[go: up one dir, main page]

JP3606494B2 - Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell - Google Patents

Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell Download PDF

Info

Publication number
JP3606494B2
JP3606494B2 JP17685496A JP17685496A JP3606494B2 JP 3606494 B2 JP3606494 B2 JP 3606494B2 JP 17685496 A JP17685496 A JP 17685496A JP 17685496 A JP17685496 A JP 17685496A JP 3606494 B2 JP3606494 B2 JP 3606494B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
type zeolite
fuel cell
catalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17685496A
Other languages
Japanese (ja)
Other versions
JPH09320624A (en
Inventor
栄一 安本
一仁 羽藤
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17685496A priority Critical patent/JP3606494B2/en
Publication of JPH09320624A publication Critical patent/JPH09320624A/en
Application granted granted Critical
Publication of JP3606494B2 publication Critical patent/JP3606494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一酸化炭素(CO)、特に燃料電池の燃料極を被毒する改質ガス中の微量COを選択的に酸化して除去する一酸化炭素除去用触媒体、同触媒体を水素燃料供給路に設けた燃料電池装置および燃料電池へ供給する改質ガス中の一酸化炭素除去方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池(以下PEFCで表す。)の燃料には、炭化水素系の原料、通常メタノール、を水蒸気改質した改質ガスが用いられる。しかしながら、PEFCの燃料極としては、通常白金触媒が用いらるため、改質ガス中に含まれる微量のCOによって、この白金触媒が被毒され、電池性能の大幅な劣化が生じることが問題となっている。
改質ガス中のCOを除去する方法としては、Pd薄膜等による水素分離法がある。これは水素分離膜を挟んで一方の側に一定の圧力を加え、選択的に水素のみを透過させる方法である。この方法を用いると、水素以外のガスは透過しないため純水素のみが得られ、PEFCの燃料として使用することができる。この方法は、半導体製造用のプラントなどに実用化されおり、PEFC用としても一部で開発が行われている。
【0003】
これ以外の改質ガス中のCO濃度の低減方法としては、CO変成がある。これは、メタノールを水蒸気改質した改質ガスを、CO変成触媒を用いてCOシフト反応(CO+HO→CO+H)を行い、ガス中のCO濃度を0.4〜1.5%に低減する方法である。この程度までCOを低減できれば、同じPt電極触媒を用いるリン酸型燃料電池(以下PAFCで表す。)用の燃料としては使用できる。しかしながら、PEFCの燃料極の白金触媒の被毒を防止するためには、PEFCの作動温度(50〜100℃)がPAFCの作動温度(約170℃)よりも低いため、CO濃度を少なくとも数十ppmレベルにまでする必要があり、CO変成処理だけではPEFC用の燃料ガスとして使用するには不十分である。
【0004】
そこで、CO変成後のガス中に酸素を導入し、200〜300℃で酸化触媒を用いてCOを酸化除去する開発が行われている。この酸化触媒には、現在のところ貴金属を担持したアルミナ触媒を用いる検討が行われているが、多量の水素中の微量COを、選択的に完全に酸化することは非常に困難である。
【0005】
【発明が解決しようとする課題】
従来のPd膜のような金属水素化物膜を用いる方法は、高純度の水素が得られるためPEFCの燃料としては最適である。しかしながら、非常に高価なPd膜を用いるため、コスト面で問題がある。また、基本的には圧力差により水素を得るため、装置の構造が複雑になるという問題もある。
一方、CO変成を用いても、PEFCの燃料として使用できる程度まで、十分にCO濃度を低減することができない。
【0006】
これに対して、COを酸化除去する方法は、装置の構造を比較的簡単にでき、コスト的にも水素分離膜を用いる方法に比べて安価にできる可能性がある。しかしながら、現在検討されている貴金属担持アルミナ触媒を用いる方法では、CO酸化に必要な温度は250〜350℃であり、効率が低い。また、水素も同時に酸化されてしまうため、選択性が悪い。さらに、この触媒を用いる場合には、水蒸気が多量に存在する場合、メタネーションが起こり水素が激減してしまう恐れがある。
よって、COを酸化除去するには、大量の水素中の微量のCOを低温で、かつ選択的にCOのみを酸化できる高性能な一酸化炭素除去用触媒の開発が望まれている。
【0007】
【課題を解決するための手段】
本発明の一酸化炭素除去用触媒体は、Pt、Pd、Ru、Au、RhおよびIrからなる群より選択される少なくとも一種の金属または二種以上の金属の合金を〜10wt%担持したA型ゼオライトからなる。
A型ゼオライトを構成するカチオン種は、KもしくはKとNaからなる
本発明の燃料電池装置は、高分子電解質型燃料電池、改質器、改質器から前記燃料電池の燃料極へ改質ガスを供給する燃料ガス供給路、燃料電池のカソードへ酸化ガスを供給する酸化ガス供給路、および燃料ガス供給路に上記の一酸化炭素除去用触媒体を備えた一酸化炭素除去装置を具備するものである。
また、本発明の燃料電池へ供給する改質ガス中の一酸化炭素除去方法は、炭化水素系の原料を改質した改質ガスを酸素と共に上記の一酸化炭素除去用触媒体に酸化触媒温度50〜200℃で通過させる工程を有し、前記酸素量が、改質ガス中の一酸化炭素量の0.5〜2倍であることを特徴とする。
【0008】
【発明の実施の形態】
本発明の一酸化炭素除去用触媒体は、A型ゼオライトを担体とし、これにPt、Pd、Ru、Au、RhおよびIrからなる群より選択される少なくとも一種の金属または二種以上の金属の合金を担持させたものである。
A型ゼオライトを構成するカチオン種は、KもしくはKとNaからなる
また、Ptなどの金属を担持する方法は、含浸法またはイオン交換法が好ましい。
【0009】
本発明によると、従来よりも低温でCOを酸化除去することができる。また、分子ふるい機能を持つA型ゼオライトを用いているため、選択性良くCOを酸化することができる。
A型ゼオライトは、 合成ゼオライトの一種で、 通常単位格子組成式は、Na12[(AlO212(SiO212]・27H2Oで表され、カチオンであるNaを他の金属カチオンで置換することもでき、これらすべてを総称してA型ゼオライトと呼んでいる。以下の実施例、参考例および実験例においては、このカチオンがNaのものをNa/A型ゼオライト、以下、K、Ca、Mgのものを各々K/A型ゼオライト、Ca/A型ゼオライト、Mg/A型ゼオライトと呼ぶ。
【0010】
図1に本発明による燃料電池装置の概略構成を示す。燃料電池1は、例えば白金触媒を担持した炭素電極からなるアノード3およびカソード4と、両電極間に介在させた高分子電解質層2、例えばデュポン社からナフィオン(Nafion)112の名で販売されている高分子電解質膜からなる高分子電解質型燃料電池である。この燃料電池のアノード室5には、改質器9から水素燃料が供給される。改質器9には、例えば水およびメタノールがそれぞれの供給源7および8から供給され、改質器9内においてメタノールは水蒸気改質される。また、燃料電池のカソード室には、空気がその供給源12から供給される。以上の構成は従来から知られている高分子電解質型燃料電池と変わりない。本発明においては、改質器9からアノード室5に至る燃料ガス供給路11に一酸化炭素除去装置10を設けている。一酸化炭素除去装置10には、改質器9から供給される水素燃料中の一酸化炭素を酸化するに要する適量の酸素が空気供給路13から分岐した通路14により供給される。なお、改質器9へ供給される燃料としては、メタノールの他都市ガス、あるいはプロパン、ブタンなどのガスが用いられる。
【0011】
【実施例】
以下、本発明の実施例を説明する。
《実施例1》
まず、参考例として含浸法によりPtを担持したNa/A型ゼオライトを調製した。すなわち、ジニトロジアミン白金の硝酸酸性溶液(Pt含有率4.5wt%)を所定量だけ秤り取り、これにNa/A型ゼオライトを加えて攪拌した。ついで、これにゼオライトの2倍量の蒸留水を加え数分攪拌した後、500℃で1時間焼成した。こうして、3wt%のPtを担持したNa/A型ゼオライトを得た。
次に、イオン交換法によりPtを担持したNa/A型ゼオライトを調製した。Na/A型ゼオライトに重量比で20倍の蒸留水を加え97℃で数時間攪拌した後、テトラアンミン白金(II)塩化物の0.01mol/l水溶液の所定量を滴下した。この後、同じ温度で数時間攪拌を続けた後、室温で一晩放置した。これを濾過し、蒸留水で洗浄後、80℃で20時間乾燥し、さらに300℃で4時間焼成した。こうして、3wt%のPtを担持したNa/A型ゼオライトを得た。
【0012】
図2は、上記の酸化触媒を用いた一酸化炭素除去装置の構成を示す。酸化触媒21は、10〜20メッシュにふるい分けされ、ステンレス鋼製の管22に充填されている。ステンレス鋼製の管22の外側にはヒーター23が配され、酸化触媒中に設置した熱電対24により温度を検知し、これに基づいて動作温度を調節できるように構成されている。
この一酸化炭素除去装置に、メタノールを水蒸気改質し、変成処理を行った改質ガス(ガス組成:CO:1%、CO:24%、H:75%)と空気を所定の比で導入した。空間速度SVは2000h−1とし、一酸化炭素除去装置通過後の処理ガス中のガス組成は、ガスクロマトグラフにより測定した。
【0013】
まず、導入するO/COの比を2にして、各々の方法で作成したPt担持Na/A型ゼオライト触媒の温度依存性を調べた。
図3に、この時の処理ガス中のCO濃度の温度依存性を示す。比較例として、Na/A型ゼオライトの代わりにアルミナを用い、同様に含浸法により作製したPt担持アルミナ触媒の特性を示す。
図3から、Pt担持Na/A型ゼオライトを用いた場合には、50〜150℃の間でCOは検出されず、完全に酸化されていることが分かった。一方、Pt担持アルミナ触媒では、温度が低くなるにつれてCO濃度が増加し、すべての温度域でPt担持Na/A型ゼオライトよりもCO酸化性能が低くなった。通常、アルミナ触媒を用いる場合には、200℃以上の温度が必要といわれていることから、Pt担持Na/A型ゼオライトを用いることにより、アルミナ触媒を用いる場合よりも低温でのCO酸化が可能であることが分かる。
【0014】
表1に、含浸法およびイオン交換法により作成したPt担持Na/A型ゼオライト(参考例)の各温度における処理ガス中のCO濃度を比較して示す。これより、イオン交換法で作成した触媒の方がわずかではあるが良い特性を示したが、含浸法で作製した触媒でもほぼ同等の性能を有することが分かる。
また、表2には、担体を種々のカチオン金属で置換したA型ゼオライトにして、同様に含浸法で作製したPt担持K/A型ゼオライト(実施例)、Ca/A型ゼオライト(参考例)Mg/A型ゼオライト(参考例)を用いたときの、各温度における処理ガス中のCO濃度を先のNa/A型ゼオライトと比較して示した。K/A型ゼオライトを用いた場合には、Na/A型ゼオライトと同等の特性を示した。また、Ca/A型およびMg/A型ゼオライトを用いた場合には、特性は少し劣るものの100℃前後の温度域でCOは検出されず良好な特性を示した。
【0015】
【表1】

Figure 0003606494
【0016】
【表2】
Figure 0003606494
【0017】
次に、酸化温度を125℃に固定して、導入するO/CO比を変えてCO濃度を調べた。図4に、種々のPt担持A型ゼオライトを用いたときの処理ガス中のCO濃度のO/CO比依存性を示す。図3と同様に、比較例としてPt担持アルミナ触媒の特性を示す。これより、どのA型ゼオライトを用いた場合にも、Pt担持アルミナ触媒よりCO濃度は小さくなっており、優れたCO酸化性能を示すことが分かった。また、O/CO比が1.0〜2.0の範囲では、どの場合もCOはほとんど検出されなかった。また、K/A型ゼオライトを用いた場合のO/CO比が0.5の時の水素濃度は73.5%であり、導入したほとんどすべてのOが、選択的にCO酸化に使用されていることが分かった。そこで、以下の実施例では、含浸法により作製したK/A型ゼオライトを用いることにした。
【0018】
次に、Pt担持量と触媒性能の関係を調べた。Pt担持量3wt%の他に、担持量を変えた数種類のPt担持K/A型ゼオライトを作製し、その特性を調べた。図5は酸化温度を100℃、O/CO比を2に設定して、各々の担持量のK/A型ゼオライトの特性を調べたものである。これより担持量が1〜10wt%の範囲においてCOは検出されなかった。
図6は、酸化温度を100℃、O/CO比を2に設定して、3wt%Pt担持K/A型ゼオライトの寿命試験を行ったものである。これより1,000時間経過後も処理ガス中のCOは検出されず、長期にわたり安定に作動した。
【0019】
次に、担持する金属を変え、導入するO/CO比を2にして各触媒の温度依存性を調べた。担持した金属はPdで、Ptと同様に含浸法により作製した。
表3にPd、Ruを担持したK/A型ゼオライト触媒について、各温度における処理ガス中のCO濃度をPt担持の場合と比較して示す。これよりPd、Ruを用いてもPtとほぼ同等の性能を示すことが分かった。
【0020】
【表3】
Figure 0003606494
【0021】
これらの結果より、酸化触媒にPt担持K/A型ゼオライトを用いることにより、従来よりも低温で、COを選択的に酸化除去でき、長期信頼性の優れた一酸化炭素酸化除去用触媒体が構成できる。担持する金属についてもPtのほか、Pd、Ruを用いることもできる。さらに、触媒体を備える装置の構成に関しても、ここではステンレス鋼管を用いたが、本発明が適用できる形状であればどんなものでもよい。
【0022】
実験例1
実験例では、酸化触媒には(Pt+Pd)担持Na/A型ゼオライトを用いている。この(Pt+Pd)担持Na/A型ゼオライトは、実施例1と同様にジニトロジアミン白金とジニトロジアミンパラジウムを用いて含浸法によりNa/A型ゼオライトに担持した。PtとPdの担持量は各々1wt%である。調製したゼオライトは、実施例1と同様の構成の一酸化炭素除去装置を用いて特性を調べた。測定条件は実施例1と同じである。
まず、導入するO2/CO比を2にして、この酸化触媒の温度依存性を調べた。図7に、この時の処理ガス中のCO濃度の温度依存性を、実施例1で用いたPt担持Na/A型ゼオライトと比較して示す。これより(Pt+Pd)担持Na/A型ゼオライトを用いた場合には、Pt担持Na/A型ゼオライトとほぼ同等の性能を示すことが分かる。
【0023】
次に、酸化温度を125℃に固定して、導入するO/CO比を変えてCO濃度を調べた。図8に、この時の処理ガス中のCO濃度のO/CO比依存性を、図7と同様にPt担持Na/A型ゼオライトと比較して示す。これより、(Pt+Pd)担持Na/A型ゼオライトを用いた場合には、Pt担持Na/A型ゼオライトを用いた場合とほぼ同等の性能を示した。
また、酸化温度を100℃、O/CO比を2に設定して行った寿命試験でもPt担持Na/A型ゼオライトと同様、1,000時間経過後も処理ガス中のCOは検出されず、長期にわたり安定に作動した。
これらの結果より、酸化触媒として(Pt+Pd)担持Na/A型ゼオライトを用いても、広い温度範囲でCOを選択的に酸化除去でき、長期信頼性も優れた一酸化炭素除去用触媒体が構成できる。ここでは、担持金属の組み合わせに(Pt+Pd)を用いたが、(Pt+Ru)あるいは(Pd+Ru)を用いることもできる。
【0024】
実施例2
本実施例では、O2/COの比、SV値、およびA型ゼオライトに担持する金属を変えてCO酸化除去特性を調べた。まず、空間速度SVを8000h-1とし、導入するO2/COの比を1.75にして、3wt%Pt担持Na/A型ゼオライト触媒(参考例)の温度依存性を調べた。ゼオライト触媒の調製法、測定条件等は実施例1と同じである。
図9に、この時の処理ガス中のCO濃度の温度依存性を、含浸法により作製したPt担持アルミナ触媒と比較して示す。これより、この条件下では、Pt担持Na/A型ゼオライト触媒を用いた場合には、50〜200℃の温度範囲では残CO濃度は10ppm以下で、ほぼ完全に酸化されていることが分かった。一方、Pt担持アルミナ触媒では、温度が低くなるにつれてCO濃度が増加し、225℃までのすべての温度域でPt担持Na/A型ゼオライト触媒よりもCO酸化性能が低くなった。通常、アルミナ触媒を用いる場合には、200℃以上の温度が必要といわれていることから、Pt担持Na/A型ゼオライト触媒を用いることにより、アルミナ触媒を用いる場合よりも低温でのCO酸化が可能であることが分かる。
【0025】
表4には、担体を種々のカチオン金属で置換したA型ゼオライトにして、同様に含浸法で作製したPt担持K/A型ゼオライト触媒(実施例)、Pt担持Ca/A型ゼオライト触媒(参考例)、およびPt担持Mg/A型ゼオライト触媒(参考例)を用いたときの、各温度における処理ガス中のCO濃度を先のPt担持Na/A型ゼオライト触媒と比較して示した。
K/A型ゼオライト触媒を用いた場合には、Na/A型ゼオライト触媒よりも優れた特性を示した。また、Ca/A、Mg/A型ゼオライト触媒を用いた場合には、特性は少し劣るものの125℃前後の温度域でCOは検出されず良好な特性を示した。また、K/A型ゼオライトを用いた場合、O2/CO比を1.75から1.25に変えてもほぼ同等の特性を示した。さらに、O2/CO比を下げた場合には、125℃以下の低温で、CO酸化除去特性は低下したものの、これ以上の温度域では特性の劣化はみられなかった。
【0026】
【表4】
Figure 0003606494
【0027】
次に、Pt担持量と触媒性能の関係を調べた。実施例1と同様にPt担持量3wt%の他に、担持量を変えた数種類のPt担持K/A型ゼオライト触媒を作製し、その特性を調べた。図10は酸化温度を100℃、O/CO比を1.75に設定して、各々の担持量のK/A型ゼオライト触媒の特性を調べたものである。これより、担持量が0.1〜10wt%の範囲においてCOはほとんど検出されなかった。また、O/CO比を0.5にした場合には、1wt%以下の担持量で特性の劣化はみられたもの、これ以上の担持量ではCO酸化除去特性の劣
化はみられなかった。
図11は、酸化温度を100℃、O/CO比を1.75に設定して、3wt%Pt担持K/A型ゼオライト触媒の寿命試験を行ったものである。これより1,000時間経過後も処理ガス中のCOはほとんど検出されず、長期にわたり安定に作動した。
【0028】
次に、担持する金属を変え、導入するO/CO比を1.75にして各触媒の温度依存性を調べた。担持した金属はAu、RhおよびIrで、Ptと同様に含浸法により作製した。
表5にAu、RhおよびIrを担持したK/A型ゼオライト触媒について、各温度における処理ガス中のCO濃度を実施例1のPt、Pd、Ru担持の場合と比較して示す。これよりAu、Rh、Irを用いてもPtとほぼ同等の性能を示すことが分かった。
【0029】
【表5】
Figure 0003606494
【0030】
これらの結果より、酸化触媒にPt担持A型ゼオライト触媒を用いることにより、従来よりも低温で、COを選択的に酸化除去でき、長期信頼性の優れた一酸化炭素酸化除去用触媒体が構成できる。COを酸化除去する条件としては、O2/COが0.5〜2.0が好ましいが、1.25〜1.75の範囲であることがより好ましい。ゼオライト触媒の形状もここに示した以外のハニカム状、球状等本発明が適用できる形であればどんなものでも構わない。担持する金属についても、Au、Rh、Ir等を用いることもできる。中でもPt、Ru、Au、Rhを用いることが好ましい。
【0031】
《実施例
本実施例では、酸化触媒にはPt−Ru合金担持K/A型ゼオライト触媒を用いている。このPt−Ru合金担持K/A型ゼオライト触媒は、実施例1と同様に含浸法によりK/A型ゼオライトに担持した。PtとRuの担持量は各々1wt%である。調製したゼオライト触媒は、実施例1と同様の構成の一酸化炭素除去装置を用いて特性を調べた。測定条件は実施例1と同じである。
まず、導入するO2/CO比を1.75にして、この酸化触媒の温度依存性を調べた。図12に、この時の処理ガス中のCO濃度の温度依存性を、実施例で用いたPt担持K/A型ゼオライト触媒と比較して示す。これよりPt−Ru合金担持K/A型ゼオライト触媒を用いた場合には、Pt担持K/A型ゼオライト触媒とほぼ同等の性能を示すことが分かる。
【0032】
次に、酸化温度を125℃に固定して導入するO2/CO比の依存性を調べた。図13に、この時の処理ガス中のCO濃度の依存性を、実施例で用いたPt担持K/A型ゼオライト触媒と比較して示す。これより、Pt−Ru合金担持K/A型ゼオライト触媒を用いた場合には、Pt担持K/A型ゼオライト触媒を用いた場合とほぼ同等の性能を示した。
また、酸化温度を100℃、O2/CO比を2に設定して行った寿命試験でもPt担持K/A型ゼオライト触媒と同様、1,000時間経過後も処理ガス中のCOはほとんど検出されず、長期にわたり安定に作動した。
【0033】
さらに、Pt−Au、Pt−Rh、Pt−Ir、Ru−Au、Ru−Rh、Ru−Ir合金を担持したK/A型ゼオライトを作製し、CO酸化除去特性を調べたところ、Pt−Ru合金とほぼ同等の性能を示した。中でも、Pt−Au、Pt−Rh、Ru−Au、Ru−Rh合金を担持したものがより優れた特性を示した。
これらの結果より、酸化触媒としてPt−Ru合金等の合金担持K/A型ゼオライト触媒を用いても、広い温度範囲でCOを選択的に酸化除去でき、長期信頼性も優れた一酸化炭素除去用触媒体が構成できる。ここでは、担持合金にPt−Ru、Pt−Au、Pt−Rh、Pt−Ir、Ru−Au、Ru−Rh、Ru−Ir合金を用いたが、この他の組み合わせの合金を用いても構わない。
【0034】
《実施例
本実施例では、酸化触媒の担体に、陽イオン交換量の異なるA型ゼオライトを用いた。すなわち、通常のNa/A型ゼオライトのNaをKにより各種の割合でイオン交換したA型ゼオライトに、実施例1と同様に含浸法によりPtを1wt%担持させた。調製した触媒は、実施例1と同様の構成の一酸化炭素除去装置を用いて特性を調べた。測定条件は実施例1と同じである。
まず、導入するO2/CO比を1.75にして、これらの酸化触媒の温度依存性を調べた。表6にPtを担持したKイオン交換量の異なるNa/A型ゼオライト触媒について、各温度における処理ガス中のCO濃度を比較して示す。
【0035】
【表6】
Figure 0003606494
【0036】
表6より、Kイオン交換量が多くなるにつれてCO除去率がわずかではあるが向上することが分かる。また、交換量が50%以上であると、ほぼK/A型ゼオライト触媒と同じ性能を示すことが分かる。
次に、酸化温度を125℃に固定し、導入するO2/CO比を変えてCO濃度を調べた。図14に、この時の処理ガス中のCO濃度のO2/CO比依存性を示す。図14より、K交換量を多くすることによりO2/CO比0.5での特性が向上することが分かる。また、交換量が50%以上であると、ほぼK/A型ゼオライト触媒と同じ性能を示すことが分かる。これは完全にKイオンで交換されていなくても、良好にCOを酸化できることを示しており、Naの一部がKでイオン交換されたものでも十分に使用可能であることが分かった。担持する金属について、ここではPtを用いたが、実施例及びで用いた金属、合金等を用いることもできる。
【0037】
【発明の効果】
以上のように本発明によれば、従来よりも低温でCOを酸化除去することができる。また、担体が分子ふるい機能を持つゼオライトであるため、選択性良くCOを酸化することができ、長期信頼性に優れた一酸化炭素除去用触媒体を提供することができる。また、本発明によれば、燃料極中の白金触媒を被毒することなく、改質ガスを燃料に用いて高分子電解質型燃料電池装置を作動させることができる。
【図面の簡単な説明】
【図1】本発明による燃料電池装置の概略構成を示す図である。
【図2】本発明の実施例に用いた一酸化炭素除去装置の構成を示す縦断面図である。
【図3】本発明の参考例および比較例の酸化触媒を用いた一酸化炭素除去装置のCO濃度と作動温度の関係を示す図である。
【図4】種々のA型ゼオライト触媒を充填した一酸化炭素除去装置のCO濃度とO2/CO比の関係を示す図である。
【図5】同装置に充填するPt担持K/A型ゼオライト触媒のPt担持量とCO濃度の関係を示す図である。
【図6】同装置のCO濃度の経時変化を示す図である。
【図7】本発明の実験例1の酸化触媒を用いた一酸化炭素除去装置のCO濃度と作動温度の関係を示す図である。
【図8】同装置のCO濃度とO2/CO比の関係を示す図である。
【図9】本発明の別の参考例および比較例の酸化触媒を用いた一酸化炭素除去装置のCO濃度と作動温度の関係を示す図である。
【図10】同装置に充填するPt担持K/A型ゼオライト触媒のPt担持量とCO濃度の関係を示す図である。
【図11】同装置のCO濃度の経時変化を示す図である。
【図12】本発明の実施例2、3の酸化触媒を用いた一酸化炭素除去装置のCO濃度と作動温度の関係を示す図である。
【図13】同装置のCO濃度とO2/CO比の関係を示す図である。
【図14】本発明の実施例の酸化触媒を用いた一酸化炭素除去装置のCO濃度とO2/CO比の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon monoxide removing catalyst body for selectively oxidizing and removing carbon monoxide (CO), in particular, a minute amount of CO in a reformed gas that poisons the fuel electrode of a fuel cell. The present invention relates to a fuel cell device provided in a fuel supply path and a method for removing carbon monoxide in a reformed gas supplied to the fuel cell.
[0002]
[Prior art]
As a fuel for a polymer electrolyte fuel cell (hereinafter referred to as PEFC), a reformed gas obtained by steam reforming a hydrocarbon-based raw material, usually methanol, is used. However, since a platinum catalyst is normally used as the fuel electrode of PEFC, this platinum catalyst is poisoned by a small amount of CO contained in the reformed gas, and the battery performance is greatly deteriorated. It has become.
As a method for removing CO in the reformed gas, there is a hydrogen separation method using a Pd thin film or the like. This is a method of selectively allowing only hydrogen to permeate by applying a certain pressure to one side across the hydrogen separation membrane. When this method is used, gas other than hydrogen does not permeate, so only pure hydrogen is obtained and can be used as fuel for PEFC. This method has been put to practical use in semiconductor manufacturing plants and the like, and has been partially developed for PEFC.
[0003]
Other methods for reducing the CO concentration in the reformed gas include CO conversion. This is because a reformed gas obtained by steam reforming methanol is subjected to a CO shift reaction (CO + H 2 O → CO 2 + H 2 ) using a CO conversion catalyst, and the CO concentration in the gas is 0.4 to 1.5%. It is a method to reduce to. If CO can be reduced to this extent, it can be used as a fuel for a phosphoric acid fuel cell (hereinafter referred to as PAFC) using the same Pt electrode catalyst. However, in order to prevent poisoning of the platinum catalyst on the fuel electrode of PEFC, the operating temperature of PEFC (50 to 100 ° C.) is lower than the operating temperature of PAFC (about 170 ° C.). It is necessary to reach the ppm level, and CO conversion treatment alone is not sufficient for use as a fuel gas for PEFC.
[0004]
Therefore, development has been carried out in which oxygen is introduced into the gas after CO transformation and CO is oxidized and removed at 200 to 300 ° C. using an oxidation catalyst. At present, studies have been made on the use of an alumina catalyst supporting a noble metal as the oxidation catalyst, but it is very difficult to selectively oxidize a trace amount of CO in a large amount of hydrogen selectively.
[0005]
[Problems to be solved by the invention]
A conventional method using a metal hydride film such as a Pd film is optimal as a fuel for PEFC because high-purity hydrogen can be obtained. However, since a very expensive Pd film is used, there is a problem in cost. Further, since hydrogen is basically obtained by a pressure difference, there is a problem that the structure of the apparatus becomes complicated.
On the other hand, even if CO modification is used, the CO concentration cannot be sufficiently reduced to the extent that it can be used as a fuel for PEFC.
[0006]
On the other hand, the method of oxidizing and removing CO can relatively simplify the structure of the apparatus, and may be inexpensive in comparison with a method using a hydrogen separation membrane. However, in the method using the noble metal-supported alumina catalyst currently being studied, the temperature required for CO oxidation is 250 to 350 ° C., and the efficiency is low. Further, since hydrogen is also oxidized at the same time, the selectivity is poor. Furthermore, when this catalyst is used, if there is a large amount of water vapor, methanation may occur and hydrogen may be drastically reduced.
Therefore, in order to oxidize and remove CO, development of a high-performance carbon monoxide removal catalyst capable of selectively oxidizing only a small amount of CO in a large amount of hydrogen at a low temperature is desired.
[0007]
[Means for Solving the Problems]
The catalyst body for removing carbon monoxide according to the present invention comprises an A supporting 1 to 10 wt% of at least one metal selected from the group consisting of Pt, Pd, Ru, Au, Rh and Ir or an alloy of two or more metals. Type zeolite.
The cationic species constituting the A-type zeolite consists of K or K and Na .
The fuel cell apparatus of the present invention includes a polymer electrolyte fuel cell, a reformer, a fuel gas supply path for supplying a reformed gas from the reformer to the fuel electrode of the fuel cell, and an oxidant gas to the cathode of the fuel cell. The carbon monoxide removing device provided with the above-mentioned catalyst body for removing carbon monoxide in the oxidizing gas supply passage and the fuel gas supply passage.
Further, the method for removing carbon monoxide in the reformed gas supplied to the fuel cell of the present invention includes the reformed gas obtained by reforming a hydrocarbon-based raw material together with oxygen in the above-mentioned catalyst body for removing carbon monoxide as an oxidation catalyst temperature. A step of passing at 50 to 200 ° C., wherein the amount of oxygen is 0.5 to 2 times the amount of carbon monoxide in the reformed gas.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst body for removing carbon monoxide of the present invention comprises an A-type zeolite as a support, and at least one metal selected from the group consisting of Pt, Pd, Ru, Au, Rh and Ir, or two or more metals. An alloy is supported.
The cationic species constituting the A-type zeolite consists of K or K and Na .
Further, the method for supporting a metal such as Pt is preferably an impregnation method or an ion exchange method.
[0009]
According to the present invention, CO can be oxidized and removed at a lower temperature than conventional. Further, since A-type zeolite having a molecular sieving function is used, CO can be oxidized with high selectivity.
Type A zeolite is a kind of synthetic zeolite, and the unit cell composition formula is usually represented by Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ] · 27H 2 O, and Na, which is a cation, is replaced by other metal cations. They can also be substituted, and all of these are collectively called A-type zeolite. In the following Examples , Reference Examples, and Experimental Examples , Na / A-type zeolite is the cation of Na, and K / A-type zeolite, Ca / A-type zeolite, Mg / Called A-type zeolite.
[0010]
FIG. 1 shows a schematic configuration of a fuel cell device according to the present invention. The fuel cell 1 is sold under the name of Nafion 112, for example, from an anode 3 and a cathode 4 made of a carbon electrode carrying a platinum catalyst, and a polymer electrolyte layer 2 interposed between the electrodes, for example, DuPont. This is a polymer electrolyte fuel cell comprising a polymer electrolyte membrane. Hydrogen fuel is supplied from the reformer 9 to the anode chamber 5 of the fuel cell. For example, water and methanol are supplied from the respective supply sources 7 and 8 to the reformer 9, and the methanol is steam reformed in the reformer 9. Air is supplied from the supply source 12 to the cathode chamber of the fuel cell. The above configuration is the same as that of a conventionally known polymer electrolyte fuel cell. In the present invention, the carbon monoxide removing device 10 is provided in the fuel gas supply path 11 from the reformer 9 to the anode chamber 5. An appropriate amount of oxygen required to oxidize carbon monoxide in the hydrogen fuel supplied from the reformer 9 is supplied to the carbon monoxide removing device 10 through a passage 14 branched from the air supply passage 13. As fuel supplied to the reformer 9, city gas other than methanol, or gas such as propane or butane is used.
[0011]
【Example】
Examples of the present invention will be described below.
Example 1
First, as a reference example, a Na / A type zeolite carrying Pt was prepared by an impregnation method. That is, a predetermined amount of dinitrodiamineplatinic acid nitrate solution (Pt content: 4.5 wt%) was weighed, and Na / A-type zeolite was added thereto and stirred. Then, twice the amount of distilled water of zeolite was added to this, stirred for several minutes, and calcined at 500 ° C. for 1 hour. In this way, Na / A type zeolite carrying 3 wt% Pt was obtained.
Next, Na / A type zeolite carrying Pt was prepared by an ion exchange method. Distilled water 20 times in weight ratio was added to Na / A type zeolite and stirred at 97 ° C. for several hours, and then a predetermined amount of a 0.01 mol / l aqueous solution of tetraammineplatinum (II) chloride was added dropwise. Thereafter, stirring was continued for several hours at the same temperature, and then left overnight at room temperature. This was filtered, washed with distilled water, dried at 80 ° C. for 20 hours, and further calcined at 300 ° C. for 4 hours. In this way, Na / A type zeolite carrying 3 wt% Pt was obtained.
[0012]
FIG. 2 shows a configuration of a carbon monoxide removing apparatus using the above oxidation catalyst. The oxidation catalyst 21 is sieved to 10 to 20 mesh and filled in a stainless steel tube 22. A heater 23 is disposed outside the stainless steel tube 22 so that the temperature is detected by a thermocouple 24 installed in the oxidation catalyst, and the operating temperature can be adjusted based on the detected temperature.
In this carbon monoxide removal apparatus, the reformed gas (gas composition: CO: 1%, CO 2 : 24%, H 2 : 75%), which is reformed by steam reforming methanol, and air have a predetermined ratio. Introduced in. The space velocity SV was 2000 h −1, and the gas composition in the processing gas after passing through the carbon monoxide removing apparatus was measured by a gas chromatograph.
[0013]
First, the ratio of O 2 / CO to be introduced was set to 2, and the temperature dependence of the Pt-supported Na / A-type zeolite catalyst prepared by each method was examined.
FIG. 3 shows the temperature dependence of the CO concentration in the process gas at this time. As a comparative example, the characteristics of a Pt-supported alumina catalyst similarly produced by an impregnation method using alumina instead of Na / A-type zeolite are shown.
From FIG. 3, it was found that when Pt-supported Na / A-type zeolite was used, CO was not detected between 50 and 150 ° C. and was completely oxidized. On the other hand, with the Pt-supported alumina catalyst, the CO concentration increased as the temperature decreased, and the CO oxidation performance was lower than that of the Pt-supported Na / A zeolite in all temperature ranges. In general, when using an alumina catalyst, it is said that a temperature of 200 ° C. or higher is required. Therefore, CO oxidation at a lower temperature is possible by using Pt-supported Na / A zeolite than when using an alumina catalyst. It turns out that it is.
[0014]
Table 1 shows a comparison of the CO concentration in the processing gas at each temperature of the Pt-supported Na / A-type zeolite (reference example) prepared by the impregnation method and the ion exchange method. From this, it can be seen that the catalyst produced by the ion exchange method showed slightly better characteristics, but the catalyst produced by the impregnation method has almost the same performance.
Table 2 also shows Pt-supported K / A-type zeolites (Examples) and Ca / A-type zeolites (Reference Examples) prepared by impregnation in the same manner by replacing the carrier with A-type zeolites substituted with various cationic metals. When the Mg 2 / A type zeolite (reference example) was used, the CO concentration in the treatment gas at each temperature was shown in comparison with the previous Na / A type zeolite. When K / A type zeolite was used, the same characteristics as Na / A type zeolite were exhibited. Further, when Ca / A type and Mg / A type zeolites were used, CO was not detected in a temperature range around 100 ° C., although the properties were slightly inferior, and good properties were shown.
[0015]
[Table 1]
Figure 0003606494
[0016]
[Table 2]
Figure 0003606494
[0017]
Next, the oxidation temperature was fixed at 125 ° C., and the CO concentration was examined by changing the introduced O 2 / CO ratio. FIG. 4 shows the dependency of the CO concentration in the processing gas on the O 2 / CO ratio when various Pt-supported A-type zeolites are used. Similar to FIG. 3, the characteristics of a Pt-supported alumina catalyst are shown as a comparative example. From this, it was found that in any A-type zeolite, the CO concentration was lower than that of the Pt-supported alumina catalyst, and excellent CO oxidation performance was exhibited. Further, in the case where the O 2 / CO ratio was in the range of 1.0 to 2.0, almost no CO was detected. In addition, when the K 2 / A type zeolite is used and the O 2 / CO ratio is 0.5, the hydrogen concentration is 73.5%, and almost all of the introduced O 2 is selectively used for CO oxidation. I found out that Therefore, in the following examples, K / A type zeolite prepared by an impregnation method was used.
[0018]
Next, the relationship between the amount of Pt supported and the catalyst performance was examined. In addition to the Pt loading amount of 3 wt%, several types of Pt-supporting K / A type zeolites with different loading amounts were prepared, and their characteristics were examined. FIG. 5 shows the characteristics of K / A-type zeolite of each supported amount with the oxidation temperature set to 100 ° C. and the O 2 / CO ratio set to 2. As a result, CO was not detected in the range of 1 to 10 wt%.
FIG. 6 shows a life test of a 3 wt% Pt-supported K / A zeolite with an oxidation temperature of 100 ° C. and an O 2 / CO ratio of 2. From this, even after 1,000 hours, CO in the processing gas was not detected, and the operation was stable over a long period of time.
[0019]
Next, the supported metal was changed, and the O 2 / CO ratio to be introduced was set to 2, and the temperature dependence of each catalyst was examined. The supported metal was Pd, and was produced by the impregnation method in the same manner as Pt.
Table 3 shows the CO concentration in the treatment gas at each temperature for the K / A type zeolite catalyst supporting Pd and Ru, as compared with the case of supporting Pt. From this, it was found that even if Pd and Ru were used, the performance was almost the same as Pt.
[0020]
[Table 3]
Figure 0003606494
[0021]
From these results, by using Pt-supported K / A zeolite as the oxidation catalyst, CO can be selectively oxidized and removed at a lower temperature than before, and a carbon monoxide oxidation removal catalyst body having excellent long-term reliability is obtained. Can be configured . Responsible metal addition to Pt also to equity, Pd, can also be used Ru. Further, regarding the configuration of the apparatus including the catalyst body, the stainless steel pipe is used here, but any shape is applicable as long as the present invention is applicable.
[0022]
< Experimental example 1 >
In this experimental example, (Pt + Pd) -supported Na / A-type zeolite is used as the oxidation catalyst. This (Pt + Pd) -supported Na / A-type zeolite was supported on Na / A-type zeolite by the impregnation method using dinitrodiamine platinum and dinitrodiamine palladium as in Example 1. The supported amounts of Pt and Pd are each 1 wt%. The characteristics of the prepared zeolite were examined using a carbon monoxide removing apparatus having the same configuration as in Example 1. The measurement conditions are the same as in Example 1.
First, the O 2 / CO ratio to be introduced was set to 2, and the temperature dependence of this oxidation catalyst was examined. FIG. 7 shows the temperature dependence of the CO concentration in the process gas at this time in comparison with the Pt-supported Na / A zeolite used in Example 1. From this, it can be seen that when (Pt + Pd) -supported Na / A-type zeolite is used, the performance is almost equivalent to that of Pt-supported Na / A-type zeolite.
[0023]
Next, the oxidation temperature was fixed at 125 ° C., and the CO concentration was examined by changing the introduced O 2 / CO ratio. FIG. 8 shows the O 2 / CO ratio dependence of the CO concentration in the process gas at this time in comparison with the Pt-supported Na / A-type zeolite as in FIG. Thus, when the (Pt + Pd) -carrying Na / A-type zeolite was used, the performance was almost the same as that when the Pt-carrying Na / A-type zeolite was used.
In addition, even in a life test conducted at an oxidation temperature of 100 ° C. and an O 2 / CO ratio of 2, as in the case of Pt-supported Na / A-type zeolite, CO in the process gas was not detected even after 1,000 hours had elapsed. It worked stably for a long time.
From these results, even when (Pt + Pd) supported Na / A type zeolite is used as an oxidation catalyst, CO can be selectively oxidized and removed in a wide temperature range, and a carbon monoxide removing catalyst body excellent in long-term reliability is constituted. it can. Here, (Pt + Pd) is used for the combination of supported metals, but (Pt + Ru) or (Pd + Ru) can also be used.
[0024]
Example 2
In this example, the O 2 / CO ratio, the SV value, and the metal supported on the A-type zeolite were changed to examine the CO oxidation removal characteristics. First, the temperature dependence of the 3 wt% Pt-supported Na / A-type zeolite catalyst (reference example) was examined by setting the space velocity SV to 8000 h −1 and the ratio of O 2 / CO to be introduced to 1.75. The preparation method and measurement conditions of the zeolite catalyst are the same as in Example 1.
FIG. 9 shows the temperature dependence of the CO concentration in the process gas at this time in comparison with the Pt-supported alumina catalyst produced by the impregnation method. From this, it was found that, under this condition, when the Pt-supported Na / A type zeolite catalyst was used, the residual CO concentration was 10 ppm or less in the temperature range of 50 to 200 ° C. and was almost completely oxidized. . On the other hand, in the Pt-supported alumina catalyst, the CO concentration increased with decreasing temperature, and the CO oxidation performance was lower than that in the Pt-supported Na / A-type zeolite catalyst in all temperature ranges up to 225 ° C. Usually, when using an alumina catalyst, it is said that a temperature of 200 ° C. or higher is required. Therefore, by using a Pt-supported Na / A-type zeolite catalyst, CO oxidation at a lower temperature than in the case of using an alumina catalyst can be achieved. It turns out that it is possible.
[0025]
Table 4 shows Pt-supported K / A-type zeolite catalysts (Examples) , Pt-supported Ca / A-type zeolite catalysts (reference ) prepared by the impregnation method using A-type zeolite substituted with various cationic metals. Example) , and the Pt-supported Mg 2 / A type zeolite catalyst (reference example) , the CO concentration in the treatment gas at each temperature was shown in comparison with the previous Pt-supported Na / A type zeolite catalyst.
When the K / A type zeolite catalyst was used, characteristics superior to those of the Na / A type zeolite catalyst were exhibited. Further, when Ca / A and Mg / A type zeolite catalysts were used, CO was not detected in a temperature range of around 125 ° C., although the characteristics were slightly inferior. Further, when K / A type zeolite was used, substantially the same characteristics were exhibited even when the O 2 / CO ratio was changed from 1.75 to 1.25. Further, when the O 2 / CO ratio was lowered, the CO oxidation removal characteristics were lowered at a low temperature of 125 ° C. or lower, but no deterioration of the characteristics was observed in a temperature range higher than this.
[0026]
[Table 4]
Figure 0003606494
[0027]
Next, the relationship between the amount of Pt supported and the catalyst performance was examined. In the same manner as in Example 1, in addition to the Pt loading amount of 3 wt%, several types of Pt-supported K / A type zeolite catalysts with different loading amounts were prepared, and their characteristics were examined. FIG. 10 shows the characteristics of K / A-type zeolite catalysts of each supported amount with the oxidation temperature set to 100 ° C. and the O 2 / CO ratio set to 1.75. From this, CO was hardly detected in the range of 0.1-10 wt% of loading. In addition, when the O 2 / CO ratio was set to 0.5, deterioration of characteristics was observed at a loading amount of 1 wt% or less, but deterioration of CO oxidation removal characteristics was not observed at a loading amount higher than this. .
FIG. 11 shows a life test of a 3 wt% Pt-supported K / A type zeolite catalyst with an oxidation temperature set to 100 ° C. and an O 2 / CO ratio set to 1.75. As a result, almost no CO was detected in the processing gas even after 1,000 hours had elapsed, and the operation was stable over a long period of time.
[0028]
Next, the supported metal was changed, and the temperature dependency of each catalyst was examined by setting the introduced O 2 / CO ratio to 1.75. The supported metals were Au, Rh and Ir, and were produced by the impregnation method in the same manner as Pt.
Table 5 shows the CO concentration in the treatment gas at each temperature for the K / A type zeolite catalyst supporting Au, Rh, and Ir in comparison with the case of supporting Pt, Pd, Ru in Example 1. From this, it was found that even when Au, Rh, and Ir were used, the performance was almost the same as Pt.
[0029]
[Table 5]
Figure 0003606494
[0030]
From these results, by using a Pt-supported A-type zeolite catalyst as the oxidation catalyst, CO can be selectively oxidized and removed at a lower temperature than before, and a carbon monoxide oxidation removal catalyst body excellent in long-term reliability is constituted. I can . As conditions for removing CO by oxidation, O 2 / CO is preferably 0.5 to 2.0, but more preferably in the range of 1.25 to 1.75. The shape of the zeolite catalyst may be any shape as long as the present invention can be applied, such as a honeycomb shape and a spherical shape other than those shown here. Au, Rh, Ir, etc. can also be used for the metal to be supported. Of these, Pt, Ru, Au, and Rh are preferably used.
[0031]
Example 3
In this embodiment, a Pt—Ru alloy-supported K / A type zeolite catalyst is used as the oxidation catalyst. This Pt—Ru alloy-supported K / A-type zeolite catalyst was supported on K / A-type zeolite by the impregnation method as in Example 1. The supported amounts of Pt and Ru are each 1 wt%. The characteristics of the prepared zeolite catalyst were examined using a carbon monoxide removing apparatus having the same configuration as in Example 1. The measurement conditions are the same as in Example 1.
First, the O 2 / CO ratio to be introduced was set to 1.75, and the temperature dependence of this oxidation catalyst was examined. FIG. 12 shows the temperature dependence of the CO concentration in the process gas at this time in comparison with the Pt-supported K / A zeolite catalyst used in Example 2 . From this, it can be seen that when the Pt—Ru alloy-supported K / A type zeolite catalyst is used, the performance is almost equivalent to that of the Pt-supported K / A type zeolite catalyst.
[0032]
Next, the dependency of the O 2 / CO ratio introduced with the oxidation temperature fixed at 125 ° C. was examined. FIG. 13 shows the dependence of the CO concentration in the processing gas at this time in comparison with the Pt-supported K / A type zeolite catalyst used in Example 2 . Thus, when the Pt—Ru alloy-supported K / A type zeolite catalyst was used, the performance was almost the same as that when the Pt-supported K / A type zeolite catalyst was used.
Also, in a life test conducted at an oxidation temperature of 100 ° C. and an O 2 / CO ratio of 2, as in the case of a Pt-supported K / A type zeolite catalyst, almost no CO in the process gas was detected after 1,000 hours. It did not operate stably for a long time.
[0033]
Furthermore, when K / A type zeolite carrying Pt—Au, Pt—Rh, Pt—Ir, Ru—Au, Ru—Rh, Ru—Ir alloy was produced and the CO oxidation removal characteristics were examined, Pt—Ru It showed almost the same performance as the alloy. Among them, those carrying Pt—Au, Pt—Rh, Ru—Au, and Ru—Rh alloys showed more excellent characteristics.
From these results, even when an alloy-supported K / A type zeolite catalyst such as a Pt—Ru alloy is used as the oxidation catalyst, CO can be selectively oxidized and removed over a wide temperature range, and carbon monoxide removal with excellent long-term reliability is possible. The catalyst body can be configured. Here, Pt—Ru, Pt—Au, Pt—Rh, Pt—Ir, Ru—Au, Ru—Rh, and Ru—Ir alloy are used as the supporting alloy, but alloys of other combinations may be used. Absent.
[0034]
Example 4
In this example, A-type zeolite having a different cation exchange amount was used as the support for the oxidation catalyst. That is, 1 wt% of Pt was supported on the A-type zeolite obtained by ion-exchange of Na of normal Na / A-type zeolite with K at various ratios by the impregnation method in the same manner as in Example 1. The characteristics of the prepared catalyst were examined using a carbon monoxide removing apparatus having the same configuration as in Example 1. The measurement conditions are the same as in Example 1.
First, the O 2 / CO ratio to be introduced was set to 1.75, and the temperature dependence of these oxidation catalysts was examined. Table 6 shows a comparison of the CO concentration in the treatment gas at each temperature for Na / A-type zeolite catalysts having different K ion exchange amounts supporting Pt.
[0035]
[Table 6]
Figure 0003606494
[0036]
From Table 6, it can be seen that the CO removal rate is slightly improved as the K ion exchange amount is increased. It can also be seen that when the exchange amount is 50% or more, the same performance as the K / A type zeolite catalyst is exhibited.
Next, the oxidation temperature was fixed at 125 ° C., and the CO concentration was examined by changing the introduced O 2 / CO ratio. FIG. 14 shows the O 2 / CO ratio dependence of the CO concentration in the process gas at this time. FIG. 14 shows that increasing the K exchange amount improves the characteristics at an O 2 / CO ratio of 0.5. It can also be seen that when the exchange amount is 50% or more, the same performance as the K / A type zeolite catalyst is exhibited. This indicates that CO can be satisfactorily oxidized even if not completely exchanged with K ions, and it was found that even a part of Na ion exchanged with K can be used sufficiently . The metal to be responsible lifting, wherein Pt is used, the metal used in Examples 2 and 3, it is also possible to use an alloy, or the like.
[0037]
【The invention's effect】
As described above, according to the present invention, CO can be oxidized and removed at a lower temperature than in the prior art. Further, since the support is a zeolite having a molecular sieving function, CO can be oxidized with high selectivity, and a carbon monoxide removing catalyst body excellent in long-term reliability can be provided. Further, according to the present invention, the polymer electrolyte fuel cell device can be operated using the reformed gas as fuel without poisoning the platinum catalyst in the fuel electrode.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a fuel cell device according to the present invention.
FIG. 2 is a longitudinal sectional view showing a configuration of a carbon monoxide removing apparatus used in an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the CO concentration and the operating temperature of the carbon monoxide removal apparatus using the oxidation catalyst of the reference example and the comparative example of the present invention.
FIG. 4 is a graph showing the relationship between the CO concentration and the O 2 / CO ratio of a carbon monoxide removal apparatus filled with various A-type zeolite catalysts.
FIG. 5 is a graph showing the relationship between the amount of Pt supported by the Pt-supported K / A type zeolite catalyst charged in the apparatus and the CO concentration.
FIG. 6 is a view showing a change with time in CO concentration of the apparatus.
7 is a graph showing the relationship between the CO concentration and the operating temperature of the carbon monoxide removal apparatus using the oxidation catalyst of Experimental Example 1 of the present invention. FIG.
FIG. 8 is a graph showing the relationship between the CO concentration and the O 2 / CO ratio of the same apparatus.
FIG. 9 is a graph showing the relationship between the CO concentration and the operating temperature of the carbon monoxide removing apparatus using the oxidation catalyst of another reference example and a comparative example of the present invention.
FIG. 10 is a graph showing the relationship between the amount of Pt supported by the Pt-supported K / A type zeolite catalyst charged in the apparatus and the CO concentration.
FIG. 11 is a diagram showing a change with time in CO concentration of the apparatus.
FIG. 12 is a graph showing the relationship between the CO concentration and the operating temperature of the carbon monoxide removing apparatus using the oxidation catalyst of Examples 2 and 3 of the present invention.
FIG. 13 is a graph showing the relationship between the CO concentration and the O 2 / CO ratio of the same apparatus.
FIG. 14 is a graph showing the relationship between the CO concentration and the O 2 / CO ratio in the carbon monoxide removal apparatus using the oxidation catalyst of Example 4 of the present invention.

Claims (3)

Pt、Pd、Ru、Au、RhおよびIrからなる群より選択される少なくとも一種の金属、または二種以上の金属の合金を担持したA型ゼオライトからなり、前記金属または合金の担持量が〜10wt%であり、A型ゼオライトを構成するカチオン種がKからなるか、もしくはKとNaからなることを特徴とする一酸化炭素除去用触媒体。It comprises an A-type zeolite carrying at least one metal selected from the group consisting of Pt, Pd, Ru, Au, Rh and Ir, or an alloy of two or more metals, and the loading amount of the metal or alloy is 1 to A catalyst body for removing carbon monoxide, characterized in that it is 10 wt%, and the cation species constituting the A-type zeolite consists of K, or K and Na . 高分子電解質型燃料電池、改質器、前記改質器から前記燃料電池の燃料極へ改質ガスを供給する燃料ガス供給路、燃料電池のカソードへ酸化ガスを供給する酸化ガス供給路、および前記燃料ガス供給路に設けた一酸化炭素除去装置を具備し、前記一酸化炭素除去装置が、請求項1記載の一酸化炭素除去用触媒体を備えた燃料電池装置。A polymer electrolyte fuel cell, a reformer, a fuel gas supply path for supplying reformed gas from the reformer to the fuel electrode of the fuel cell, an oxidizing gas supply path for supplying oxidizing gas to the cathode of the fuel cell, and 2. A fuel cell device comprising a carbon monoxide removing device provided in the fuel gas supply path, wherein the carbon monoxide removing device comprises a carbon monoxide removing catalyst body according to claim 1. 炭化水素系の原料から改質され、燃料電池の燃料極へ供給される改質ガス中の一酸化炭素を除去する方法であって、前記改質ガスを酸素と共に請求項1記載の一酸化炭素除去用触媒体に酸化触媒温度50〜200℃で通過させる工程を有し、前記酸素量が、改質ガス中の一酸化炭素量の0.5〜2倍であることを特徴とする燃料電池へ供給する改質ガス中の一酸化炭素除去方法。A method for removing carbon monoxide in a reformed gas reformed from a hydrocarbon-based raw material and supplied to a fuel electrode of a fuel cell, wherein the reformed gas together with oxygen is carbon monoxide. A fuel cell comprising a step of passing the catalyst body for removal at an oxidation catalyst temperature of 50 to 200 ° C., wherein the oxygen amount is 0.5 to 2 times the amount of carbon monoxide in the reformed gas. A method for removing carbon monoxide in the reformed gas to be supplied.
JP17685496A 1995-08-18 1996-07-05 Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell Expired - Fee Related JP3606494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17685496A JP3606494B2 (en) 1995-08-18 1996-07-05 Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP7-210821 1995-08-18
JP21082195 1995-08-18
JP25395495 1995-09-29
JP7-253954 1995-09-29
JP7049896 1996-03-26
JP8-70498 1996-03-26
JP17685496A JP3606494B2 (en) 1995-08-18 1996-07-05 Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell

Publications (2)

Publication Number Publication Date
JPH09320624A JPH09320624A (en) 1997-12-12
JP3606494B2 true JP3606494B2 (en) 2005-01-05

Family

ID=27465256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17685496A Expired - Fee Related JP3606494B2 (en) 1995-08-18 1996-07-05 Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell

Country Status (1)

Country Link
JP (1) JP3606494B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121008A (en) * 2000-10-10 2002-04-23 Mitsubishi Heavy Ind Ltd Method of removing carbon monoxide
JP2002126535A (en) * 2000-10-30 2002-05-08 Mitsubishi Heavy Ind Ltd Catalyst for selective oxidation of carbon monoxide and production method of the same
JP2002263501A (en) 2001-03-05 2002-09-17 Toyota Motor Corp Carbon monoxide selective oxidation catalyst and method for producing the same
CA2657329C (en) 2001-03-28 2010-05-04 Osaka Gas Co., Ltd. Method of removing carbon monoxide, method of operating fuel reforming system, carbon monoxide removal reactor, fuel reforming system using the removal reactor, and filter
CN1729050A (en) * 2002-12-20 2006-02-01 本田技研工业株式会社 Platinum-ruthenium containing catalyst formulations for hydrogen generation
US7572304B2 (en) * 2004-09-28 2009-08-11 Texaco Inc. Apparatus and method for preferential oxidation of carbon monoxide
JP4754979B2 (en) * 2006-02-08 2011-08-24 株式会社ティラド Method for estimating catalyst life

Also Published As

Publication number Publication date
JPH09320624A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
EP0764466B1 (en) Fuel cell device equipped with catalyst material for removing carbon monoxide
JP5105937B2 (en) Method for reducing carbon monoxide concentration
US7700512B2 (en) Carbon monoxide selective oxidizing catalyst and manufacturing method for the same
EP1029593B1 (en) Catalyst and method for selectively oxidizing carbon monoxide contained in reformed gas
JP3606494B2 (en) Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell
JP5204633B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JPWO2008075761A1 (en) Catalyst for reducing carbon monoxide concentration
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JPH09180749A (en) Carbon monoxide eliminating catalyst and method for eliminating carbon monoxide contained in reformed gas using the catalyst
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP4037122B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP3703001B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4820711B2 (en) Method for evaluating selective oxidation ability of catalyst and method for producing high concentration hydrogen-containing gas
JP5537232B2 (en) Method for reducing carbon monoxide concentration, hydrogen production apparatus, and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
US20030108471A1 (en) Method for removing carbon monoxide from a hydrogen-rich gas mixture by selective oxidation
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4567930B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4011886B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP5041781B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2004223415A (en) Catalyst for selective oxidation of carbon monoxide, method for decreasing carbon monoxide concentration, and fuel cell system
JP4881078B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2007167828A (en) Catalyst for selectively oxidizing carbon monoxide, method for decreasing concentration of carbon monoxide and fuel cell system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees