[go: up one dir, main page]

JP3609859B2 - Exhaust gas purification catalyst and exhaust gas purification method - Google Patents

Exhaust gas purification catalyst and exhaust gas purification method Download PDF

Info

Publication number
JP3609859B2
JP3609859B2 JP23842094A JP23842094A JP3609859B2 JP 3609859 B2 JP3609859 B2 JP 3609859B2 JP 23842094 A JP23842094 A JP 23842094A JP 23842094 A JP23842094 A JP 23842094A JP 3609859 B2 JP3609859 B2 JP 3609859B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
containing layer
nox
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23842094A
Other languages
Japanese (ja)
Other versions
JPH0871422A (en
Inventor
賢 伊藤
幸雄 小崎
克巳 倉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP23842094A priority Critical patent/JP3609859B2/en
Publication of JPH0871422A publication Critical patent/JPH0871422A/en
Application granted granted Critical
Publication of JP3609859B2 publication Critical patent/JP3609859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、内燃機関、ボイラー、ガスタービン等から排出される排気ガス、特に過剰酸素が共存する窒素酸化物を含む排気ガスの浄化用触媒及び該排気ガスの浄化方法に関する。
【0002】
【従来の技術】
内燃機関等から大気中に排出される窒素酸化物(NOx)は、光化学スモッグや酸性雨の原因となる。従って、かかる窒素酸化物の排出を防止することが環境保全の点から緊急に求められている。
近年、地球温暖化防止に向け、二酸化炭素(CO)の排出抑制が求められている。そこで、化学量論量に相当する空燃比(A/F=14.6)よりも大きな空燃比でガソリンの燃焼反応を行わせることができる希薄燃焼エンジン(リーンバーンガソリンエンジン)の実用化が要望されている。しかし、このリーンバーンガソリンエンジンからの排気ガスの処理には従来のガソリン車の排気ガス処理に用いられてきた、空燃比を化学量論量(A/F=14.6)付近に制御してPt−Rh/Al系触媒を用いてNOxを一酸化炭素(CO)及び炭化水素(HC)と同時に除去する三元触媒(TWC)法は有効ではない。
また、ディ−ゼルエンジンは本来希薄燃焼であり、やはりNOxの除去が求められている。
【0003】
このようなリーンバーンガソリンエンジンやディーゼルエンジン等の希薄燃焼方式のエンジンを総称してリーンバーンエンジンと呼ぶ。
リーンバーンエンジンの排気ガス中のNOxを除去するための触媒として、近年、銅イオン交換ゼオライト触媒(例えば特開昭63−100919号公報)、貴金属イオン交換ゼオライト触媒(例えば特開平1−135541号公報)等の種々のゼオライト系触媒が提案されている。しかし、これらの触媒は650〜700℃の高温では排気ガスに含まれる水蒸気のために数時間で不可逆な失活がおこり、実用に耐えない。
【0004】
また、別のNOx除去のための触媒として、Pt、Pd、Rh、Ir、Ru等の貴金属元素がアルミナ、シリカ、チタニア、ジルコニア等の多孔質金属酸化物担体に担持された触媒(特開平3−221144号公報、特開平3−293035号公報)も報告されている。しかし、この担持貴金属触媒は、貴金属の強い酸化触媒活性のためにNOxの還元剤となるベき炭化水素(HC)〔本明細書において、「炭化水素」の語は、狭義の炭化水素のみならず、その部分酸化物である酸素化炭化水素、例えばアルコール類、ケトン類等を含むものを意味する〕が、過剰に存在する酸素と優先的に反応し、NOx還元反応の選択性を高められないという問題がある。
【0005】
本出願人は、最近、金属炭化物及び金属窒化物から選ばれる少なくとも一種からなる担体にイリジウムが担持されてなる触媒が、過剰量の酸素存在下でもNOxに対する炭化水素による還元選択性を高めることを見いだした(特開平6−31173号公報)。しかし、この触媒のNOx除去能は酸素及び炭化水素濃度に対する依存性が高いために、特に、高酸素濃度条件下、又は低炭化水素濃度条件下では必ずしも十分にNOxを除去することができないことがある。
他方、アルミナにイリジウムとニッケルとを担持した排気ガス処理用触媒は公知である(米国特許327862号)。また、活性アルミナからなる担体にタンタル、ニオブ、イットリウム及び希土類からなる群から選ばれた少なくとも一種の金属とイリジウムが担持されてなる触媒が、過剰量の酸素存在下でも、活性アルミナにイリジウムを担持した触媒及びZSM−5に銅を担持した触媒に比べてNOxに対する炭化水素による還元選択性が高いことが報告されている(特開平6−165937号)。しかし、これら活性アルミナからなる担体にイリジウムと上記の金属とが担持されてなる触媒は、いずれも炭化硅素からなる担体に同じ活性成分が担持されてなる触媒に比べてNOx除去能がかなり劣っており、十分ではない。
【0006】
【発明の解決すベき課題】
本発明は、上記従来の排気ガス処理用触媒の課題を解決すベくなされたものであり、その目的とするところは、炭化水素を含む還元性成分と該還元性成分全てを完全酸化するのに要する化学量論量より過剰の酸素(O)と窒素酸化物(NOx)とを含有する排気ガスに対して、低炭化水素濃度条件下であっても、より一層高いNOx除去率と水分共存下での高温耐久性を示す排気ガス浄化用触媒を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、炭化硅素からなる担体上に、イリジウムとネオジムとニッケルとを共存担持させてなる触媒が、かかる課題を解決するものであることを見いだした。
以下、本発明の排気ガス浄化用触媒について詳細に説明する。
【0008】
担体
本発明の触媒の担体としては、炭化硅素が使用される。安価に入手できるものとして、例えば粒径0.1〜100μm程度の粉末又はウィスカーとして市販されているものが使用できる。
【0009】
従来、排気ガス浄化用Ir触媒は、多孔性、高比表面積の金属酸化物担体に高分散度、微小粒径で担持されたものが用いられた〔例えば、K. C. Taylor and J. C. Schlaher, J. Catal, 63(1)53−71(1980) 〕。これに対し、本発明の触媒は、担体が金属酸化物ではなく、炭化硅素であるために、高温、水蒸気共存下で過剰の酸素を含む排気ガス中のNOxに対し、転化反応の高選択性と長寿命を示すというユニークな特徴を示す。さらに、本発明において担体として用いられる炭化硅素は低比表面積、非多孔質であることが好ましく、具体的には25m/g以下(特に5〜20m/g)のB.E.T.比表面積と1.0 cm/g以下(特に0.2 〜0.8cm /g)の細孔容積を有することが好ましい。
【0010】
活性成分
本発明の触媒では、上記の担体に、IrとNdとNiとが共存担持される。担持されたIrの存在状態は特に限定されない。Irの存在状態としては、例えば、金属状態;IrO、Ir、IrO等の酸化物状態;IrとNdとの複合酸化物、例えばIrNd等の状態;IrとNdとの合金、例えばIrNd、IrNd、IrNd、IrNd、IrNd、IrNd、IrNd、IrNd等の状態;IrとNiの合金、IrとNiとの複合酸化物、IrとNdとNiとの合金、IrとNdとNiとの複合酸化物、これらの状態が混在した状態等が挙げられる。
これらのIrは、担体上に、Nd元素及びNi元素とともに分散担持されることが好ましい。分散担持されたIrは、粉末法X線回折法で観察される結晶子径が2〜100nmの範囲が好ましく、より好ましくは5〜20nmである。結晶子径が小さ過ぎると、還元剤となるHC及びCOのOによる酸化反応が進み過ぎ好ましくない。結晶子径が大き過ぎると担持量の割には得られる触媒活性が低い。
Irの担体ヘの担持量は、触媒全体に対して、金属イリジウム換算で0.1〜10.0重量%が好ましく、0.5〜5.0重量%がより好ましい。少な過ぎると触媒の活性自体が低すぎ、多過ぎると還元剤と酸素との反応が進み過ぎ、NOx還元の選択性が低下する。
【0011】
本発明の触媒において、担持されたNdの存在状態も特に限定されない。例えば、Ndの酸化物、NdとIrの複合酸化物、IrとNdとの合金、IrとNdとNiとの複合酸化物、IrとNdとNiとの合金、これらの混合物の状態で担持される。Ndの担持量は、好ましくはイリジウムに対し、原子比で0.2〜10倍であり、より好ましくは0.4〜6倍である。Ndの量が少な過ぎると、IrにNdを併用する効果が得られない。また、Ndの担持量が多過ぎると、得られる触媒の初期活性が低下し、かつ、NOx転化率のライトオフ温度が高温側にシフトし、低温での活性が低下する。
【0012】
また、本発明の触媒において、担持されたNiの存在状態も特に限定されない。Niの存在状態としては、例えば、金属状態;NiOの酸化物状態;IrとNiとの複合酸化物、IrとNiとの合金、IrとNiとNdとの複合酸化物、IrとNiとNdとの合金、これらの状態が混在した状態等が挙げられる。Niの担持量は、好ましくはイリジウムに対し、原子比で0.1〜20倍であり、より好ましくは0.2〜10倍である。Niの量が少な過ぎると、IrにNiを併用する効果が得られない。また、Niの担持量が多過ぎると、得られる触媒の初期活性が低下し、かつNOx転化率のライトオフ温度が高温側にシフトし、低温での活性が低下する。
【0013】
触媒の調製法
本発明の触媒の調製方法は特に限定されず、従来公知の方法が適用される。例えばIr、Nd及びNiの各々の原料塩の均一な混合溶液を、担体である炭化硅素に含浸させ、乾燥後、焼成するなどして、IrとNdとNiの同時担持法で調製される。あるいは、まずIrの原料塩を上記担体に含浸させ、乾燥後焼成してIrの不溶性化合物又はIr金属として該担体上に固定化した後、Ndの原料塩を含浸させ、再び乾燥・焼成する。その後、Niの原料塩を含浸させ、再び乾燥・焼成することにより結果的に担体上に、IrとNdとNiとを共存担持せしめる。又は、その逆に、まずNiを担持固定化した後、NdとIrを順に担持固定化させる等の各種逐次担持法が適用される。
【0014】
本発明の触媒の調製において、イリジウム、ネオジム及びニッケルの出発原料に特に制約は無い。イリジウムの出発原料としては、例えば、三塩化イリジウム(IrCl)、塩化イリジウム酸(HIrCl)、塩化イリジウム酸ナトリウム(NaIrCl)、同(NaIrCl)、硝酸イリジウム(Ir(NO)、硫酸イリジウム(Ir(SO)等のイリジウムの水溶性塩が使用される。また、Ir(CO)12等のIrの金属カルボニル、IrCl(CO)(PPh等のIrの有機金属錯体をヘキサン、アセトン、クロロホルム、エタノール等の有機溶剤に溶かして用いてもよい。
ネオジム及びニッケルの出発原料としては、例えば、Nd及びNiの硝酸塩、酢酸塩、塩化物、硫酸塩等が使用できる。中でも、水溶媒ヘの溶解度が大きい硝酸塩、酢酸塩が特に好ましい。
【0015】
上記、同時担持法、あるいは逐次担持法において、担体上に触媒前駆体として担持されたIr化合物、Nd化合物及び/又はNiの化合物の焼成分解時の雰囲気は、前駆体の種類によって、空気中、真空中、窒素等不活性ガス気流中あるいは水素気流中等、適宜選択される。焼成温度は300〜1,000℃が好ましく、より好ましくは600〜900℃である。焼成時間は、適宜選定すればよいが、通常10分〜20時間程度でよく、好ましくは30分〜5時間程度である。また、焼成は複数の処理を段階的に組み合わせて行ってもよい。例えば、空気中600〜800℃で焼成後、水素気流中600〜900 ℃で還元処理してもよい。
【0016】
排気ガスの浄化方法
本発明によれば、上記の触媒を用いた、内燃機関等の排気ガスの浄化方法も提供される。
即ち、本発明は、炭化水素を含む還元性成分と、該還元性成分全てを完全酸化するのに要する化学量論量より過剰の、酸素と窒素酸化物を含む酸化性成分とを含有する排気ガスを、触媒含有層と接触させることからなる該排気ガスの浄化方法において、該触媒含有層に含まれる触媒が上記の触媒である方法を提供する。この方法によって、該排気ガス中の窒素酸化物が窒素(N)と水(HO)とに選択的に還元分解されるとともに、排気ガス中の炭化水素及び一酸化炭素(CO)からなる還元性成分は二酸化炭素(CO)と水(HO)ヘと酸化される。
【0017】
触媒含有層
本発明の触媒を上記の排気ガス浄化方法に使用する際の触媒含有層の形態は特に制限されない。
例えば、該方法に用いられる触媒含有層は、前記の触媒のみから構成されていてもよい。この場合には、通常、一定空間内に触媒を充填する方法、所定の形状に触媒を成形する方法等が考えられる。所定の形状に触媒を成形する場合は、該触媒を、適当なバインダーと混合し、又はバインダー無しで適当な一定の形状に成形するとよい。また、IrとNdとNiとの担持処理を行うに先立って担体を予め適当な形状に成形しておいてもよい。成形触媒の形状は特に制限されず、例えば、球状、ペレット状、円筒状、ハニカム状、ラセン状、粒状、リング状等が挙げられる。形状、大きさ等は使用条件に応じて任意に選択することができる。
【0018】
あるいは、触媒含有層は、触媒を耐火性材料からなる支持基質の表面に被覆してなる触媒被覆構造体で構成してもよい。該触媒被覆構造体としては、例えば、該支持基質を排気ガスの流れの方向に配置される多数の貫通孔を有するように成形し、少なくともその貫通孔の内表面に触媒を被覆してなるもの等が考えられる。さらに、このような支持基質には、その流れ方向に垂直な断面で見たときに、通常、開孔率60〜90%、好ましくは70〜90%で、1平方インチ(5.06cm)当り30〜700個、好ましくは200〜600個の貫通孔が設けられていることが好ましい。上記の支持基質としては、例えば、コージェライト、ムライト等のセラミックスや、ステンレス等の金属をハニカム状や発泡体に一体成形したもの等が挙げられる。
【0019】
触媒被覆構造体の製造に際しては、上記の支持基質の表面に、本発明の触媒を適当なバインダーと共に、又はバインダー無しで被覆(例えばウォッシュコート)して用いるとよい。また、上記の支持基質に、予め担体のみを触媒を被覆する場合と同様の方法で被覆し、得られる担体のみを被覆した支持基質にIrとNdとNiとの担持処理を行って触媒被覆構造体を製造してもよい。
支持基質上ヘの触媒の被覆量は特に制約はなく、好ましくは支持基質単位体積当たり50〜200g/L、より好ましくは80〜160g/Lである。支持基質単位体積当たりのIr担持量は好ましくは0.05〜20.0g/L、より好ましくは、0.3〜10.0g/Lであり、Ndの担持量は、好ましくは原子比でIrの0.2〜10倍、より好ましくは0.4〜6倍であり、Niの担持量は、好ましくは原子比でIrの0.1〜20倍、より好ましくは0.2〜10倍である。
【0020】
バインダーとしては、例えば、アルミナゾル、シリカゾル、チタニアゾル等の慣用の無機質バインダーを使用することができる。支持基質上ヘの触媒粉末の被覆は、例えば、触媒粉末にアルミナゾルと水とを加え、混練してスラリーを形成し、この中ヘ支持基質を浸漬した後、乾燥・焼成して行うことができる。
【0021】
上記触媒含有層を流れる排気ガスのガス空間速度には特に制約はなく、好ましくは空間速度 5,000〜 200,000/hr、より好ましくは10,000〜 150,000/hrである。該空間速度が低すぎると大容量の触媒が必要になり、また高すぎるとNOx除去率が低下する。また、NOxの選択的還元が起こるための、排気ガスの触媒含有層入口温度は、好ましくは200〜700℃であり、より好ましくは300〜600℃である。この温度が、低過ぎるとNOxの転化率が立ち上がらず、高過ぎるとNOx還元の選択率が低下する。
【0022】
本発明の排気ガスの浄化方法が対象とする排気ガスは、酸化性成分と還元性成分との重量比A/Fが化学量論量(A/F=14.6)よりも、還元性成分過少側(A/F>14.6)であることが好ましい。本発明の触媒は化学量論量付近でもNOx除去性能を発揮するが、その本領が発揮されるのはA/F>17の酸素過剰雰囲気においてである。このような酸素過剰雰囲気では、従来の貴金属触媒はいずれも著しく不十分なNOx還元選択性しか示さなかった。これに対し、本発明の触媒は、A/F>17、例えばO濃度>3%の領域において充分高いNOx除去率を示す。さらに、本発明の触媒は、A/F>24、例えばO濃度>10%の高酸素濃度域においても、外部からの還元剤HCの追加添加無しで、排気ガス中のHCのみによって十分なNOx還元能を示す。
また、エンジンの仕様によっては排気ガス中に含まれるHCが比較的少ない〔THC(C1で換算した炭化水素濃度)/NOx=3程度〕こともあるが、本発明の触媒はこのようなHC濃度が比較的少ない条件下でも十分なNOx還元能を発揮する。
【0023】
【作用】
本発明の触媒に接触させることにより、排気ガス中のNOxは、排気ガス中に共存するHC、CO及び場合によって追加添加されたHC等を還元剤として、NとHOとに還元分解される。
活性金属であるIrが、共存するNd及びNiと共に炭化硅素からなる担体の表面上に安定した状態で担持されているため、排気ガス中のHC及びCO等の還元剤とNOxとの反応の選択性が向上すると共に、熱劣化に対する耐久性も向上するものと推定される。その結果、排気ガス中のNOxが長期に亘って効率よく除去される。
【0024】
【実施例】
以下、本発明を実施例により詳しく説明する。比較例に係る触媒、触媒被覆構造体及び触媒含有層には星印(*)を付す。
(触媒の製造)
実施例1〔Ir−Nd−Ni/SiC触媒被覆ハニカム(A−1)の製造例〕
(a) 粉末担体へのIr−Nd−Niの担持
市販のSiC粉末( LONZA社製、B.E.T.比表面積15m/g、細孔容積 0.54 cm/g)130g に脱イオン水2.6Lを加え20分間攪拌しSiC粉末スラリーを得た。このスラリーに、金属イリジウム1.56gに相当する塩化イリジウム酸(HIrCl)を含む脱イオン水溶液160mLと、金属ネオジム3.21gに相当する硝酸ネオジム・6水和物(Nd(NO・6HO)を含む脱イオン水溶液160mLと、金属ニッケル0.48gに相当する硝酸ニッケル・6水和物(Ni(NO・6HO〕を含む脱イオン水溶液160mLとの混合溶液を添加した後、スチームジャケット付きグラスライニングディシュ上に移し、攪拌しながら4時間に亘って水分を蒸発させた。
こうして得られた残渣の固形物を電気乾燥器により105℃で16時間乾燥した後粉砕し、得られた粉砕物を石英トレーに入れ電気炉で空気中、800℃で2時間焼成した。その後さらに、得られた焼成粉末を100%水素気流中、700℃で2時間還元処理して1.2重量%Ir−2.4重量%Nd−0.4重量%Ni〔Ir/Nd/Ni=1/2.7/1(原子比)〕/SiC触媒の粉末を得た。
(b) ハニカムへのウオッシュコート
(a) で得られた触媒紛末30gに脱イオン水60g及びアルミナゾル(Al固形分10重量%含有)4.0gを加え、得られた混合物をボールミルにて5時間湿式粉砕し、触媒のスラリーを得た。このスラリーに市販の400セルコージェライトハニカムからくり貫かれた直径1インチ×長さ2.5インチのコアピースを浸漬して、このコアピースに触媒を付着させ、余分のスラリーを空気ブローで除去した。その後、触媒が付着したコアピースを300℃で20分間乾燥し、さらに、500℃で30分間焼成してハニカム容積1リッター当たり130g被覆されたIr−Nd−Ni/SiC触媒被覆ハニカム(Aー1)を得た。
【0025】
実施例2〔Ir−Nd−Ni/SiC触媒被覆ハニカム(A−2)の製造例〕
(a) 炭化硅素粉末のウオッシュコート
実施例1(b) において、触媒粉末の代わりに、炭化硅素粉末を用いる以外は実施例1(b) と同様にして、ハニカム1L当たりドライ換算で130gの炭化硅素を被覆したハニカムコアピースを得た。
(b) Ir−Nd−Niの担持
Ir分9.98gを含む塩化イリジウム酸とNd分20.54gを含む硝酸ネジウムとNi分3.07gを含む硝酸ニッケルとの脱イオン水溶液1000mLに実施例2(a) で得られた炭化硅素被覆済みハニカムコアピースを浸漬し、室温にて3分間保持し該水溶液を含浸させた。エアブローで余分の水溶液を除去し、乾燥した後、電気炉で空気中、800℃で2時間焼成した。その後さらに、得られた焼成物を100%水素気流中、700℃で2時間還元処理してIr−Nd−Ni/SiC触媒被覆ハニカム(A−2)〔1.2重量%Ir−2.4重量%Nd−0.4重量%Ni〔Ir/Nd/Ni=1/2.7/1(原子比)〕/SiC〕を得た。
【0026】
実施例3〔Ir−Nd−Ni/SiC触媒被覆ハニカム(A−3)の製造例〕
実施例1(a) において、水素気流中、700℃で2時間還元処理する代わりに、水素気流中、900℃で2時間還元処理した以外は実施例1と同様にしてIr−Nd−Ni/SiC触媒被覆ハニカム(A−3)を得た。
【0027】
実施例4〔Ir−Nd−Ni/SiC触媒被覆ハニカム(A−4)の製造例〕
実施例1(a) において行った水素気流中、700℃、2時間の還元処理を行わず、その代わりに実施例1(b) において行った500℃で30分間の焼成処理の後に水素気流中、700℃、2時間の還元処理を行う以外は実施例1と同様にしてIr−Nd−Ni/SiC触媒被覆ハニカム(A−4)を得た。
【0028】
実施例5〔Ir−Nd−Ni/SiC触媒被覆ハニカム(A−5)の製造例〕
実施例4において、SiC粉末の量を121gに、金属イリジウム分を5.2gに、金属ニッケル分を1.60gに変えた以外は実施例4と同様にしてIr−Nd−Ni/SiC触媒被覆ハニカム(A−5)〔4.0重量%Ir−2.4重量%Nd−1.3重量%Ni〔Ir/Nd/Ni=1/0.72/1(原子比)〕/SiC〕を得た。
【0029】
実施例6〔Ir−Nd−Ni/SiC触媒被覆ハニカム(A−6)の製造例〕
実施例1(a) において、SiC粉末の量を126gに、金属ニッケル分を4.80gに変えた以外は実施例1と同様にしてIr−Nd−Ni/SiC触媒被覆ハニカム(A−6)〔1.2重量%Ir−2.4重量%Nd−4.0重量%Ni〔Ir/Nd/Ni=1/2.7/10(原子比)〕/SiC〕を得た。
【0030】
比較例1〔Ir/SiC触媒被覆ハニカム(B−1 )の製造例〕
実施例1(a) において、塩化イリジウム酸と硝酸ネオジムと硝酸ニッケルとの混合水溶液の代わりに、金属イリジウム1.56gに相当する塩化イリジウム酸(HIrCl)を含む脱イオン水溶液160mLを用いた以外は実施例1と同様にしてIr/SiC触媒被覆ハニカム(B−1)(1.2重量%Ir/SiC)を得た。
【0031】
比較例2〔Ir/Al 触媒被覆ハニカム(B−2 )の製造例〕
実施例1(a) において、SiC紛末の代わりに市販のAl粉末(住友化学製、B.E.T.比表面積160m/g)130gを用い、塩化イリジウム酸と硝酸ネオジムと硝酸ニッケルとの混合溶液の代わりに、金属イリジウム1.56gに相当する塩化イリジウム酸(HIrCl)を含む脱イオン水溶液160mLを用いた以外は実施例1と同様にしてIr/Al触媒被覆ハニカム(B−2)(1.2重量%Ir/Al)を得た。
【0032】
比較例3〔Nd−Ni/SiC触媒被覆ハニカム(B−3 )の製造例〕
実施例1(a) において、塩化イリジウム酸と硝酸ネオジムと硝酸ニッケルとの混合溶液の代わりに、金属ネオジム3.21gに相当する硝酸ネオジム・6水和物〔Nd(NO・6HO〕を含む脱イオン水溶液160mLと、金属ニッケル0.48gに相当する硝酸ニッケル・6水和物(Ni(NO・6HO)を含む脱イオン水溶液160mLとの混合溶液を用いた以外は実施例1と同様にしてNd−Ni/SiC触媒被覆ハニカム(B−3)(2.4重量%Nd−0.4重量%Ni/SiC)を得た。
【0033】
比較例4〔Ir−Nd/Al 触媒被覆ハニカム(B−4 )の製造例〕
実施例1(a)において、SiC紛末の代わりに市販のAl粉末(住友化学製、B.E.T.比表面積160m/g)130gを用い、塩化イリジウム酸と硝酸ネオジムと硝酸ニッケルとの混合溶液の代わりに、金属イリジウム1.56gに相当する塩化イリジウム酸(HIrCl)を含む脱イオン水溶液160mLと、金属ネオジム3.21gに相当する硝酸ネオジム・6水和物〔Nd(NO・6HO〕を含む脱イオン水溶液160mLとの混合溶液を用いた以外は実施例1と同様にしてIr−Nd/Al触媒被覆ハニカム(B−4)〔1.2重量%Ir−2.4重量%Nd〔Ir/Nd=1/2.7(原子比)〕/Al〕を得た。
【0034】
比較例5〔Ir−Nd−Ni/Al 触媒被覆ハニカム(B−5 )の製造例〕
実施例1(a) において、SiC紛末の代わりに市販のAl粉末(住友化学製、B.E.T.比表面積160m/g)130gを用いた以外は実施例1と同様にしてIr−Nd−Ni/Al触媒被覆ハニカム(B−5)〔1.2重量%Ir−2.4重量%Nd−0.4重量%Ni〔Ir/Nd/Ni=1/2.7/1(原子比)〕/Al〕を得た。
【0035】
(性能評価)
以下の各性能評価例において、触媒含有層は、上記の実施例で調製された触媒被覆ハニカムを充填して構成した。以下の記載において、例えば実施例1の触媒被覆ハニカム(A−1)からなる触媒含有層を「触媒含有層A−1」のごとく記述する。
【0036】
性能評価例1〔モデルガスによるライトオフ性能評価−(1)〕
本発明の実施例の触媒含有層A−1及び比較例の触媒含有層B−1の各々について、下記組成のリーンバーンエンジンモデル排気ガス(A)をガス空間速度SV60,000/hrで流しながら、触媒含有層を150℃から500℃まで連続して昇温させながら触媒含有層出口で流出するガス中のCO、HC及びNOxの濃度を連続的に測定しライトオフ性能(触媒含有層入口ガス温度と転化率の関係)を評価した。触媒含有層A−1についての結果を図1に示し、比較例の触媒含有層B−1についての結果を図2に示す。
【0037】

Figure 0003609859
【0038】
図1から、実施例1の触媒A−1を用いた触媒含有層A−1は、350〜500℃でCO、HC、NOxの3成分すベてを良好な転化率で排気ガスから除去できることがわかる。他方、図2から、比較例1の触媒B−1を用いた触媒含有層B−1は、HCとCOとを400℃以上の温度で良好に転化できるものの、NOxの転化率は実施例1の触媒含有層A−1と比較して著しく劣ることがわかる。
【0039】
性能評価例2(NOx転化率の酸素濃度依存性評価)
酸素濃度が、それぞれ、3.2%,5.0%,7.5%,10.0%及び14.0%と異なるほかは前記のモデル排気ガス(A)と同一組成である5種のモデル排気ガスを用いた以外は性能評価例1と同様にして触媒含有層A−1及び触媒含有層B−1のライトオフ性能を評価し、ライトオフ性能曲線を求めた。得られた各酸素濃度におけるライトオフ性能曲線の最大NOx転化率(ライトオフ性能曲線の最大値)をプロットした結果を図3に示す。図3から、触媒含有層A−1が酸素濃度3.2%(この場合、A/F=17相当)から酸素濃度14%(この場合、A/F=38相当)にわたり高い最大NOx転化率を保持していることがわかる。これに対し、触媒含有層B−1の最大NOx転化率は、酸素濃度の増加に従い急激に減少し、特に酸素濃度5%以上の酸素濃度域では、著しく低下することがわかる。
本発明の触媒は酸素濃度3.2%(A/F=17相当)から14.0%(A/F=38相当)までの広い酸素濃度範囲に亘ってNOx転化率が高く、酸素濃度依存性が少ないことが示された。
【0040】
性能評価例3〔モデルガスによるライトオフ性能評価−(2)〕
実施例の触媒を用いた触媒含有層A−1〜A−6及び比較例の触媒を用いた触媒含有層B−1〜B−5の各々について、下記組成のリーンバーンガソリンエンジンモデル排気ガス(B)をガス空間速度SV38,000/hrで流しながら、触媒含有層入口ガス温度を150℃から700℃まで連続して昇温させ、その間に触媒含有層出口で流出するガスのNOx濃度を連続測定した。
【0041】
Figure 0003609859
【0042】
表1に触媒含有層A−1〜A−6及びB−1〜B−5について、最大NOx転化率を示す。表1の結果から、実施例の触媒含有層A−1〜A−6は、Ir/SiC触媒、Ir/Al触媒、Nd−Ni/SiC触媒、Ir−Nd/Al触媒又はIr−Nd−Ni/Al触媒を用いた、比較例の触媒含有層B−1〜B−5のいずれと比較しても、化学量論量より過剰の酸素の存在下で窒素酸化物の転化率が優れていることがわかる。
【0043】
【表1】
Figure 0003609859
【0044】
性能評価例4〔NOx転化率のHC濃度依存性評価〕
プロピレン濃度が、それぞれ、500ppm、750ppm、1,000ppm、1,250ppm及び1,500ppmと異なるほかは前記のモデル排気ガス(B)と同一組成である5種のモデル排気ガスを用いた以外は性能評価例3と同様にして、触媒含有層A−1及び触媒含有層B−1のライトオフ性能を評価した。得られた各プロピレン濃度におけるライトオフ性能曲線の最大NOx転化率(ライトオフ性能曲線の最大値)をプロットした結果を図4に示す。
図4から、触媒含有層A−1がプロピレン濃度1,500ppm(THC/NOx=9)から500ppm(THC/NOx=3)にわたり高い最大NOx転化率を保持していることがわかる。これに対し、触媒含有層B−1の最大NOx転化率は、プロピレン濃度の減少に従い、急激に減少し、特に、プロピレン濃度1,200ppm以下の濃度域では、著しく低下することがわかる。本発明の触媒はTHC/NOx比が9から3までの広いプロピレン濃度範囲に亘ってNOx転化率が高く、HC濃度依存性が少ないことが示された。
【0045】
性能評価例5〔モデル排気ガスによるライトオフ性能評価−(3)〕
触媒含有層A−1、触媒含有層B−1及び触媒含有層B−5について、高温水熱条件下での耐熱性試験を行った。触媒含有層A−1、触媒含有層B−1及び触媒含有層B−5について、10%HO+90%窒素の混合ガス流通下、800℃及び900℃で各々5時間エージング処理した後、性能評価例3と同様にしてNOx転化率の評価を行った。その結果を表2に示す。エージング処理を全く施さない場合(フレッシュ)の結果も合わせて示す。
表2から、炭化硅素からなる担体にIrのみを担持した触媒含有層B−1は、水蒸気共存下900℃の加熱エージング後も加熱前とほぼ同等の安定したNOxの浄化性能を発揮したが、NOxの浄化能力としては不十分であることがわかる。また、活性アルミナからなる担体にIrとNdとNiとを担持した触媒含有層B−5は、水蒸気共存下900℃の加熱エージングでNOxの除去性能が著しく低下したことがわかる。これに対し、触媒含有層A−1は、水蒸気共存下900℃の加熱エージング処理後も比較的安定したNOxの浄化性能を発揮し、高いNOxの除去能力が維持されていることがわかる。従って、本発明の触媒は水蒸気共存下での高温耐久性においても優れていることが示された。
【0046】
【表2】
Figure 0003609859
【0047】
【発明の効果】
本発明の排気ガス浄化用触媒は、従来の排気ガス浄化用触媒に比較して、化学量論量より過剰の酸素を含有する排気ガスから、酸素や炭化水素の濃度によらず、窒素酸化物の高い転化率を示す。さらにこの触媒は、水分存在下の高温での耐久性にも優れている。
従って、本発明の排気ガス浄化用触媒は、自動車エンジンのような内燃機関、ボイラー等の酸素及び水蒸気を多量に含む排気ガス中の窒素酸化物を除去するのに有効である。特に、この触媒は、負荷変動の激しい条件で使用される車両用リーンバーンエンジンの排気ガス処理用触媒として有用である。
【図面の簡単な説明】
【図1】触媒含有層A−1のリーンバーンエンジンモデル排気ガス(A)に対する、CO、HC及びNOxのライトオフ特性を示す図である。
【図2】触媒含有層B−1のリーンバーンエンジンモデル排気ガス(A)に対する、CO、HC及びNOxのライトオフ特性を示す図である。
【図3】触媒含有層A−1及び触媒含有層B−1の最高NOx転化率の酸素濃度依存性を示す図である。
【図4】触媒含有層A−1及び触媒含有層B−1の最高NOx転化率のプロピレン濃度依存性を示す図である。[0001]
[Industrial application fields]
The present invention relates to a catalyst for purifying exhaust gas discharged from an internal combustion engine, a boiler, a gas turbine or the like, particularly exhaust gas containing nitrogen oxide in which excess oxygen coexists, and a method for purifying the exhaust gas.
[0002]
[Prior art]
Nitrogen oxide (NOx) discharged into the atmosphere from an internal combustion engine or the like causes photochemical smog and acid rain. Accordingly, there is an urgent need to prevent such nitrogen oxide emissions from the viewpoint of environmental protection.
In recent years, carbon dioxide (CO2) Emission control is required. Therefore, there is a demand for the practical application of a lean burn engine (lean burn gasoline engine) capable of causing the combustion reaction of gasoline at an air fuel ratio larger than the stoichiometric amount (A / F = 14.6). Has been. However, in the processing of exhaust gas from this lean burn gasoline engine, the air-fuel ratio, which has been used for the exhaust gas processing of conventional gasoline vehicles, is controlled near the stoichiometric amount (A / F = 14.6). Pt-Rh / Al2O3A three-way catalyst (TWC) process that uses a catalyst to remove NOx simultaneously with carbon monoxide (CO) and hydrocarbons (HC) is not effective.
In addition, diesel engines are inherently lean burn and NOx removal is still required.
[0003]
Such lean burn engines such as lean burn gasoline engines and diesel engines are collectively referred to as lean burn engines.
In recent years, as a catalyst for removing NOx in the exhaust gas of a lean burn engine, a copper ion exchange zeolite catalyst (for example, JP-A-63-100919), a noble metal ion-exchange zeolite catalyst (for example, JP-A-1-135541). Various zeolite-based catalysts such as) have been proposed. However, these catalysts cannot be put into practical use at a high temperature of 650 to 700 ° C. due to the water vapor contained in the exhaust gas, resulting in irreversible deactivation in a few hours.
[0004]
Further, as another catalyst for removing NOx, a catalyst in which a noble metal element such as Pt, Pd, Rh, Ir, or Ru is supported on a porous metal oxide carrier such as alumina, silica, titania, or zirconia (Japanese Patent Laid-Open No. Hei 3). No. -22144 and JP-A-3-293035 are also reported. However, this supported noble metal catalyst is a hydrocarbon (HC) that is a reducing agent for NOx due to the strong oxidation catalytic activity of the noble metal [in this specification, the term “hydrocarbon” is only a hydrocarbon in a narrow sense. The oxygenated hydrocarbons that are partial oxides thereof (for example, those containing alcohols, ketones, etc.) are preferentially reacted with excess oxygen to enhance the selectivity of the NOx reduction reaction. There is no problem.
[0005]
The present applicant has recently shown that a catalyst in which iridium is supported on at least one carrier selected from metal carbides and metal nitrides improves the reduction selectivity of hydrocarbons for NOx even in the presence of an excessive amount of oxygen. Found (Japanese Patent Laid-Open No. 6-31173). However, since the NOx removal ability of this catalyst is highly dependent on oxygen and hydrocarbon concentration, it is not always possible to sufficiently remove NOx particularly under high oxygen concentration conditions or low hydrocarbon concentration conditions. is there.
On the other hand, an exhaust gas treatment catalyst in which iridium and nickel are supported on alumina is known (US Pat. No. 3,278,862). In addition, a catalyst in which at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth and iridium is supported on a support made of activated alumina carries iridium on activated alumina even in the presence of an excessive amount of oxygen. It has been reported that the reduction selectivity by hydrocarbon with respect to NOx is higher than that of the catalyst and copper catalyst supported on ZSM-5 (Japanese Patent Laid-Open No. 6-165937). However, any catalyst in which iridium and the above metal are supported on a support made of these active aluminas is considerably inferior in NOx removal ability compared to a catalyst in which the same active component is supported on a support made of silicon carbide. And not enough.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems of the conventional exhaust gas treatment catalyst, and its object is to completely oxidize the reducing component containing hydrocarbons and all the reducing components. Excess oxygen (O2) And nitrogen oxides (NOx) for exhaust gas purification that exhibits a higher NOx removal rate and high-temperature durability in the presence of moisture even under low hydrocarbon concentration conditions It is to provide a catalyst.
[0007]
[Means for Solving the Problems]
The present inventors have found that a catalyst in which iridium, neodymium, and nickel are supported on a carrier made of silicon carbide can solve such a problem.
Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail.
[0008]
Carrier
As the support of the catalyst of the present invention, silicon carbide is used. As what can be obtained cheaply, what is marketed as a powder or whisker with a particle size of about 0.1-100 micrometers can be used, for example.
[0009]
Conventionally, an Ir catalyst for purifying exhaust gas has been used which is supported on a porous, high specific surface area metal oxide support with a high degree of dispersion and a fine particle size [for example, K. et al. C. Taylor and J.M. C. Schlaher, J. et al. Catal, 63 (1) 53-71 (1980)]. On the other hand, the catalyst of the present invention is not a metal oxide but a silicon carbide, so that the conversion reaction is highly selective with respect to NOx in exhaust gas containing excess oxygen in the presence of high temperature and steam. It has a unique feature of long life. Furthermore, the silicon carbide used as the carrier in the present invention is preferably a low specific surface area and non-porous, specifically 25 m.2/ G or less (especially 5-20m2B./g). E. T. T. et al. Specific surface area and 1.0 cm3/ G or less (especially 0.2 to 0.8 cm)3/ G) of pore volume.
[0010]
Active ingredient
In the catalyst of the present invention, Ir, Nd, and Ni coexist on the above support. The existence state of the supported Ir is not particularly limited. As the existence state of Ir, for example, a metal state; IrO, Ir2O3, IrO2Oxide states such as: Ir and Nd composite oxides such as Ir2Nd2O7And the like; alloys of Ir and Nd, such as Ir5Nd, Ir7Nd2, Ir3Nd, Ir2Nd, Ir3Nd5, Ir2Nd5, IrNd3, IrNd4And the like; Ir and Ni alloys, Ir and Ni composite oxides, Ir, Nd and Ni alloys, Ir, Nd and Ni composite oxides, and a mixture of these states .
It is preferable that these Irs are dispersed and supported together with Nd element and Ni element on the support. The dispersion-supported Ir preferably has a crystallite diameter of 2 to 100 nm as observed by a powder X-ray diffraction method, and more preferably 5 to 20 nm. If the crystallite diameter is too small, O of HC and CO that are reducing agents2Oxidation reaction due to is excessive and not preferable. When the crystallite diameter is too large, the obtained catalytic activity is low for the supported amount.
The amount of Ir supported on the carrier is preferably 0.1 to 10.0% by weight, more preferably 0.5 to 5.0% by weight in terms of metal iridium, based on the whole catalyst. If the amount is too small, the activity of the catalyst itself is too low. If the amount is too large, the reaction between the reducing agent and oxygen proceeds too much, and the selectivity for NOx reduction decreases.
[0011]
In the catalyst of the present invention, the state of the supported Nd is not particularly limited. For example, it is supported in the form of an oxide of Nd, a composite oxide of Nd and Ir, an alloy of Ir and Nd, a composite oxide of Ir, Nd and Ni, an alloy of Ir, Nd and Ni, and a mixture thereof. The The amount of Nd supported is preferably 0.2 to 10 times, more preferably 0.4 to 6 times in terms of atomic ratio with respect to iridium. If the amount of Nd is too small, the effect of using Nd in combination with Ir cannot be obtained. On the other hand, if the amount of Nd supported is too large, the initial activity of the resulting catalyst is lowered, and the light-off temperature of the NOx conversion rate is shifted to the high temperature side, and the activity at low temperatures is lowered.
[0012]
In the catalyst of the present invention, the state of the supported Ni is not particularly limited. Examples of the state of Ni include, for example, a metal state; a NiO oxide state; a composite oxide of Ir and Ni, an alloy of Ir and Ni, a composite oxide of Ir, Ni and Nd, and Ir, Ni and Nd. And alloys in which these states are mixed. The supported amount of Ni is preferably 0.1 to 20 times, more preferably 0.2 to 10 times in terms of atomic ratio with respect to iridium. If the amount of Ni is too small, the effect of using Ni in combination with Ir cannot be obtained. On the other hand, if the amount of Ni supported is too large, the initial activity of the resulting catalyst is lowered, the light-off temperature of the NOx conversion rate is shifted to the high temperature side, and the activity at low temperatures is lowered.
[0013]
Catalyst preparation method
The preparation method of the catalyst of this invention is not specifically limited, A conventionally well-known method is applied. For example, a uniform mixed solution of raw material salts of Ir, Nd, and Ni is impregnated into silicon carbide as a support, dried, and fired, and then prepared by a simultaneous loading method of Ir, Nd, and Ni. Alternatively, first, the support is impregnated with the Ir raw material salt, dried and fired to fix it on the support as an Ir insoluble compound or Ir metal, then impregnated with the Nd raw material salt, dried and fired again. Thereafter, Ni raw material salt is impregnated, dried and fired again, and as a result, Ir, Nd and Ni are coexistingly supported on the support. Or, conversely, various sequential supporting methods such as first supporting and fixing Ni and then sequentially supporting and fixing Nd and Ir are applied.
[0014]
In the preparation of the catalyst of the present invention, there are no particular restrictions on the starting materials for iridium, neodymium and nickel. As a starting material for iridium, for example, iridium trichloride (IrCl3), Chloroiridic acid (H2IrCl6), Sodium chloroiridate (Na3IrCl6), The same (Na2IrCl6), Iridium nitrate (Ir (NO3)4), Iridium sulfate (Ir (SO4)2) And other iridium water-soluble salts are used. Ir3(CO)12Ir metal carbonyl such as IrCl (CO) (PPh3)2An organometallic complex of Ir such as hexane may be used by dissolving in an organic solvent such as hexane, acetone, chloroform, or ethanol.
As starting materials for neodymium and nickel, for example, nitrates, acetates, chlorides, sulfates of Nd and Ni can be used. Of these, nitrates and acetates having high solubility in an aqueous solvent are particularly preferable.
[0015]
In the above simultaneous loading method or sequential loading method, the atmosphere at the time of calcination decomposition of the Ir compound, Nd compound and / or Ni compound supported as a catalyst precursor on the carrier depends on the type of the precursor, It is appropriately selected in vacuum, in an inert gas stream such as nitrogen, or in a hydrogen stream. The firing temperature is preferably 300 to 1,000 ° C, more preferably 600 to 900 ° C. The firing time may be selected as appropriate, but is usually about 10 minutes to 20 hours, preferably about 30 minutes to 5 hours. Moreover, you may perform baking by combining several processes in steps. For example, you may reduce | restore at 600-900 degreeC in a hydrogen stream after baking at 600-800 degreeC in the air.
[0016]
Exhaust gas purification method
According to the present invention, a method for purifying exhaust gas of an internal combustion engine or the like using the above catalyst is also provided.
That is, the present invention provides an exhaust gas containing a reducing component containing hydrocarbons and an oxidizing component containing oxygen and nitrogen oxides in excess of the stoichiometric amount required to completely oxidize all the reducing components. In the exhaust gas purification method comprising bringing a gas into contact with a catalyst-containing layer, a method is provided wherein the catalyst contained in the catalyst-containing layer is the above catalyst. By this method, nitrogen oxides in the exhaust gas are converted into nitrogen (N2) And water (H2O) and a reductive component composed of hydrocarbon and carbon monoxide (CO) in the exhaust gas is selectively reduced and decomposed into carbon dioxide (CO2) And water (H2O) Oxidized.
[0017]
Catalyst-containing layer
The form of the catalyst-containing layer when the catalyst of the present invention is used in the above exhaust gas purification method is not particularly limited.
For example, the catalyst-containing layer used in the method may be composed of only the catalyst. In this case, usually, a method of filling the catalyst in a fixed space, a method of forming the catalyst into a predetermined shape, and the like can be considered. When the catalyst is formed into a predetermined shape, the catalyst may be mixed with an appropriate binder or formed into an appropriate fixed shape without a binder. In addition, the carrier may be formed in an appropriate shape in advance prior to carrying Ir, Nd, and Ni. The shape of the shaped catalyst is not particularly limited, and examples thereof include a spherical shape, a pellet shape, a cylindrical shape, a honeycomb shape, a helical shape, a granular shape, and a ring shape. The shape, size, etc. can be arbitrarily selected according to the use conditions.
[0018]
Alternatively, the catalyst-containing layer may be composed of a catalyst-coated structure formed by coating the surface of a support substrate made of a refractory material with a catalyst. As the catalyst-coated structure, for example, the support substrate is formed so as to have a large number of through holes arranged in the direction of the exhaust gas flow, and at least the inner surface of the through holes is coated with the catalyst. Etc. are considered. Further, such a support matrix usually has a porosity of 60 to 90%, preferably 70 to 90%, and 1 square inch (5.06 cm) when viewed in a cross section perpendicular to the flow direction.2It is preferable that 30 to 700, preferably 200 to 600, through holes are provided. Examples of the support substrate include ceramics such as cordierite and mullite, and those obtained by integrally forming a metal such as stainless steel into a honeycomb or foam.
[0019]
In the production of the catalyst-coated structure, the surface of the support substrate may be coated with the catalyst of the present invention with or without an appropriate binder (for example, a wash coat). Further, the above-mentioned support substrate is coated in advance in the same manner as in the case of coating the catalyst only with the support, and the support substrate coated with only the obtained support is subjected to a support treatment with Ir, Nd, and Ni to form a catalyst-coated structure. The body may be manufactured.
The coating amount of the catalyst on the support substrate is not particularly limited, and is preferably 50 to 200 g / L, more preferably 80 to 160 g / L per unit volume of the support substrate. The supported amount of Ir per unit volume of the supporting substrate is preferably 0.05 to 20.0 g / L, more preferably 0.3 to 10.0 g / L, and the supported amount of Nd is preferably Ir by atomic ratio. 0.2 to 10 times, more preferably 0.4 to 6 times, and the supported amount of Ni is preferably 0.1 to 20 times Ir, more preferably 0.2 to 10 times in terms of atomic ratio. is there.
[0020]
As the binder, for example, a conventional inorganic binder such as alumina sol, silica sol, and titania sol can be used. The catalyst powder can be coated on the support substrate by, for example, adding alumina sol and water to the catalyst powder, kneading to form a slurry, immersing the support substrate in this, drying, and firing. .
[0021]
There is no restriction | limiting in particular in the gas space velocity of the exhaust gas which flows through the said catalyst containing layer, Preferably it is 5,000-200,000 / hr, More preferably, it is 10,000-150,000 / hr. If the space velocity is too low, a large volume of catalyst is required, and if it is too high, the NOx removal rate decreases. Moreover, the catalyst containing layer inlet temperature of exhaust gas for the selective reduction of NOx is preferably 200 to 700 ° C, more preferably 300 to 600 ° C. If this temperature is too low, the NOx conversion rate does not rise, and if it is too high, the NOx reduction selectivity decreases.
[0022]
The exhaust gas targeted by the exhaust gas purification method of the present invention has a reducing component in which the weight ratio A / F between the oxidizing component and the reducing component is greater than the stoichiometric amount (A / F = 14.6). The underside (A / F> 14.6) is preferred. The catalyst of the present invention exhibits NOx removal performance even in the vicinity of the stoichiometric amount, but the main effect is exhibited in an oxygen excess atmosphere of A / F> 17. In such an oxygen-excess atmosphere, all of the conventional noble metal catalysts showed remarkably insufficient NOx reduction selectivity. In contrast, the catalyst of the present invention has A / F> 17, for example O2A sufficiently high NOx removal rate is exhibited in a region where the concentration is> 3%. Furthermore, the catalyst of the present invention has A / F> 24, for example O2Even in a high oxygen concentration region where the concentration is> 10%, sufficient NOx reduction ability is exhibited only by HC in the exhaust gas without additional addition of the reducing agent HC from the outside.
Also, depending on the engine specifications, the HC contained in the exhaust gas may be relatively low [THC (hydrocarbon concentration converted by C1) / NOx = about 3], but the catalyst of the present invention has such an HC concentration. Exerts sufficient NOx reducing ability even under relatively low conditions.
[0023]
[Action]
By contacting with the catalyst of the present invention, NOx in the exhaust gas is reduced by using HC, CO coexisting in the exhaust gas and optionally added HC as a reducing agent.2And H2Reductively decomposed to O.
Since the active metal Ir is supported in a stable state on the surface of the support made of silicon carbide together with the coexisting Nd and Ni, selection of the reaction between the reducing agent such as HC and CO in the exhaust gas and NOx It is presumed that the durability against heat deterioration is improved as well as the improvement in performance. As a result, NOx in the exhaust gas is efficiently removed over a long period.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. An asterisk (*) is attached to the catalyst, the catalyst coating structure, and the catalyst-containing layer according to the comparative example.
(Manufacture of catalyst)
Example 1 [Production Example of Ir-Nd-Ni / SiC Catalyst Coated Honeycomb (A-1)]
(A) Supporting Ir-Nd-Ni on a powder carrier
Commercially available SiC powder (manufactured by LONZA, BET specific surface area 15 m2/ G, pore volume 0.54 cm3/ G) 2.6 g of deionized water was added to 130 g and stirred for 20 minutes to obtain a SiC powder slurry. To this slurry, chloroiridic acid (H) corresponding to 1.56 g of metal iridium was added.2IrCl6) Containing 160 mL of a deionized aqueous solution and neodymium nitrate hexahydrate corresponding to 3.21 g of neodymium metal (Nd (NO3)2・ 6H2160 mL of deionized aqueous solution containing O) and nickel nitrate hexahydrate (Ni (NO) equivalent to 0.48 g of metallic nickel3)2・ 6H2After adding a mixed solution with 160 mL of a deionized aqueous solution containing O], the mixture was transferred onto a glass-lined dish with a steam jacket, and water was evaporated for 4 hours while stirring.
The solid residue thus obtained was dried by an electric dryer at 105 ° C. for 16 hours and then pulverized. The obtained pulverized product was placed in a quartz tray and calcined in an electric furnace at 800 ° C. for 2 hours. Thereafter, the obtained calcined powder was reduced in a 100% hydrogen stream at 700 ° C. for 2 hours, and 1.2 wt% Ir-2.4 wt% Nd-0.4 wt% Ni [Ir / Nd / Ni = 1 / 2.7 / 1 (atomic ratio)] / SiC catalyst powder was obtained.
(B) Washcoat on honeycomb
To 30 g of the catalyst powder obtained in (a), 60 g of deionized water and alumina sol (Al2O3(Containing 10 wt% solid content) 4.0 g was added, and the resulting mixture was wet pulverized with a ball mill for 5 hours to obtain a catalyst slurry. A core piece of 1 inch diameter × 2.5 inch length hollowed out from a commercially available 400 cell cordierite honeycomb was immersed in this slurry, the catalyst was attached to the core piece, and excess slurry was removed by air blowing. Thereafter, the core piece to which the catalyst was adhered was dried at 300 ° C. for 20 minutes, and further fired at 500 ° C. for 30 minutes to cover 130 g of Ir-Nd—Ni / SiC catalyst-coated honeycomb (A-1) Got.
[0025]
Example 2 [Production Example of Ir-Nd-Ni / SiC Catalyst Coated Honeycomb (A-2)]
(A) Wash coat of silicon carbide powder
In Example 1 (b), a honeycomb core piece coated with 130 g of silicon carbide in dry conversion per 1 L of honeycomb was obtained in the same manner as in Example 1 (b) except that silicon carbide powder was used instead of catalyst powder. It was.
(B) Supporting Ir-Nd-Ni
The silicon carbide coating obtained in Example 2 (a) was applied to 1000 mL of a deionized aqueous solution of iridium acid containing 9.98 g of Ir, nedium nitrate containing 20.54 g of Nd, and nickel nitrate containing 3.07 g of Ni. The finished honeycomb core piece was immersed and kept at room temperature for 3 minutes to impregnate the aqueous solution. The excess aqueous solution was removed by air blow, dried, and then baked in an electric furnace at 800 ° C. for 2 hours. Thereafter, the fired product thus obtained was subjected to a reduction treatment in a 100% hydrogen stream at 700 ° C. for 2 hours to give an Ir—Nd—Ni / SiC catalyst-coated honeycomb (A-2) [1.2 wt% Ir-2.4. Weight% Nd-0.4 weight% Ni [Ir / Nd / Ni = 1 / 2.7 / 1 (atomic ratio)] / SiC] was obtained.
[0026]
Example 3 [Production Example of Ir-Nd-Ni / SiC Catalyst Coated Honeycomb (A-3)]
In Example 1 (a), Ir—Nd—Ni / Ni / Ni—Ni / Ni / Ni were reduced in the same manner as in Example 1 except that the reduction treatment was performed at 900 ° C. for 2 hours in a hydrogen stream instead of the reduction treatment at 700 ° C. for 2 hours. A SiC catalyst-coated honeycomb (A-3) was obtained.
[0027]
Example 4 [Production Example of Ir-Nd-Ni / SiC Catalyst Coated Honeycomb (A-4)]
In the hydrogen stream performed in Example 1 (a), the reduction treatment at 700 ° C. for 2 hours was not performed, but instead in the hydrogen stream after the calcination treatment at 500 ° C. in Example 1 (b) for 30 minutes. Ir—Nd—Ni / SiC catalyst-coated honeycomb (A-4) was obtained in the same manner as in Example 1 except that the reduction treatment was performed at 700 ° C. for 2 hours.
[0028]
Example 5 [Production Example of Ir-Nd-Ni / SiC Catalyst Coated Honeycomb (A-5)]
In Example 4, the Ir—Nd—Ni / SiC catalyst coating was applied in the same manner as in Example 4 except that the amount of SiC powder was changed to 121 g, the metal iridium content was changed to 5.2 g, and the metal nickel content was changed to 1.60 g. Honeycomb (A-5) [4.0 wt% Ir-2.4 wt% Nd-1.3 wt% Ni [Ir / Nd / Ni = 1 / 0.72 / 1 (atomic ratio)] / SiC] Obtained.
[0029]
Example 6 [Production Example of Ir-Nd-Ni / SiC Catalyst Coated Honeycomb (A-6)]
Ir-Nd-Ni / SiC catalyst-coated honeycomb (A-6) in the same manner as in Example 1 except that the amount of SiC powder was changed to 126 g and the metal nickel content was changed to 4.80 g in Example 1 (a) [1.2 wt% Ir-2.4 wt% Nd-4.0 wt% Ni [Ir / Nd / Ni = 1 / 2.7 / 10 (atomic ratio)] / SiC] was obtained.
[0030]
Comparative Example 1 [Ir / SiC catalyst-coated honeycomb (B-1 * Example of production)
In Example 1 (a), instead of the mixed aqueous solution of iridium chloride, neodymium nitrate and nickel nitrate, iridium chloride (H) corresponding to 1.56 g of metal iridium2IrCl6Ir / SiC catalyst-coated honeycomb (B-1) in the same manner as in Example 1 except that 160 mL of a deionized aqueous solution containing*) (1.2 wt% Ir / SiC).
[0031]
Comparative Example 2 [Ir / Al 2 O 3 Catalyst coated honeycomb (B-2 * Example of production)
In Example 1 (a), instead of SiC powder, commercially available Al2O3Powder (Sumitomo Chemical, BET specific surface area 160 m2/ G) 130 g is used, and instead of a mixed solution of iridium chloride, neodymium nitrate and nickel nitrate, iridium chloride (H) corresponding to 1.56 g of metal iridium2IrCl6Ir / Al in the same manner as in Example 1 except that 160 mL of a deionized aqueous solution containing2O3Catalyst coated honeycomb (B-2*) (1.2 wt% Ir / Al2O3)
[0032]
Comparative Example 3 [Nd-Ni / SiC catalyst-coated honeycomb (B-3 * Example of production)
In Example 1 (a), in place of a mixed solution of iridium chloroidic acid, neodymium nitrate and nickel nitrate, neodymium nitrate hexahydrate corresponding to 3.21 g of metal neodymium [Nd (NO3)2・ 6H2160] of a deionized aqueous solution containing O] and nickel nitrate hexahydrate (Ni (NO3)2・ 6H2Nd—Ni / SiC catalyst-coated honeycomb (B-3) in the same manner as in Example 1 except that a mixed solution with 160 mL of a deionized aqueous solution containing O) was used.*) (2.4 wt% Nd-0.4 wt% Ni / SiC).
[0033]
Comparative Example 4 [Ir-Nd / Al 2 O 3 Catalyst coated honeycomb (B-4 * Example of production)
In Example 1 (a), commercially available Al instead of SiC powder2O3Powder (Sumitomo Chemical, BET specific surface area 160 m2/ G) using 130 g, chloroiridic acid, neodymium nitrate and nitric nitrateKellIn place of a mixed solution of iridium chloride (H2IrCl6) And a neodymium nitrate hexahydrate equivalent to 3.21 g of neodymium metal [Nd (NO3)2・ 6H2Ir—Nd / Al in the same manner as in Example 1 except that a mixed solution with 160 mL of a deionized aqueous solution containing O] was used.2O3Catalyst coated honeycomb (B-4*) [1.2 wt% Ir-2.4 wt% Nd [Ir / Nd =1 /2.7(Atomic ratio)] / Al2O3] Was obtained.
[0034]
Comparative Example 5 [Ir-Nd-Ni / Al 2 O 3 Catalyst coated honeycomb (B-5 * Example of production)
In Example 1 (a), instead of SiC powder, commercially available Al2O3Powder (Sumitomo Chemical, BET specific surface area 160 m2/ G) Ir—Nd—Ni / Al as in Example 1 except that 130 g was used.2O3Catalyst coated honeycomb (B-5*) [1.2 wt% Ir-2.4 wt% Nd-0.4 wt% Ni [Ir / Nd / Ni = 1 / 2.7 / 1 (atomic ratio)] / Al2O3] Was obtained.
[0035]
(Performance evaluation)
In each of the following performance evaluation examples, the catalyst-containing layer was configured by filling the catalyst-coated honeycomb prepared in the above examples. In the following description, for example, a catalyst-containing layer made of the catalyst-coated honeycomb (A-1) of Example 1 is described as “catalyst-containing layer A-1”.
[0036]
Performance evaluation example 1 [Light-off performance evaluation with model gas-(1)]
Catalyst-containing layer A-1 of the example of the present invention and catalyst-containing layer B-1 of the comparative example*For each of the above, while flowing the lean burn engine model exhaust gas (A) having the following composition at a gas space velocity of SV60,000 / hr, the catalyst-containing layer was continuously heated from 150 ° C. to 500 ° C. The concentration of CO, HC, and NOx in the gas flowing out in step 1 was continuously measured to evaluate the light-off performance (relationship between catalyst containing layer inlet gas temperature and conversion rate). The result about catalyst containing layer A-1 is shown in FIG. 1, and catalyst containing layer B-1 of a comparative example is shown.*The results for are shown in FIG.
[0037]
Figure 0003609859
[0038]
From FIG. 1, the catalyst-containing layer A-1 using the catalyst A-1 of Example 1 can remove all three components of CO, HC and NOx from the exhaust gas at a good conversion rate at 350 to 500 ° C. I understand. On the other hand, from FIG. 2, catalyst B-1 of Comparative Example 1*-Containing catalyst layer B-1*Although it can convert HC and CO well at a temperature of 400 ° C. or higher, it can be seen that the conversion rate of NOx is significantly inferior to that of the catalyst-containing layer A-1 of Example 1.
[0039]
Performance Evaluation Example 2 (Evaluation of NOx conversion rate dependency on oxygen concentration)
There are five kinds of compositions having the same composition as the model exhaust gas (A) except that the oxygen concentrations are different from 3.2%, 5.0%, 7.5%, 10.0% and 14.0%, respectively. The catalyst-containing layer A-1 and the catalyst-containing layer B-1 are the same as the performance evaluation example 1 except that the model exhaust gas is used.*The light-off performance was evaluated and a light-off performance curve was obtained. The results of plotting the maximum NOx conversion rate (the maximum value of the light-off performance curve) of the light-off performance curve at each obtained oxygen concentration are shown in FIG. From FIG. 3, the catalyst-containing layer A-1 has a high maximum NOx conversion rate ranging from an oxygen concentration of 3.2% (corresponding to A / F = 17 in this case) to an oxygen concentration of 14% (corresponding to A / F = 38 in this case). It can be seen that In contrast, the catalyst-containing layer B-1*It can be seen that the maximum NOx conversion rate decreases rapidly as the oxygen concentration increases, particularly in the oxygen concentration region where the oxygen concentration is 5% or more.
The catalyst of the present invention has a high NOx conversion rate over a wide oxygen concentration range from 3.2% (equivalent to A / F = 17) to 14.0% (equivalent to A / F = 38), and is dependent on the oxygen concentration. It was shown that there was little sex.
[0040]
Performance Evaluation Example 3 [Light Off Performance Evaluation with Model Gas-(2)]
Catalyst-containing layers A-1 to A-6 using the catalyst of Example and catalyst-containing layer B-1 using the catalyst of Comparative Example*~ B-5*For each of the above, while flowing the lean burn gasoline engine model exhaust gas (B) having the following composition at a gas space velocity of SV38,000 / hr, the catalyst-containing layer inlet gas temperature was continuously raised from 150 ° C. to 700 ° C., Meanwhile, the NOx concentration of the gas flowing out at the catalyst-containing layer outlet was continuously measured.
[0041]
Figure 0003609859
[0042]
Table 1 shows catalyst-containing layers A-1 to A-6 and B-1.*~ B-5*Shows the maximum NOx conversion. From the results of Table 1, the catalyst-containing layers A-1 to A-6 of the examples are Ir / SiC catalyst, Ir / Al2O3Catalyst, Nd-Ni / SiC catalyst, Ir-Nd / Al2O3Catalyst or Ir-Nd-Ni / Al2O3Comparative catalyst-containing layer B-1 using a catalyst*~ B-5*Compared to any of these, it can be seen that the conversion of nitrogen oxides is superior in the presence of oxygen in excess of the stoichiometric amount.
[0043]
[Table 1]
Figure 0003609859
[0044]
Performance Evaluation Example 4 [Evaluation of NOx conversion rate on HC concentration]
Performance except that five model exhaust gases having the same composition as the model exhaust gas (B) are used except that the propylene concentration is different from 500 ppm, 750 ppm, 1,000 ppm, 1,250 ppm and 1,500 ppm, respectively. In the same manner as in Evaluation Example 3, the catalyst-containing layer A-1 and the catalyst-containing layer B-1*The light-off performance was evaluated. FIG. 4 shows the result of plotting the maximum NOx conversion rate (maximum value of the light-off performance curve) of the light-off performance curve at each propylene concentration obtained.
FIG. 4 shows that the catalyst-containing layer A-1 maintains a high maximum NOx conversion rate from a propylene concentration of 1,500 ppm (THC / NOx = 9) to 500 ppm (THC / NOx = 3). In contrast, the catalyst-containing layer B-1*It can be seen that the maximum NOx conversion rate decreases rapidly as the propylene concentration decreases, and particularly decreases in the concentration range where the propylene concentration is 1,200 ppm or less. It was shown that the catalyst of the present invention has a high NOx conversion rate and a small dependence on HC concentration over a wide propylene concentration range from 9 to 3 in the THC / NOx ratio.
[0045]
Performance Evaluation Example 5 [Light Off Performance Evaluation with Model Exhaust Gas- (3)]
Catalyst-containing layer A-1, catalyst-containing layer B-1*And catalyst-containing layer B-5*Were subjected to a heat resistance test under high-temperature hydrothermal conditions. Catalyst-containing layer A-1, catalyst-containing layer B-1*And catalyst-containing layer B-5*About 10% H2After aging treatment at 800 ° C. and 900 ° C. for 5 hours under a mixed gas flow of O + 90% nitrogen, the NOx conversion rate was evaluated in the same manner as in Performance Evaluation Example 3. The results are shown in Table 2. The results when no aging treatment is applied (fresh) are also shown.
From Table 2, a catalyst-containing layer B-1 in which only Ir is supported on a support made of silicon carbide.*It can be seen that, even after heating aging at 900 ° C. in the presence of water vapor, stable NOx purification performance almost equivalent to that before heating was exhibited, but the NOx purification ability was insufficient. Further, a catalyst-containing layer B-5 in which Ir, Nd, and Ni are supported on a support made of activated alumina.*It can be seen that the NOx removal performance was significantly reduced by heat aging at 900 ° C. in the presence of water vapor. On the other hand, it can be seen that the catalyst-containing layer A-1 exhibits a relatively stable NOx purification performance even after the heat aging treatment at 900 ° C. in the presence of water vapor, and maintains a high NOx removal capability. Therefore, it was shown that the catalyst of the present invention is excellent in high temperature durability in the presence of water vapor.
[0046]
[Table 2]
Figure 0003609859
[0047]
【The invention's effect】
The exhaust gas purifying catalyst of the present invention is a nitrogen oxide, regardless of the concentration of oxygen or hydrocarbons, from exhaust gas containing oxygen in excess of the stoichiometric amount compared to conventional exhaust gas purifying catalysts. High conversion rate. Furthermore, this catalyst is also excellent in durability at high temperatures in the presence of moisture.
Therefore, the exhaust gas purifying catalyst of the present invention is effective for removing nitrogen oxides in exhaust gas containing a large amount of oxygen and water vapor, such as an internal combustion engine such as an automobile engine and a boiler. In particular, this catalyst is useful as an exhaust gas treatment catalyst for a lean burn engine for a vehicle that is used under conditions with a heavy load fluctuation.
[Brief description of the drawings]
FIG. 1 is a diagram showing light-off characteristics of CO, HC, and NOx with respect to a lean burn engine model exhaust gas (A) in a catalyst-containing layer A-1.
Fig. 2 Catalyst-containing layer B-1*It is a figure which shows the light-off characteristic of CO, HC, and NOx with respect to the lean burn engine model exhaust gas (A).
FIG. 3 shows a catalyst-containing layer A-1 and a catalyst-containing layer B-1.*It is a figure which shows oxygen concentration dependence of the highest NOx conversion rate.
FIG. 4 is a catalyst-containing layer A-1 and a catalyst-containing layer B-1.*It is a figure which shows the propylene concentration dependence of the highest NOx conversion rate.

Claims (4)

炭化硅素からなる担体上に、イリジウムとネオジムとニッケルとを共存担持させてなる排気ガス浄化用触媒。An exhaust gas purifying catalyst comprising iridium, neodymium and nickel coexistingly supported on a carrier made of silicon carbide. 耐火性材料からなる支持基質と、該支持基質の表面上に被覆された請求項1に記載の触媒からなる排気ガス浄化用触媒被覆構造体。A catalyst-coated structure for exhaust gas purification comprising a support substrate made of a refractory material and a catalyst according to claim 1 coated on the surface of the support substrate. 炭化水素を含む還元性成分と、該還元性成分全てを完全酸化するのに要する化学量論量より過剰の、酸素及び窒素酸化物を含む酸化性成分とを含有する排気ガスを、触媒含有層と接触させることからなる該排気ガスの浄化方法において、該触媒含有層に含まれる触媒が請求項1に記載の触媒である方法。An exhaust gas containing a reducing component containing hydrocarbons and an oxidizing component containing oxygen and nitrogen oxides in excess of the stoichiometric amount required to completely oxidize all of the reducing components is converted into a catalyst-containing layer. The method for purifying the exhaust gas comprising contacting with a catalyst, wherein the catalyst contained in the catalyst-containing layer is the catalyst according to claim 1. 請求項3の排気ガスの浄化方法であって、前記の触媒含有層が請求項2の触媒被覆構造体で構成されている排気ガスの浄化方法。The exhaust gas purification method according to claim 3, wherein the catalyst-containing layer comprises the catalyst-coated structure according to claim 2.
JP23842094A 1994-09-06 1994-09-06 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP3609859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23842094A JP3609859B2 (en) 1994-09-06 1994-09-06 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23842094A JP3609859B2 (en) 1994-09-06 1994-09-06 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH0871422A JPH0871422A (en) 1996-03-19
JP3609859B2 true JP3609859B2 (en) 2005-01-12

Family

ID=17029948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23842094A Expired - Fee Related JP3609859B2 (en) 1994-09-06 1994-09-06 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3609859B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60235607D1 (en) 2001-01-11 2010-04-22 Ict Co Ltd CATALYST FOR CLEANING NITROGEN OXIDES
JP7003856B2 (en) 2018-07-10 2022-01-21 トヨタ自動車株式会社 Piping structure
CN113769573B (en) * 2021-08-26 2023-08-04 生态环境部华南环境科学研究所 Method for removing NO and VOCs in flue gas

Also Published As

Publication number Publication date
JPH0871422A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US8137636B2 (en) Soot oxidation catalyst and method of making
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP2003126694A (en) Exhaust gas purification catalyst
JPH0631173A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
KR19990022366A (en) Catalyst for exhaust gas purification and exhaust gas purification method
JP3855426B2 (en) Method for producing exhaust gas purifying catalyst
JPH08309185A (en) Catalyst for purifying exhaust gas and method for purification of exhaust gas
JP5607131B2 (en) Exhaust gas purification catalyst
WO2008091004A1 (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP2005000829A (en) Exhaust gas purification catalyst and production method thereof
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH05285387A (en) Exhaust gas purifying catalyst and method
JPH0312936B2 (en)
JP3251009B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3609859B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08229394A (en) Method for producing oxide-supported catalyst carrier
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3861489B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2002177787A (en) Exhaust gas purifying catalyst and manufacturing method thereof
JPH09299763A (en) Denitration catalyst layer and denitrating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees