression 4] obtained from the above [Expression 9].
[0095]
[Expression 25]
[0096]
Further, the diffuse transmission luminance Lt is obtained by the following [Equation 5].
[0097]
[Equation 26]
[0098]
The above [Formula 5] is obtained by the following procedure.
[0099]
In FIG. 2A described above, the visible radiation F appears on the first integrating sphere 3.0When (1m) is inserted, βF0Is incident on the second integrating sphere 4. The output of the first light receiving unit 5 at this time is M10The output of the second light receiving unit 6 is M20Then, the following [Equation 12] is established as in the first embodiment.
[0100]
[Expression 27]
[0101]
Now, a sample phosphor having a diffuse reflection luminance of Lr and a diffuse transmission luminance of Lt is placed on the sample mounting portion 1, and ultraviolet radiation, for example, 254 nm radiation that excites the phosphor instead of visible radiation is emitted to the second integrating sphere 4. The output of the second light receiving unit 6 corresponding to the diffuse transmission luminance Lt is M2Then, M2Is approximately given by
[0102]
[Expression 28]
[0103]
Therefore, if K is known for the measuring device and Lr of the sample phosphor is known, M10, M20, M1, M2Is obtained, the diffuse transmission luminance Lt of the measurement sample is obtained by the following [Equation 14].
[0104]
[Expression 29]
[0105]
The constant K for the measuring device is obtained by performing the following calibration operation of the measuring device.
[0106]
A certain amount of radiation F from a visible radiation source comprising the halogen lamp 11 of the light source unit 2 and a broadband optical filter that transmits the visible region of 400-700 nm.0Is adjusted while looking at the output display of the visible light receiver 16 so that is projected onto the integrating sphere 1.
[0107]
And the diffuse reflection luminance and the diffuse transmission luminance are each known Lr(Ref)And Lt(Ref)The light receiving unit output M of the first integrating sphere 3 and the second integrating sphere 4 for visible radiation using a standard phosphor that is10 (ref), M20 (ref)Measure.
[0108]
This data is sent to the calculation unit 7 and the following [Expression15], An index β (ref) representing the amount of transmitted light from the first integrating sphere 3 to the second integrating sphere 4 is obtained, and this data is sent to the storage unit 9 for storage.
[0109]
Next, the light source and the filter are moved so that the ultraviolet radiation can be supplied to the first integrating sphere 3 from the ultraviolet radiation source composed of the germicidal lamp 10 and the narrow-band optical filter 12.
[0110]
And the amount of ultraviolet radiation is a certain amount P0The output M corresponding to the illuminance on the inner wall surface of the second integrating sphere 4 is adjusted by the second light receiving unit 6 while viewing the output display of the ultraviolet light receiver 17.2 (ref)Is sent to the calculation unit 7.
[0111]
Here, M measured earlier10 (ref)And M20 (ref)The device constant K is obtained as shown in [Equation 15] below. This completes the calibration work.
[0112]
[30]
[0113]
(Embodiment 2)
FIG. 4 shows (Embodiment 2) of the present invention.
[0114]
This (Embodiment 2) differs from the above (Embodiment 1) in that the configuration of the light source unit 2a is special, but the other configuration is substantially the same as the above (Embodiment 1).
[0115]
Specifically, the light source unit 2a emits both a xenon lamp 20 as a light source that emits both ultraviolet radiation and visible radiation, a narrow-band optical filter 22 having a peak at 254 nm as an optical filter, and visible radiation in the range of 400 to 700 nm. A transmitting broadband optical filter 23 is used. Reference numeral 21 denotes a lighting control device for the xenon lamp 20.
[0116]
A narrow band optical filter 22 can be selected and arranged through the rotary drive mechanism 24 when it is desired to put ultraviolet radiation for exciting the phosphor into the first integrating sphere 3 and visible radiation can be put into the first integrating sphere 3. It is configured as follows.
[0117]
Reference numeral 25 denotes a light receiver having sensitivity in the ultraviolet region and the visible region for measuring the amount of radiation projected from the light source unit 2a onto the first integrating sphere 3, and reference numeral 26 denotes an amplification signal of the signal from the light receiver 25. It is a display unit.
[0118]
As the light receiver 25, for example, a silicon photodiode can be used.
[0119]
The amount of ultraviolet radiation projected onto the first integrating sphere 3 is a certain constant value P0Adjustment for achieving the above is performed by the lighting control device 21 of the xenon lamp 20. Also, certain visible radiation F0Is also performed by the lighting control device 21 in the same manner.
[0120]
In the phosphor sample optical characteristic apparatus configured as described above, a certain amount of visible radiation F0Or a certain amount of ultraviolet radiation P0Into the first integrating sphere 3, and the measured value M in the first light receiving unit 5 and the second light receiving unit 6.10, M20, M1, M2To obtain these measured values M10, M20, M1, M2The procedure for obtaining the diffuse transmission luminance Lt, the diffuse reflection luminance Lr, and the sum Lrt of the diffuse transmission luminance and the diffuse reflection luminance of the phosphor sample 30 based on the above is the same as the above (Embodiment 1).
[0121]
In the above (Embodiment 2), an example is shown in which the xenon lamp 20 and the optical filter are used as the light source of the light source unit 2a. However, the present invention is not limited to this, and at least ultraviolet radiation and visible light are used. A light source that emits radiation and an optical filter such as a metal interference optical filter or a spectroscopic means such as an optical mirror or a diffraction grating coated with a multilayer film can be used in combination.
[0122]
In the above (Embodiment 2), the narrow band optical filter 22 and the wide band filter 23 are replaced with each other through the rotation drive mechanism 24. However, the present invention is not limited to this, and the rotation drive is performed. For example, a slide rail or the like may be used instead of the mechanism 24.
[0123]
(Embodiment 3)
FIG. 5 shows (Embodiment 3) of the present invention.
[0124]
This (Embodiment 3) differs from FIG. 1 in that the configuration of the light source unit 2b is special in order to obtain the transmittance of the phosphor sample 30, but the basic configuration other than that is as described above (Embodiment 3). It is almost the same as the first embodiment.
[0125]
A visible radiation source 27 in the range of 400 to 700 nm is placed in the light source unit 2b, and a lighting control device 28 for adjusting the output thereof is provided. Reference numeral 29 denotes a filter mounting means that allows a narrow band optical filter to be disposed when it is desired to know the wavelength characteristic of the transmittance of the phosphor.
[0126]
The transmittance is usually measured without a filter.
[0127]
That is, a certain amount of visible radiation F present in the first integrating sphere 3 in a state where the phosphor sample 30 is not mounted on the sample mounting portion 1.0The inner wall illuminance of the first integrating sphere 3 and the second integrating sphere 4 when the first light receiving portion is inserted is measured by the first light receiving portion 5 and the second light receiving portion 6 respectively, and the measured value M100, M200Ask for.
[0128]
This data is sent to the calculation unit, and β00And this β00Are stored in the storage unit 9.
[0129]
Next, a phosphor sample 30 whose transmittance T is to be measured is placed on the sample mounting portion 1, and a certain amount of visible radiation F0The inner wall illuminance of the first integrating sphere 3 and the second integrating sphere 4 when the first light receiving portion is inserted is measured by the first light receiving portion 5 and the second light receiving portion 6 respectively, and the measured value M10, M20Ask for.
[0130]
Similarly, this data is sent to the calculation unit and β0And this β0Are stored in the storage unit 9.
[0131]
Next, measurement data M from the storage unit20, M200And the calculation result β0And β00And the transmittance of the phosphor sample 30 is calculated based on [Equation 6], and the value is displayed on the display unit 8.
[0132]
[31]
[0133]
Here, T is the transmittance of the phosphor.
[0134]
In the measurement of the transmittance, since it is the ratio of the amount of light transmitted through the phosphor sample 30, the absolute amount of visible radiation F0There is no meaning in itself, and it may be held at a constant value. For this purpose, monitoring may be performed so that the output of the first light receiving unit 5 of the first integrating sphere 3 is constant.
[0135]
In addition, when it is desired to obtain the transmittance Tp of the phosphor itself from the diffuse transmittance data of the phosphor sample 30 in which the phosphor is coated on the glass substrate, the diffuse reflectance of the phosphor sample 30 and the base glass and the base glass It is only necessary to measure the transmittance of and to obtain Tp by calculation.
[0136]
(Embodiment 4)
In the above (Embodiment 1), if the algorithm of the following [Equation 1 ′] is used instead of [Equation 1], the luminous flux divergence Mt on the diffuse transmission luminance surface is changed instead of the diffuse transmission luminance Lt of the phosphor sample 30. Desired.
[0137]
[Expression 32]
[0138]
Similarly, if the algorithm of the following [Equation 2 '] is used instead of [Equation 2], the luminous flux divergence Mr of the diffuse reflection luminance surface Lr of the phosphor sample 30 can be obtained.
[0139]
[Expression 33]
[0140]
In the above (Embodiment 1), the phosphor sample optical property measuring apparatus in which each of the calculation unit 7, the display unit 8, and the storage unit 9 is controlled by the control unit is used. The measurement value M is not limited, and the measurement value M is the same as described above by using the measurement device from which the calculation unit 7 and the storage unit 9 are removed.10, M20, M1, M2To obtain these measured values M10, M20, M1, M2Based on the above, at least one of diffuse transmission luminance, diffuse reflection luminance, and the sum of diffuse transmission luminance and diffuse reflection luminance of the phosphor sample 30 may be obtained by manual calculation.
[0141]
【The invention's effect】
As described above, by using the phosphor sample optical property measuring apparatus of the present invention, it is possible to easily measure optical characteristics such as diffuse transmission luminance and diffuse reflection luminance when the phosphor sample is irradiated with diffuse excitation light. Can do.
[0142]
In particular, a luminance meter measures the emission luminance and diffuse transmission luminance when the fluorescent light emission surface is off the complete diffusion surface when the fluorescent material is excited, such as when the fluorescent material is thinly applied to the glass tube of a fluorescent lamp. Even in this case, it is possible to measure with higher accuracy than in the past.
[0143]
This is particularly effective when the amount of radiation from the light emitting surface is more important than the luminance in the specific direction of the fluorescent light emitting surface.
[0144]
Further, the diffuse transmission luminance, the diffuse reflection luminance, or the sum of the diffuse transmission luminance and the diffuse reflection luminance can be measured with the same physical configuration and only by changing the algorithm of the measurement data calculation process.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an optical property measuring apparatus for a phosphor sample in (Embodiment 1).
FIG. 2 is a schematic diagram of an optical property measuring apparatus for a phosphor sample in (Embodiment 2).
FIG. 3 is a schematic diagram of an optical property measuring apparatus for a phosphor sample in (Embodiment 3).
FIG. 4 is a schematic diagram showing the main part of FIG. 1 in (Embodiment 1).
5 is a schematic diagram showing the main part of FIG.
FIG. 6 is a schematic diagram showing how the luminance distribution and transmitted light distribution of phosphor emission are changed.
[Explanation of symbols]
1 Sample mounting part
2 Light source
3 First integrating sphere
4 Second integrating sphere
5 1st light-receiving part
6 Second light receiving section
7 Calculation unit
8 Display section
9 Memory part
Claims (13)
前記光源部からの紫外放射および可視放射を拡散放射させる第1の積分球と、
前記第1の積分球の内壁面照度を測定するための第1の受光部と、
前記第1の積分球によって拡散放射された紫外放射または可視放射を受ける位置に蛍光体試料を保持する試料装着部と、
内径と内面反射率とが第1の積分球と同じであり、蛍光体の蛍光発光のうちの励起光投射側の反対側の蛍光発光を捕捉するための第2の積分球と、
前記第2の積分球の内壁面照度を測定するための第2の受光部と、
演算部とで構成される蛍光体試料の光学特性測定装置であって、
前記演算部を、
一定量の可視放射F0を第1の積分球に入れたときの、第1の積分球および第2の積分球の内壁面照度を第1の受光部と第2の受光部とでそれぞれ測定して求めた測定値M10,M20と、
第1の積分球にある一定量の紫外放射P0を入れ蛍光体を励起したときの第1の積分球および第2の積分球の内壁面照度を第1の受光部および第2の受光部でそれぞれ測定して求めた測定値M1、M2と、
これらの測定値M10、M20、M1、M2をもとに少なくとも蛍光体試料の拡散透過輝度、拡散反射輝度、拡散透過輝度と拡散反射輝度との和のうちの一つ以上を求めるように構成した蛍光体試料の光学特性測定装置。A light source unit that emits visible radiation and ultraviolet radiation that excites a phosphor, and can independently take out and project one of them,
A first integrating sphere that diffuses and emits ultraviolet radiation and visible radiation from the light source section;
A first light receiving unit for measuring the inner wall illuminance of the first integrating sphere;
A sample mounting part for holding a phosphor sample at a position where it receives ultraviolet radiation or visible radiation diffused by the first integrating sphere;
An inner diameter and an inner surface reflectance are the same as those of the first integrating sphere, and a second integrating sphere for capturing the fluorescence emission on the side opposite to the excitation light projection side of the fluorescence emission of the phosphor;
A second light receiving unit for measuring the inner wall illuminance of the second integrating sphere;
An optical property measuring device for a phosphor sample composed of an arithmetic unit,
The computing unit is
Measure the inner wall illuminance of the first integrating sphere and the second integrating sphere when a certain amount of visible radiation F 0 is put in the first integrating sphere with the first light receiving unit and the second light receiving unit, respectively. Measured values M 10 and M 20 obtained by
The first light receiving unit and the second light receiving unit represent the inner wall illuminance of the first integrating sphere and the second integrating sphere when a certain amount of ultraviolet radiation P 0 is put in the first integrating sphere to excite the phosphor. Measured values M 1 and M 2 respectively obtained by measuring with
Based on these measured values M 10 , M 20 , M 1 and M 2 , at least one of the diffuse transmission luminance, the diffuse reflection luminance, and the sum of the diffuse transmission luminance and the diffuse reflection luminance of the phosphor sample is obtained. An optical property measuring apparatus for a phosphor sample configured as described above.
t(ref)と、この標準蛍光体について本装置を用いて測定されるM10 (ref)、M20 (ref)、M2 (ref)とから上記[式5]を用いて決定される装置定数である。An arithmetic unit configured to obtain the diffuse transmission luminance Lt of a phosphor sample having a known diffuse reflection luminance Lr according to the following [Equation 5], and the diffuse reflection luminance and diffuse transmission luminance for obtaining the device constant K of the following [Equation 5]. 2. The phosphor sample optical property measuring apparatus according to claim 1, wherein said phosphor sample comprises a known standard phosphor.
An apparatus determined by using the above [Expression 5] from t (ref) and M 10 (ref) , M 20 (ref) , and M 2 (ref) measured using this apparatus for this standard phosphor. It is a constant.
と多層膜を塗布した光学ミラーと回折格子との群から選択された分光手段と、を組み合わせて用いた請求項1〜請求項6の何れかに記載の蛍光体試料の光学特性測定装置。2. A light source that emits at least ultraviolet radiation and visible radiation as a light source of the light source section, and a spectroscopic means selected from the group consisting of an optical filter, an optical mirror coated with a multilayer film, and a diffraction grating are used in combination. The optical property measuring apparatus for a phosphor sample according to claim 6.
紫外放射を放射する光源と、可視放射を放射する光源と、光学フィルタと多層膜を塗布した光学ミラーと回折格子との群から選択される分光手段と、を組み合わせた請求項1〜請求項6の何れかに記載の蛍光体試料の光学特性測定装置。As a light source of the light source section,
6. A light source that emits ultraviolet radiation, a light source that emits visible radiation, and a spectroscopic means selected from the group consisting of an optical filter, an optical mirror coated with a multilayer film, and a diffraction grating. An optical property measuring apparatus for a phosphor sample according to any one of the above.
第1の積分球に一定量の可視放射F0を入れて前記第1の積分球および第2の積分球の内壁面照度を前記第1の積分球に設けられた第1の受光部と前記第2の積分球に設けられた第2の受光部とでそれぞれ測定して測定値M10、M20を求め、
第1の積分球にある一定量の紫外放射P0を入れて蛍光体を励起したときの第1の積分球および第2の積分球の内壁面照度を第1の受光部および第2の受光部でそれぞれ測定して測定値M1、M2を求め、
これらの測定値M10、M20、M1、M2をもとに少なくとも蛍光体試料の拡散透過輝度、拡散反射輝度、拡散透過輝度と拡散反射輝度との和の内の一つ以上を求める蛍光体試料の光学特性測定方法。The first integrating sphere that diffuses and emits ultraviolet radiation and visible radiation, the inner diameter and the internal reflectance are the same as those of the first integrating sphere, and the fluorescence on the opposite side to the excitation light projection side of the fluorescence emission of the phosphor A second integrating sphere that captures luminescence is passed through a sample mounting portion for mounting a phosphor sample, and the sample is received at a position that receives ultraviolet radiation or visible radiation diffused by the first integrating sphere. Connect so that the mounting part is located,
A first amount of visible radiation F 0 is put in the first integrating sphere, and the inner wall surface illuminance of the first integrating sphere and the second integrating sphere is set to the first light receiving unit provided in the first integrating sphere, and Measurements M 10 and M 20 are respectively obtained by measurement with a second light receiving unit provided in the second integrating sphere,
Illumination of the inner wall surface of the first integrating sphere and the second integrating sphere when the phosphor is excited by inserting a certain amount of ultraviolet radiation P 0 into the first integrating sphere is used for the first light receiving unit and the second light receiving unit. To measure the measured values M 1 and M 2 respectively,
Based on these measured values M 10 , M 20 , M 1 , M 2 , at least one of the diffuse transmission luminance, the diffuse reflection luminance, and the sum of the diffuse transmission luminance and the diffuse reflection luminance of the phosphor sample is obtained. A method for measuring optical properties of a phosphor sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36580198A JP3611015B2 (en) | 1998-12-24 | 1998-12-24 | Method and apparatus for measuring optical properties of phosphor sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36580198A JP3611015B2 (en) | 1998-12-24 | 1998-12-24 | Method and apparatus for measuring optical properties of phosphor sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000186960A JP2000186960A (en) | 2000-07-04 |
JP3611015B2 true JP3611015B2 (en) | 2005-01-19 |
Family
ID=18485153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36580198A Expired - Lifetime JP3611015B2 (en) | 1998-12-24 | 1998-12-24 | Method and apparatus for measuring optical properties of phosphor sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3611015B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9389188B2 (en) | 2010-12-22 | 2016-07-12 | Koninklijke Philips N.V. | Method and apparatus for testing optical films |
US9029806B2 (en) * | 2010-12-22 | 2015-05-12 | Koninklijke Philips N.V. | Method and apparatus for testing luminescent films |
JP5760589B2 (en) * | 2011-03-30 | 2015-08-12 | 豊田合成株式会社 | Method and apparatus for measuring fluorescence spectrum of phosphor for white LED device |
JP6822660B2 (en) * | 2017-02-08 | 2021-01-27 | 株式会社オプトコム | Integrating sphere dimmer |
JP6394825B1 (en) * | 2018-02-08 | 2018-09-26 | 横河電機株式会社 | Measuring apparatus and measuring method |
JP7061335B2 (en) * | 2018-05-31 | 2022-04-28 | 株式会社オキサイド | Fluorescent material evaluation device |
JP2020193928A (en) * | 2019-05-30 | 2020-12-03 | 株式会社分光応用技術研究所 | Two-dimensional spectroscopic measurement system and data processing method |
-
1998
- 1998-12-24 JP JP36580198A patent/JP3611015B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000186960A (en) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3287775B2 (en) | Method and apparatus for measuring quantum efficiency of phosphor | |
Lee et al. | Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence | |
US8422018B2 (en) | Optical measurement apparatus including hemispherical optical integrator | |
JP3346095B2 (en) | Spectrophotometer | |
US7544926B2 (en) | Multi-functional calibration system and kit, and their uses for characterizing luminescence measurement systems | |
JP4631080B2 (en) | Quantum efficiency measuring apparatus and quantum efficiency measuring method | |
US6535278B1 (en) | Apparatus and method for measuring spectral property of fluorescent sample | |
KR100967859B1 (en) | Full beam measuring device | |
JP4418731B2 (en) | Photoluminescence quantum yield measurement method and apparatus used therefor | |
JP3555400B2 (en) | Reflection characteristic measuring device | |
US4459044A (en) | Optical system for an instrument to detect the temperature of an optical fiber phosphor probe | |
JP3611015B2 (en) | Method and apparatus for measuring optical properties of phosphor sample | |
EP1111333A1 (en) | Light source device, spectroscope comprising the light source device, and film thickness sensor | |
JPH1073486A (en) | Apparatus and method for measuring characteristic of phosphor | |
US6597439B1 (en) | Method and apparatus for measurement of light from illuminated specimen eliminating influence of background light | |
CN201043952Y (en) | Measuring device for fluorescent powder excitation spectrum | |
JP3107773B2 (en) | Fluorescent dot area meter | |
JP3247845B2 (en) | Method and apparatus for measuring quantum efficiency of phosphor | |
JP2001165772A (en) | Secondary light source creating device and reflection characteristics measuring device | |
US7081637B2 (en) | Ultraviolet lighting platform | |
JP2023007710A (en) | Light emission measuring device and light emission measuring method | |
JPH08320253A (en) | Total luminous flux measuring device | |
JP2003028716A (en) | Spectrometric instrument and method for spectrometric measurement | |
US7030392B2 (en) | Ultraviolet lighting platform | |
JP2006242733A (en) | Emission characteristic evaluating method of fluorescent substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071029 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |