[go: up one dir, main page]

JP3610659B2 - Oxidation furnace and carbon fiber manufacturing method - Google Patents

Oxidation furnace and carbon fiber manufacturing method Download PDF

Info

Publication number
JP3610659B2
JP3610659B2 JP02953896A JP2953896A JP3610659B2 JP 3610659 B2 JP3610659 B2 JP 3610659B2 JP 02953896 A JP02953896 A JP 02953896A JP 2953896 A JP2953896 A JP 2953896A JP 3610659 B2 JP3610659 B2 JP 3610659B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fan
furnace
exhaust port
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02953896A
Other languages
Japanese (ja)
Other versions
JPH08311723A (en
Inventor
幾雄 竹内
隆 本田
稔 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP02953896A priority Critical patent/JP3610659B2/en
Publication of JPH08311723A publication Critical patent/JPH08311723A/en
Application granted granted Critical
Publication of JP3610659B2 publication Critical patent/JP3610659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度の炭素繊維の製造に適した酸化処理炉およびその炉を用いた炭素繊維の製造方法に関する。
【0002】
【従来の技術】
炭素繊維はその優れた機械的特性を有しているため、航空宇宙用途、レジャー用途、一般産業用途などに広く使用されている。これらの分野において比強度、比弾性率が高いことは重要である。特に、かかる特性を安定して得ることができる技術を確立することは極めて重要である。
【0003】
炭素繊維の弾性率は主に炭化工程または黒鉛化工程の温度やかかる工程での糸条の延伸比を変えること等により、所望の特性を得るよう制御することができる。
【0004】
一方、炭素繊維の引張強度は、前駆体繊維に付与する油剤や単繊維径等、前駆体繊維としての特性や、酸化処理や炭化処理などの焼成工程での温度等が影響する。又、炭素繊維のような脆性物質の引張強度は欠陥に支配されやすいので、焼成工程で発生または持ち込まれる粉塵やガスの滞留をなくすことが重要であり、特に、空気などの大量の活性雰囲気と接触する酸化処理工程ではその雰囲気の清浄度は極めて重要である。
【0005】
通常、炭素繊維の酸化処理炉では、熱エネルギーの損失を小さくするために、加熱機などにより加熱した空気などの活性気体をファンにより酸化処理炉内に送気し、それを炉から抜き出して加熱機に送るという、いわゆる循環系を有している。このような炉では、長期に運転を続けると、例えば前駆体繊維に付与されることの多いシリコーン系油剤に起因したシリカ等や、前駆体繊維や空気が炉外から持ち込む粉塵のため、循環熱風中の粉塵量が増加していき、やがて得られる炭素繊維の引張強度が低下するようになる。粉塵のなかで特に炭素繊維の引張強度に対し有害であるのは鉄、アルミニウム、クロム、マグネシウム等の金属元素であるが、かかる金属元素は単体で存在するよりもむしろ前記シリカなどと何らかの結合を伴って存在するものと推定される。したがって、一定期間運転を続けた炉は、一旦停機して、系内の粉塵を取り除いた後、さらに運転を再開せしめるという手順を踏む必要がある。
【0006】
しかし、一旦停機後、系内の粉塵を除去したつもりでも、運転を再開すると、運転再開当初に、得られる炭素繊維の引張強度が大きく低下する現象が起こる。
【0007】
さらに系内の粉塵の除去を強化するため、多くの要員、時間をかけることも考えられるが、コストの高騰につながるばかりか、大量生産用の大型の設備の場合には、かかる設備からサブミクロンレベルの粉塵を効果的に除去せしめることはきわめて困難であった。
【0008】
本発明者らは、かかる問題点に鑑み、鋭意検討の結果、酸化処理炉内に存在する粉塵を効率的に除去するのに適した方法を見いだし、本発明を完成するに至ったのである。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記問題点を解決すること、すなわち一旦停機後、酸化処理炉に存在する粉塵を容易に除去でき、それにより高強度の炭素繊維を安定的に製造し得る装置および方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の酸化処理炉は、上記課題を達成するため次の構成を有する。すなわち、ファンにより酸化性気体を循環せしめる循環系を有する酸化処理炉において、該ファンの排出側に、ファンの吸引風量の13〜100%の風量を排出可能であり開閉機構を備えた排気口を有し、その下流側に開閉機構を備えた給気口を有し、かつ該排気口と該給気口との間の循環ダクトの連通を遮断可能とする切替弁を設けてなる炭素繊維製造用酸化処理炉である。また、本発明の炭素繊維の製造方法は、上記課題を達成するため次の構成を有する。すなわち、上記酸化処理炉の運転開始前にファンの吸引風量の一部を排気口より排気せしめて後、前駆体糸条を該酸化処理炉で酸化処理せしめ、ついで炭化処理することを特徴とする炭素繊維の製造方法である。さらに、本発明の炭素繊維の製造方法は、上記課題を達成するため次の構成を有する。すなわち、ファンにより酸化性気体を循環せしめる循環系を有し、かつ循環系に排気口を設けてなる炭素繊維製造用酸化処理炉の運転開始前に、酸化性気体に振動を付与しつつ、ファンの吸引風量の一部を排気口より排気せしめて後、前駆体糸条を該酸化処理炉で酸化処理せしめ、ついで炭化処理する炭素繊維の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0012】
酸化処理炉を一旦停機後、運転を再開すると、運転再開当初に、得られる炭素繊維の引張強度が低下するのは、炉内の辺境部に堆積した粉塵が、ファンの運転開始時の強い突発的な循環風により再浮遊して炉内の粉塵量が増加するためと考えられる。したがって、ファンの運転開始後に再浮遊した粉塵を除去することが必要である。
【0013】
本発明の酸化処理炉の一例を図に示す。炭素繊維の前駆体繊維を酸化処理するのに必要な酸化性気体を循環せしめるためのファン4を有する循環式の酸化処理炉であって、その循環系ダクト10の一部に排気口6を有する。これにより酸化処理炉の運転開始前にファンの風圧を用いて粉塵を排出できる。通常の運転中は、酸化性気体を効率よく循環させることができるように、排気口を閉じておけるような開閉機構を有していることが好ましい。通常運転時の循環用のファンを粉塵排出用のファンとして利用するためには、図1のように、該ファンの排出側の循環系ダクトに排気口を設けるのが好ましい。
【0014】
また、図2および図3に示すように、排気口6だけでなく給気口7を併せて設けておくと、後述するように切り替え弁8、8’を用いて循環と排気を繰り返して行えるのでより好ましい。
【0015】
排気口の開口面積は、循環系と排気系の圧力損失などを考慮して決定することができ、それによりファンの吸引風量の13〜100%を排気可能とすることが好ましい。ファンの吸引風量は、ファンの吸引側での風速を風速計で測定しそれに循環系ダクトの断面積を乗じて求める。排気風量は排気口での風量を風速計で測定し排気口開口面積を乗じて求める。なお、後述する実施例では、風速計として日本カノマックス製アネモマスターモデル6161を用いた。
【0016】
次に、かかる酸化処理炉を用いた炭素繊維の製造方法について説明する。
【0017】
先ず、一旦停機している酸化処理炉の循環用ファンを駆動し、排気口から空気などの気体を排気するとともに粉塵を排出する。かかる排気は、酸化処理のための酸化性気体を昇温する前に行うことが、熱エネルギー損失を小さくするために好ましい。
【0018】
排気口から排気するときの排気風量は、ファンの吸引風量の13〜100%とすることにより効率的に粉塵を排出することができる。
【0019】
また、酸化処理炉の運転開始前の排気に加えて、あらかじめ先の運転終了時の炉体が冷却する前にも排気を行っておくと、ガス化しているタール等も排出できるため炭素繊維の引張強度を安定的に得る上でより効果的である。
【0020】
さらに、排気に際しては、炉内壁面から粉塵の剥離を促進し粉塵の排出をより効率的に行うために、酸化性気体へ振動を付与することが好ましい。
【0021】
酸化性気体へ振動を付与するには、排気口の開閉を繰り返して行うと循環風が乱すのが良い。かかる観点から、図2および図3に示すように、排気口6だけでなく給気口7を併せて設けておくと、切り替え弁8、8’を用いて循環と排気を繰り返して行え、循環風を乱して、粉塵の排出効率を良好とすることができるのでさらに好ましい。
【0022】
すでに存在している酸化処理炉に上記の切り換え弁を設けることは設備が大型であればあるほど改造にかかる時間、要員、費用がかかるため、かかる場合などには、酸化性気体へ振動を付与する比較的簡便な方法として、低周波音波発生装置や気体噴射装置などを用いることもできる。また、ファンの回転数をプログラミングコントローラーによるインバーター等を用いて変動させ乱流効果により振動させることもできる
このようにして酸化処理炉の運転開始前に排気した酸化処理炉内の粉塵量を10個/cm以下とすることが好ましい。これにより製造開始当初の炭素繊維の引張強度を良好なものとすることができる。
【0023】
ここで、酸化処理炉内の粉塵量とは、循環風が安定して流れている酸化処理炉内の場所で、光散乱式自動粒子計数器で測定したときの0.5〜5ミクロンの粒子数をいう。なお、本発明の実施例中では、光散乱式自動粒子計数器として、リオン(株)製パーティクルカウンターKC−03を用いた。
【0024】
このようにして酸化処理炉の運転開始前に排気した酸化処理炉に、酸化性気体を循環せしめ、アクリル系繊維やピッチ系繊維などの前駆体繊維を通過せしめて酸化処理を行い、次いで、例えば1100〜2000℃の、窒素などの不活性雰囲気中で炭化処理を行う。炭化処理につづいて、例えば2000〜3000℃の、不活性雰囲気中で黒鉛化処理を行っても良い。
【0025】
これにより、製造開始直後から得られる炭素繊維の引張強度を良好なものとすることができるだけでなく、製造開始から炭素繊維の引張強度が安定するまでの時間を短縮することができる。
【0026】
【実施例】
以下、本発明をさらに具体的に実施例に基づいて説明する。
【0027】
なお、本実施例中、炭素繊維の物性(強度)は、JIS R−7601に準じて測定したエポキシ樹脂含浸ストランドでの物性であり、測定回数n=10の平均から求めたものである。
【0028】
比較例1)長期運転で粉塵が堆積した図1に示す酸化処理炉において、運転開始前、気体加熱機5で空気を加熱する前に、循環用ファン4による風力で炉内の粉塵を排出した。このときファンの吸引風量の15%を排気口から排出した。排気口を閉じ、空気を加熱循環させてから酸化処理炉内の粉塵量を測定したところ、10個/cm3であった。
【0029】
この後、シリコーン系油剤を付与させた12000フィラメントからなるアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は470kgf/mmであり、12時間運転後に500kgf/mmになった。
【0030】
(実施例)長期運転で粉塵が堆積した図2に示す酸化処理炉において、運転開始前、気体加熱機5で空気を加熱する前に、酸化処理炉の循環系ダクトの一部を切り替え弁8で遮断し、かつ排気口および給気口の切り替え弁8を開いて、循環用ファン4による風力で炉内の粉塵を排出した。このときファンの吸引風量のほぼ100%の風量を排気し、ほぼ同量の新鮮な空気を取り入れた。さらにこのとき、図2の状態からと図3の状態を、切り換え弁を3回繰り返し切り換えて粉塵を排出した。排気口および給気口の切り替え弁を閉じ、循環系ダクトの切り替え弁8を開いて、空気を加熱循環させてから酸化処理炉内の粉塵数を測定したところ、4個/cm3であった。
【0031】
この後、比較例1と同様のアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は490kgf/mm2であり、6時間運転後に510kgf/mm2となった。
【0032】
(実施例)切り換え弁を30回繰り返して行う以外、実施例と全く同様にしたところ、製造開始直後の炭素繊維の引張強度は500kgf/mm2であり、6時間後に530kgf/mm2となった。
【0033】
比較例2)長期運転で粉塵が堆積した図4に示す酸化処理炉において、運転開始前、気体加熱機5で空気を加熱する前に、循環用ファン4による風力で炉内の粉塵を排出した。このときファンの吸引風量の3%を排気口から排出した。排気口を閉じ、空気を加熱循環させてから酸化処理炉内の粉塵数を測定したところ、100個/cm3であった。
【0034】
この後、比較例1と同様のアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は420kgf/mm2であり、48時間運転後470kgf/mm2になった。
【0035】
(実施例)長期運転で粉塵が堆積した図4に示す酸化処理炉において、運転開始前、気体加熱機5で空気を加熱する前に、低周波音波発生装置(インフラソニック社製インフラホン)により、約20Hzの低周波音波により酸化性気体を振動させて後、循環用ファン4による風力で炉内の粉塵を排出した。このときファンの吸引風量の15%を排気口から排出した。
【0036】
この後、シリコーン系油剤を付与させた12000フィラメントからなるアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は520kgf/mmであり、6時間運転後に560kgf/mmになった。
【0037】
(実施例)長期運転で粉塵が堆積した図4に示す酸化処理炉において、運転開始前、気体加熱機5で空気を加熱する前に、気体噴射装置(ガデリウス社製ダイヤモンドスートブロー)により、8m3/時間の加圧気体を連続的に噴射して、酸化性気体を振動させて後、循環用ファン4による風力で炉内の粉塵を排出した。このときファンの吸引風量の15%を排気口から排出した。
【0038】
この後、シリコーン系油剤を付与させた12000フィラメントからなるアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は490kgf/mmであり、6時間運転後に510kgf/mmになった。
【0039】
(実施例)長期運転で粉塵が堆積した図4に示す酸化処理炉において、運転開始前、気体加熱機5で空気を加熱する前に、ファンの回転数をプログラミングコントローラを用いて断続的に変動させ、酸化性気体を振動させて後、循環用ファン4による風力で炉内の粉塵を排出した。このときファンの吸引風量の15%を排気口から排出した。
【0040】
この後、シリコーン系油剤を付与させた12000フィラメントからなるアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は490kgf/mmであり、6時間運転後に530kgf/mmになった。
【0041】
(比較例)長期運転で粉塵が堆積した図7に示す酸化処理炉において、運転開始前一切の空気を排出しないで、空気を加熱循環させてから酸化処理炉内の粉塵数を測定したところ、400個/cm3であった。
【0042】
この後、比較例1と同様のアクリル系繊維を前駆体繊維として該酸化処理炉を用いて酸化処理し、次いで炭化処理して炭素繊維を製造した。製造開始直後の炭素繊維の引張強度は400kgf/mm2であり、96時間運転後に460kgf/mm2になった。
【0043】
【発明の効果】
本発明の酸化処理炉は、炉内の粉塵を効率的に排気除去して清浄化することができ、かかる酸化処理炉を用いて炭素繊維を製造することにより、製造開始直後から得られる炭素繊維の引張強度を良好なものとすることができるだけでなく、得られる炭素繊維の引張強度が安定した水準に達するまでの時間を短縮することができる。
【図面の簡単な説明】
【図1】従来の酸化処理炉を示す概略側面図である。
【図2】排気状態にある、本発明の一実施態様の酸化処理炉を示す概略側面図である。
【図3】循環状態にある、本発明の一実施態様の酸化処理炉を示す概略側面図である。
【図4】従来の酸化処理炉を示す概略側面図である。
【図5】実施例7で用いるファン回転数制御装置のシステム構成概念図である。
【図6】実施例7で用いるプログラミングコントローラの制御パターンである。
【図7】従来の酸化処理炉を示す概略側面図である。
【符号の説明】
1:酸化処理炉
2:ローラー
3:糸条
4:循環用ファン
5:気体加熱機
6:排気口
7:給気口
8:排気口、給気口の切り替え弁
8’:循環系ダクトの切り替え弁
9:気体の流れ
10:循環系ダクト
11:ファン用モーター
12:インバーター
13:プログラミングコントローラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxidation treatment furnace suitable for producing high-strength carbon fibers and a method for producing carbon fibers using the furnace.
[0002]
[Prior art]
Since carbon fibers have excellent mechanical properties, they are widely used for aerospace applications, leisure applications, general industrial applications, and the like. In these fields, it is important that the specific strength and specific elastic modulus are high. In particular, it is extremely important to establish a technique that can stably obtain such characteristics.
[0003]
The elastic modulus of the carbon fiber can be controlled so as to obtain desired characteristics mainly by changing the temperature of the carbonization step or graphitization step or the drawing ratio of the yarn in such step.
[0004]
On the other hand, the tensile strength of the carbon fiber is influenced by the properties as the precursor fiber, such as the oil agent and the single fiber diameter imparted to the precursor fiber, and the temperature in the firing process such as oxidation treatment and carbonization treatment. In addition, since the tensile strength of brittle materials such as carbon fibers is likely to be dominated by defects, it is important to eliminate the retention of dust and gases that are generated or brought in during the firing process, especially with a large amount of active atmosphere such as air. In the contacting oxidation process, the cleanliness of the atmosphere is extremely important.
[0005]
Usually, in a carbon fiber oxidation treatment furnace, in order to reduce the loss of heat energy, an active gas such as air heated by a heater or the like is sent into the oxidation treatment furnace by a fan, which is extracted from the furnace and heated. It has a so-called circulation system that sends it to the machine. In such a furnace, if the operation is continued for a long period of time, for example, silica or the like caused by a silicone-based oil agent that is often applied to the precursor fiber, or dust that the precursor fiber or air brings from outside the furnace, the circulating hot air The amount of dust inside increases and eventually the tensile strength of the carbon fiber obtained decreases. Among the dusts, metal elements such as iron, aluminum, chromium, and magnesium are particularly harmful to the tensile strength of carbon fibers. However, such metal elements do not have a single element but form some bonds with the silica. It is presumed to exist with it. Therefore, it is necessary for the furnace that has been operated for a certain period of time to stop once, remove the dust in the system, and then restart the operation.
[0006]
However, even if it intends to remove the dust in the system once it has stopped, when the operation is resumed, a phenomenon occurs in which the tensile strength of the resulting carbon fiber is greatly reduced at the beginning of the operation.
[0007]
In order to further enhance the removal of dust in the system, it may take a lot of personnel and time, but this not only leads to an increase in cost, but in the case of large-scale equipment for mass production, such equipment is submicron. It was extremely difficult to effectively remove the level of dust.
[0008]
In view of such problems, the present inventors have intensively studied and found a method suitable for efficiently removing dust existing in the oxidation treatment furnace, and have completed the present invention.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, that is, an apparatus and method that can easily remove dust existing in an oxidation treatment furnace after stopping and thereby stably produce high-strength carbon fibers. It is to provide.
[0010]
[Means for Solving the Problems]
The oxidation treatment furnace of the present invention has the following configuration in order to achieve the above-described problem. That is, in an oxidation treatment furnace having a circulation system in which an oxidizing gas is circulated by a fan, an exhaust port having an opening / closing mechanism capable of discharging an air volume of 13 to 100% of the suction air volume of the fan is provided on the exhaust side of the fan. Carbon fiber manufacturing comprising a switching valve that has an air supply port provided with an opening / closing mechanism on the downstream side thereof and that can block communication of a circulation duct between the exhaust port and the air supply port It is an oxidation treatment furnace. Moreover, in order to achieve the said subject, the manufacturing method of the carbon fiber of this invention has the following structure. That is, before starting the operation of the oxidation treatment furnace, after exhausting a part of the suction air volume of the fan from the exhaust port, the precursor yarn is oxidized in the oxidation treatment furnace and then carbonized. It is a manufacturing method of carbon fiber. Furthermore, the manufacturing method of the carbon fiber of this invention has the following structure in order to achieve the said subject. That is, the fan has a circulation system in which the oxidizing gas is circulated by the fan, and the vibration is applied to the oxidizing gas before the start of the operation of the oxidation treatment furnace for carbon fiber production in which the exhaust port is provided in the circulation system. A part of the suction air volume is exhausted from the exhaust port, and then the precursor yarn is oxidized in the oxidation furnace and then carbonized.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
When the operation is resumed after the oxidation furnace is stopped, the tensile strength of the resulting carbon fiber decreases at the beginning of the operation, because the dust accumulated on the border of the furnace is a sudden burst at the start of the fan operation. This is thought to be due to resuspension caused by a typical circulating wind and the amount of dust in the furnace increasing. Therefore, it is necessary to remove the dust that has re-suspended after the start of operation of the fan.
[0013]
An example of the oxidation treatment furnace of the present invention shown in FIG. A circulation-type oxidation treatment furnace having a fan 4 for circulating an oxidizing gas necessary for oxidizing a carbon fiber precursor fiber, and having an exhaust port 6 in a part of the circulation system duct 10 . Thereby, dust can be discharged using the wind pressure of the fan before the operation of the oxidation furnace is started. During normal operation, it is preferable to have an open / close mechanism that can close the exhaust port so that the oxidizing gas can be circulated efficiently. In order to use a circulation fan during normal operation as a dust discharge fan, it is preferable to provide an exhaust port in a circulation duct on the discharge side of the fan as shown in FIG.
[0014]
Further, as shown in FIGS. 2 and 3, if not only the exhaust port 6 but also the air supply port 7 are provided, circulation and exhaust can be repeated using the switching valves 8 and 8 'as will be described later. It is more preferable.
[0015]
The opening area of the exhaust port can be determined in consideration of the pressure loss of the circulation system and the exhaust system, and it is preferable that 13 to 100% of the suction air volume of the fan can be exhausted. The suction air volume of the fan is obtained by measuring the wind speed on the suction side of the fan with an anemometer and multiplying it by the cross-sectional area of the circulation duct. The exhaust air volume is obtained by measuring the air volume at the exhaust port with an anemometer and multiplying by the exhaust port opening area. In Examples described later, Anemo Master Model 6161 manufactured by Nippon Kanomax was used as an anemometer.
[0016]
Next, a method for producing carbon fiber using such an oxidation treatment furnace will be described.
[0017]
First, the circulation fan of the oxidation furnace once stopped is driven to exhaust gas such as air and exhaust dust from the exhaust port. Such exhaust is preferably performed before raising the temperature of the oxidizing gas for the oxidation treatment in order to reduce thermal energy loss.
[0018]
When the exhaust air volume when exhausting from the exhaust port is 13 to 100% of the suction air volume of the fan, dust can be efficiently discharged.
[0019]
In addition to the exhaust before the start of the operation of the oxidation treatment furnace, if the exhaust is performed before the furnace body at the end of the previous operation is cooled in advance, gasified tar and the like can be discharged, so that the carbon fiber It is more effective in obtaining the tensile strength stably.
[0020]
Furthermore, when evacuating, it is preferable to apply vibration to the oxidizing gas in order to promote the separation of the dust from the inner wall surface of the furnace and to discharge the dust more efficiently.
[0021]
In order to impart vibration to the oxidizing gas, it is preferable that the circulating air be disturbed by repeatedly opening and closing the exhaust port. From this point of view, as shown in FIGS. 2 and 3, if not only the exhaust port 6 but also the air supply port 7 are provided, circulation and exhaust can be repeated using the switching valves 8 and 8 ′, It is more preferable because it can disturb the wind and improve the dust discharge efficiency.
[0022]
Installing the above-mentioned switching valve in an existing oxidation treatment furnace increases the time, personnel, and cost of modification as the equipment becomes larger. In such cases, vibration is applied to the oxidizing gas. As a relatively simple method, a low-frequency sound wave generator, a gas injection device, or the like can be used. In addition, it is possible to fluctuate the rotation speed of the fan using an inverter by a programming controller and vibrate by the turbulent flow effect. In this way, the amount of dust in the oxidation treatment furnace exhausted before the start of the oxidation treatment furnace operation is 10 pieces. / Cm 3 or less is preferable. Thereby, the tensile strength of the carbon fiber at the beginning of production can be improved.
[0023]
Here, the amount of dust in the oxidation treatment furnace is a place in the oxidation treatment furnace where the circulating air is flowing stably, and particles of 0.5 to 5 microns when measured with a light scattering type automatic particle counter. Numbers. In Examples of the present invention, a particle counter KC-03 manufactured by Rion Co., Ltd. was used as a light scattering type automatic particle counter.
[0024]
In this way, the oxidizing gas is circulated through the oxidation furnace exhausted before the start of the operation of the oxidation furnace, the precursor fiber such as acrylic fiber or pitch fiber is passed through, and the oxidation treatment is performed. Carbonization treatment is performed in an inert atmosphere such as nitrogen at 1100 to 2000 ° C. Following the carbonization treatment, for example, a graphitization treatment may be performed in an inert atmosphere at 2000 to 3000 ° C.
[0025]
Thereby, not only can the tensile strength of the carbon fiber obtained immediately after the start of production be improved, but also the time from the start of production to the stabilization of the tensile strength of the carbon fiber can be shortened.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0027]
In addition, in a present Example, the physical property (strength) of carbon fiber is a physical property in the epoxy resin impregnation strand measured according to JISR-7601, and was calculated | required from the average of the frequency | count n = 10 of measurement.
[0028]
( Comparative Example 1) In the oxidation treatment furnace shown in FIG. 1 in which dust is accumulated in a long-term operation, before the operation is started and before the air is heated by the gas heater 5, the dust in the furnace is discharged by wind power from the circulation fan 4. did. At this time, 15% of the suction air volume of the fan was discharged from the exhaust port. When the amount of dust in the oxidation treatment furnace was measured after the exhaust port was closed and air was heated and circulated, it was 10 / cm 3 .
[0029]
Thereafter, an acrylic fiber composed of 12000 filaments provided with a silicone-based oil was oxidized as a precursor fiber using the oxidation furnace, and then carbonized to produce a carbon fiber. Tensile strength of carbon fibers immediately after production start is 470kgf / mm 2, became 500 kgf / mm 2 after 12 hours of operation.
[0030]
(Embodiment 1 ) In the oxidation treatment furnace shown in FIG. 2 in which dust has accumulated in a long-term operation, a part of the circulation system duct of the oxidation treatment furnace is switched before the operation is started and before the air is heated by the gas heater 5. 8 and the switching valve 8 between the exhaust port and the air supply port was opened, and the dust in the furnace was discharged by wind power from the circulation fan 4. At this time, almost 100% of the fan's suction air volume was exhausted, and almost the same amount of fresh air was introduced. Further, at this time, the switching valve was switched three times from the state of FIG. 2 and the state of FIG. 3 to discharge dust. The exhaust valve and the supply port switching valve were closed, the circulation duct switching valve 8 was opened, the air was heated and circulated, and the number of dust in the oxidation treatment furnace was measured. The result was 4 / cm 3 . .
[0031]
Thereafter, the same acrylic fiber as in Comparative Example 1 was used as a precursor fiber, oxidized using the oxidation furnace, and then carbonized to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 490 kgf / mm 2 , and 510 kgf / mm 2 after 6 hours of operation.
[0032]
Except to repeat (Example 2) The switching valve 30 times, it was in the same manner as in Example 1, the tensile strength of carbon fibers immediately after production start is 500 kgf / mm 2, and 530kgf / mm 2 after 6 hours became.
[0033]
( Comparative example 2 ) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated in a long-term operation, before the operation is started and before the air is heated by the gas heater 5, the dust in the furnace is discharged by wind power from the circulation fan 4. did. At this time, 3% of the suction air volume of the fan was discharged from the exhaust port. The exhaust port was closed and air was heated and circulated, and then the number of dust in the oxidation treatment furnace was measured and found to be 100 / cm 3 .
[0034]
Thereafter, the same acrylic fiber as in Comparative Example 1 was used as a precursor fiber, oxidized using the oxidation furnace, and then carbonized to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 420 kgf / mm 2 , and it became 470 kgf / mm 2 after 48 hours of operation.
[0035]
(Example 3 ) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated in a long-term operation, before the operation is started and before the air is heated by the gas heater 5, a low-frequency sound wave generator (Infraphone manufactured by Infrasonic Corp.) Then, after oxidizing gas was oscillated with a low frequency sound wave of about 20 Hz, dust in the furnace was discharged by wind power from the circulation fan 4. At this time, 15% of the suction air volume of the fan was discharged from the exhaust port.
[0036]
Thereafter, an acrylic fiber composed of 12000 filaments provided with a silicone-based oil was oxidized as a precursor fiber using the oxidation furnace, and then carbonized to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 520 kgf / mm 2 , and became 560 kgf / mm 2 after 6 hours of operation.
[0037]
(Example 4 ) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated in a long-term operation, before the operation is started and before the air is heated by the gas heater 5, the gas injection device (diamond soot blow manufactured by Gadelius Co., Ltd.) The pressurized gas of 3 / hour was continuously injected to vibrate the oxidizing gas, and then dust in the furnace was discharged by wind power from the circulation fan 4. At this time, 15% of the suction air volume of the fan was discharged from the exhaust port.
[0038]
Thereafter, an acrylic fiber composed of 12000 filaments provided with a silicone-based oil was oxidized as a precursor fiber using the oxidation furnace, and then carbonized to produce a carbon fiber. Tensile strength of carbon fibers immediately after production start is 490kgf / mm 2, became 510kgf / mm 2 after 6 hours of operation.
[0039]
(Embodiment 5 ) In the oxidation treatment furnace shown in FIG. 4 in which dust is accumulated in a long-term operation, before the operation is started and before the air is heated by the gas heater 5, the rotation speed of the fan is intermittently set using a programming controller. After fluctuating and vibrating the oxidizing gas, dust in the furnace was discharged by wind power from the circulation fan 4. At this time, 15% of the suction air volume of the fan was discharged from the exhaust port.
[0040]
Thereafter, an acrylic fiber composed of 12000 filaments provided with a silicone-based oil was oxidized as a precursor fiber using the oxidation furnace, and then carbonized to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 490 kgf / mm 2 , and became 530 kgf / mm 2 after 6 hours of operation.
[0041]
(Comparative Example 3 ) In the oxidation treatment furnace shown in FIG. 7 in which dust accumulated in a long-term operation, the number of dust in the oxidation treatment furnace was measured after heating and circulating the air without discharging any air before the start of operation. 400 pieces / cm 3 .
[0042]
Thereafter, the same acrylic fiber as in Comparative Example 1 was used as a precursor fiber, oxidized using the oxidation furnace, and then carbonized to produce a carbon fiber. The tensile strength of the carbon fiber immediately after the start of production was 400 kgf / mm 2 , and it became 460 kgf / mm 2 after 96 hours of operation.
[0043]
【The invention's effect】
The oxidation furnace of the present invention is capable of efficiently exhausting and removing dust in the furnace and purifying the carbon fiber obtained immediately after the start of production by producing carbon fiber using such an oxidation furnace. The tensile strength of the carbon fiber can be made good, and the time until the tensile strength of the obtained carbon fiber reaches a stable level can be shortened.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing a conventional oxidation treatment furnace.
FIG. 2 is a schematic side view showing an oxidation treatment furnace according to an embodiment of the present invention in an exhaust state.
FIG. 3 is a schematic side view showing an oxidation treatment furnace according to an embodiment of the present invention in a circulating state.
FIG. 4 is a schematic side view showing a conventional oxidation treatment furnace.
5 is a conceptual diagram of a system configuration of a fan rotation speed control device used in Embodiment 7. FIG.
FIG. 6 is a control pattern of a programming controller used in the seventh embodiment.
FIG. 7 is a schematic side view showing a conventional oxidation treatment furnace.
[Explanation of symbols]
1: Oxidation furnace 2: Roller 3: Yarn 4: Circulation fan 5: Gas heater 6: Exhaust port 7: Air supply port 8: Exhaust port, air supply port switching valve 8 ': Switching of circulation system duct Valve 9: Gas flow 10: Circulation system duct 11: Fan motor 12: Inverter 13: Programming controller

Claims (8)

ファンにより酸化性気体を循環せしめる循環系を有する酸化処理炉において、該ファンの排出側に、ファンの吸引風量の13〜100%の風量を排出可能であり開閉機構を備えた排気口を有し、その下流側に開閉機構を備えた給気口を有し、かつ該排気口と該給気口との間の循環ダクトの連通を遮断可能とする切替弁を設けてなる炭素繊維製造用酸化処理炉。In an oxidation processing furnace having a circulation system in which an oxidizing gas is circulated by a fan, an exhaust port having an opening / closing mechanism capable of discharging an air volume of 13 to 100% of the suction air volume of the fan is provided on the exhaust side of the fan. An oxidation for carbon fiber production comprising an air supply port provided with an opening / closing mechanism on the downstream side thereof, and a switching valve capable of blocking communication of the circulation duct between the exhaust port and the air supply port Processing furnace. 請求項1記載の酸化処理炉の運転開始前にファンの吸引風量の一部を排気口より排気せしめて後、前駆体糸条を該酸化処理炉で酸化処理せしめ、ついで炭化処理する、炭素繊維の製造方法。A carbon fiber, wherein a part of the suction air flow of a fan is exhausted from an exhaust port before starting the operation of the oxidation treatment furnace according to claim 1, and then the precursor yarn is oxidized in the oxidation treatment furnace and then carbonized. Manufacturing method. ファンの吸引風量の13〜100%の風量を排気口より排気する、請求項2記載の炭素繊維の製造方法。The method for producing carbon fiber according to claim 2, wherein an air volume of 13 to 100% of a suction air volume of the fan is exhausted from an exhaust port. ファンの吸引風量の一部を排気口より排気せしめることにより、酸化処理炉内の粉塵量を10個/cmA part of the fan's suction air volume is exhausted from the exhaust port, thereby reducing the amount of dust in the oxidation furnace to 10 pieces / cm 3Three 以下とする、請求項2または3記載の炭素繊維の製造方法。The method for producing a carbon fiber according to claim 2 or 3, wherein: ファンにより酸化性気体を循環せしめる循環系を有し、かつ循環系に排気口を設けてなる炭素繊維製造用酸化処理炉の運転開始前に、酸化性気体に振動を付与しつつ、ファンの吸引風量の一部を排気口より排気せしめて後、前駆体糸条を該酸化処理炉で酸化処理せしめ、ついで炭化処理する炭素繊維の製造方法。Before starting the operation of the oxidation treatment furnace for carbon fiber production, which has a circulation system that circulates an oxidizing gas by a fan and has an exhaust port in the circulation system, suction of the fan while applying vibration to the oxidizing gas A method for producing carbon fiber in which a part of the air volume is exhausted from an exhaust port, and then the precursor yarn is oxidized in the oxidation furnace and then carbonized. 低周波音波により酸化性気体に振動を付与する、請求項5記載の炭素繊維の製造方法。The method for producing carbon fiber according to claim 5, wherein vibration is imparted to the oxidizing gas by low-frequency sound waves. 気体を噴射して酸化性気体に振動を付与する、請求項5記載の炭素繊維の製造方法。The method for producing carbon fiber according to claim 5, wherein a gas is injected to impart vibration to the oxidizing gas. ファンの回転数を変動させて酸化性気体に振動を付与する、請求項5記載の炭素繊維の製造方法。The method for producing carbon fiber according to claim 5, wherein vibration is imparted to the oxidizing gas by changing the rotational speed of the fan.
JP02953896A 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method Expired - Lifetime JP3610659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02953896A JP3610659B2 (en) 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-52720 1995-03-13
JP5272095 1995-03-13
JP02953896A JP3610659B2 (en) 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH08311723A JPH08311723A (en) 1996-11-26
JP3610659B2 true JP3610659B2 (en) 2005-01-19

Family

ID=26367750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02953896A Expired - Lifetime JP3610659B2 (en) 1995-03-13 1996-02-16 Oxidation furnace and carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3610659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168154A (en) * 2017-02-08 2019-08-23 东丽株式会社 The cleaning method and fire resisting chemical fibre dimension, the manufacturing method of carbon fiber, graphitized fibre of resistance to cremator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728802B2 (en) * 2009-09-18 2015-06-03 三菱レイヨン株式会社 Porous carbon electrode substrate and method for producing the same
CN102094262B (en) * 2010-12-08 2012-05-30 北京化工机械有限公司 Device for carrying out preoxidation on PAN (polyacrylonitrile) precursor joint
CN102051712B (en) * 2011-01-12 2012-07-25 蓝星(北京)化工机械有限公司 Preoxidation device for PAN (polyacrylonitrile) precursor connector
WO2014081015A1 (en) 2012-11-22 2014-05-30 三菱レイヨン株式会社 Method for production of carbon fiber bundle
EP3263750A1 (en) * 2015-02-25 2018-01-03 Mitsubishi Chemical Corporation Heat treatment furnace device and method for producing carbon fiber bundle
JP6354926B1 (en) * 2017-02-08 2018-07-11 東レ株式会社 Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
CN108950741B (en) * 2018-07-01 2020-12-18 浙江兰博生物科技股份有限公司 Continuous carbonization device for producing carbon fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168154A (en) * 2017-02-08 2019-08-23 东丽株式会社 The cleaning method and fire resisting chemical fibre dimension, the manufacturing method of carbon fiber, graphitized fibre of resistance to cremator
CN110168154B (en) * 2017-02-08 2020-09-15 东丽株式会社 Method for cleaning refractor oven and method for producing refractory fiber, carbon fiber, and graphitized fiber

Also Published As

Publication number Publication date
JPH08311723A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP3610659B2 (en) Oxidation furnace and carbon fiber manufacturing method
EP2460915B1 (en) Method for stabilizing a carbon-containing fibre and method for producing a carbon fibre
CN110168154B (en) Method for cleaning refractor oven and method for producing refractory fiber, carbon fiber, and graphitized fiber
GB2184819A (en) System for producing carbon fibers
JP2001098428A (en) Sealing apparatus for carbonization furnace for producing carbon fiber and method for producing carbon fiber
CN207313677U (en) A kind of pit carburizing furnace
JP2012201997A (en) Flameproofing furnace apparatus
JP2008144293A (en) Heat treatment apparatus for flame resistance and method for producing flame-resistant fiber bundle
CN110093688A (en) Fiber preoxidation equipment
CN2417181Y (en) Micro-pulsation plasma nitriding hot wall stove
JP2018111891A (en) Method for producing carbon fiber bundle
JP6354926B1 (en) Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
CN119016451B (en) Fire nozzle test cleaning system and method
JP3003476B2 (en) filter
JPH04241162A (en) Method for removing powder and granule
JPH01118623A (en) Provision of precursor fiber with flame resistance
JP2004019053A (en) Horizontal type carbonization furnace for producing carbon fiber and method for producing carbon fiber by using the same
CN219731149U (en) Pitch-based carbon fiber preoxidation furnace
CN216909729U (en) Device for preparing zero-order air through thermal cracking
KR101210698B1 (en) Method of preparing for carbon fiber
JP5965098B2 (en) Carbon fiber manufacturing method
JP4212297B2 (en) Carbon fiber manufacturing method
JPH03104928A (en) Device for thermal treatment
JP2001234434A (en) Method for producing carbon fiber
TWM564598U (en) Oxidized fiber structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

EXPY Cancellation because of completion of term