[go: up one dir, main page]

JP3602235B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP3602235B2
JP3602235B2 JP32823695A JP32823695A JP3602235B2 JP 3602235 B2 JP3602235 B2 JP 3602235B2 JP 32823695 A JP32823695 A JP 32823695A JP 32823695 A JP32823695 A JP 32823695A JP 3602235 B2 JP3602235 B2 JP 3602235B2
Authority
JP
Japan
Prior art keywords
magnetic
wire
amorphous
magnetic field
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32823695A
Other languages
Japanese (ja)
Other versions
JPH09145808A (en
Inventor
昌紀 三邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP32823695A priority Critical patent/JP3602235B2/en
Publication of JPH09145808A publication Critical patent/JPH09145808A/en
Application granted granted Critical
Publication of JP3602235B2 publication Critical patent/JP3602235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアモルファス磁性ワイヤを使用した磁気センサに関するものである。
【0002】
【従来の技術】
アモルファス合金においては、原子構造が長距離秩序をもたず短距離秩序であるので、アモルファス特有の電磁的性質を有し、円周方向に容易に磁化される外殻部を有する零磁歪乃至は負磁歪のアモルファスワイヤが開発されている。例えば、Co7015Si10Feが開発されている。
かかる零磁歪乃至は負磁歪のアモルファスワイヤに高周波電流を流すと、ワイヤの横断面内に発生する円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化され、円周方向透磁率μが大となり、アモルファスワイヤの両端に発生するインダクタンス電圧分eL、すなわち
eL=wμι(Im−Ic)/4π
が著しく大きくなる。ただし、ιはワイヤの長さ,wは電流の周波数,Imは通電電流の絶対値,Icは4πaHc,aはワイヤの半径,Hcは円周方向保磁力である。
【0003】
この通電中のアモルファスワイヤにワイヤ軸方向の外部磁界を作用させると、上記通電による円周方向磁束と外部磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記μが低下し、インダクタンス電圧分eLが減少する。
【0004】
而して、このインダクタンス電圧分eLの減少が顕著であり、これを利用して外部磁界を検出するために、上記アモルファスワイヤをブリッジの一辺に組み込み、このブリッジの平衡により上記ワイヤ両端間の電圧(抵抗による電圧降下分と上記したインダクタンスによる電圧降下分eL)のうち、抵抗電圧分を打ち消してインダクタンス電圧分eLのみを検出し、上記ワイヤ軸方向の外部磁界に対するこの検出電圧の変動から当該外部磁界を検出することが提案されている(特開平6−283344号公報)。
【0005】
【発明が解決しようとする課題】
磁束検出型再生磁気ヘッドの高性能化のためには、高S/N比が不可欠である。 而して、上記外部磁界検出手段を磁気ヘッドとして利用するには、上記外部磁界に対する検出感度(S/N比)の一層の向上が要請され、このため、上記アモルファスワイヤに直流または時間的に変化する電流を通電した状態で、焼鈍することが提案されている(特開平6−176930号公報)。
しかしながら、この提案はワイヤ加工面からの解決手段であり、加工面での制約を免れ得ない。
【0006】
本発明の目的は、アモルファス磁性ワイヤに電流を流し、該電流により発生する電圧中、インダクタンスによる電圧分のみを検出し、上記ワイヤの軸方向外部磁界を上記検出電圧の変化から検出する場合、部材の簡易な付加のみで外部磁界の検出感度を充分に向上できる磁気センサを提供することにある。
【0007】
請求項1に係る磁気センサは、アモルファス磁性ワイヤの軸方向に電流を流し、この電流に基づくアモルファス磁性ワイヤ内の周方向磁界を、アモルファス磁性ワイヤの軸方向を通過する被検出磁界で前記周方向に対し傾かせ、その傾きに基づき同上ワイヤ両端間の電圧を変化させ、その電圧変化より被検出磁界を検出する磁気センサにおいて、アモルファス磁性ワイヤの両端に高透磁率材料を溶接したことを特徴とする。
請求項2に係る磁気センサは、アモルファス磁性ワイヤの軸方向に電流を流し、この電流に基づくアモルファス磁性ワイヤ内の周方向磁界を、アモルファス磁性ワイヤの軸方向を通過する被検出磁界で前記周方向に対し傾かせ、その傾きに基づき同上ワイヤ両端間の電圧を変化させ、その電圧変化より被検出磁界を検出する磁気センサにおいて、基板上に所定の間隔を隔てて高透磁率材料を設け、アモルファス磁性ワイヤの一端を一方の高透磁率材料に溶接し、アモルファス磁性ワイヤの他端を他方の高透磁率材料に溶接したことを特徴とする。
請求項3に係る磁気センサは、アモルファス磁性ワイヤの軸方向に電流を流し、この電流に基づくアモルファス磁性ワイヤ内の周方向磁界を、アモルファス磁性ワイヤの軸方向を通過する被検出磁界で前記周方向に対し傾かせ、その傾きに基づき同上ワイヤ両端間の電圧を変化させ、その電圧変化より被検出磁界を検出する磁気センサにおいて、基板上に所定の間隔を隔てて金属電極を設け、各金属電極上に高透磁率材料を設け、アモルファス磁性ワイヤの一端を一方の高透磁率材料に溶接し、アモルファス磁性ワイヤの他端を他方の高透磁率材料に溶接したことを特徴とする。
請求項4に係る磁気センサは、請求項1〜3何れかの磁気センサにおいて、溶接に代え接着したことを特徴とする。
【0008】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る一の磁気センサを示す側面図、図1の(ロ)は同じく平面図である。
図1の(イ)及び図1の(ロ)において、1は零磁歪乃至は負磁歪のアモルファスワイヤであり、円周方向に易磁化性の外殻部を有している。2,2はアモルファスワイヤの両端に接続した高透磁率材料のヘッドで、残留磁気が小で透磁率の高い軟磁性材料、例えば、パ−マロイ(鉄−ニッケル合金)、けい素鋼、フェライト等を使用できる。
【0009】
図2は本発明に係る磁気センサを使用して外部磁界を検出するブリッジ回路を示している。
図2において、3は高周波電源であり、この電源3によりアモルファスワイヤに電流が流され、ワイヤ両端a−a’に抵抗電圧分eRとインダクタンス電圧分eLとからなる電圧が発生する。
このインダクタンス電圧分eLのみを出力端b−b’に出力させるようにブリッジ回路を平衡させてある。このインダクタンス電圧分eLは、既述した通り、アモルファスワイヤ1の円周方向透磁率をμとすると、
│eL│∝μ ▲1▼で与えられる。而るに、零磁歪乃至は負磁歪のアモルファスワイヤにおいては、円周方向に易磁化性の外殻部を有し、ワイヤ軸方向電流により発生する円周方向磁束によってその外殻部が容易に円周方向に磁化されるから、μが大であり、│eL│も大である。
【0010】
図2において、Hは検出しようとする外部磁界であり、磁界方向はアモルファスワイヤ1の軸方向であり、高透磁率材料ヘッド2の先端端面21に入る磁束がアモルファスワイヤ1内を通過する。この場合、高透磁率材料ヘッド2の先端端面21の面積をS、アモルファスワイヤ1の断面積をsとすると、アモルファスワイヤ1を通過する磁束は、高透磁率材料ヘッド無しの場合に較べてS/s(S/s=k≫1)倍となる。
【0011】
この外部磁界Hはその方向がアモルファスワイヤ1の軸方向であり、上記ワイヤ通電による円周方向磁束とのベクトル合成の磁束、すなわち、通電状態でワイヤ軸方向外部磁界に曝されているときにアモルファスワイヤ1内に作用する磁束は、その方向が円周方向から傾いたものとなる。
而して、高透磁率材料ヘッドが無い場合の磁束の傾き角をφ、高透磁率材料ヘッドが存在する場合の磁束の傾き角をΦとすれば、
cosΦ/cosφ=k≫1 ▲2▼
が成立する。
【0012】
而るに、本発明においては、高透磁率材料ヘッドを取り付けており、上記アモルファスワイヤ内磁束の円周方向に対する傾き角が大になり、それだけアモルファスワイヤの前記外殻部の円周方向磁化が弱くなって前記の円周方向透磁率μが小となる度合いが大きくなるから、上記│eL│が高感度で変動する。従って、外部磁界を高感度で検出できる。
【0013】
上記高透磁率材料ヘッド2の形状は、先端側ほど断面積を大とした形状、例えば、図3に示すような、円錐形とすることもできる。断面形状は、矩形等の四角形、四角形以外の多角形、三角形、円形、楕円形等の何れであってもよい。
上記高透磁率材料ヘッドのアモルファスワイヤへの取付けは、通常、高透磁率材料ヘッドを外面においてワイヤ端部に溶接等で固着することにより行うが、図3に示すように、高透磁率材料ヘッド2にワイヤ挿入穴22を設け、この穴にワイヤ端部を圧入接触させ、接着剤23で固定することも可能である。
【0014】
図4の(イ)は本発明に係る他の磁気センサを示し、絶縁基板、例えば、セラミックス基板4上に高透磁率材料ヘッド2,2を固着し、これらのヘッド2,2間にアモルファスワイヤ1を溶接等により接続してある。
図4の(ロ)は本発明に係る他の磁気センサの別例を示し、絶縁基板4、例えば、セラミックス基板上に金属(例えば、銀−パラジウム合金)のコ−ティングで電極5,5を形成し、各電極5上に高透磁率材料ヘッド2を固着し、これらのヘッド2,2間にアモルファスワイヤ1を溶接等により接続してある。
【0015】
本発明においては、上記ブリッジによる抵抗電圧分の除去に代え、共振回路を使用し、通電によるワイヤ両端a−a’電圧中のインダクタンス電圧分eLをコンデンサ−の調整により打ち消し〔μι=L、C=1/(w√L)を満たすようにコンデンサをCに調整〕、外部磁界を作用させたときの共振のずれから、外部磁界によるインダクタンス電圧変化分を検出することも可能である。
【0016】
【実施例】
〔実施例1〕
アモルファスワイヤには、組成がCo7015Si10Feで、零磁歪、外径50μmφ、長さ2mmのものを使用した。
図4の(ロ)に示すように、セラミックス基板4上に銀−パラジウム合金で電極5,5を形成し、その電極上に厚み0.5mm、長さ4.0mm、巾1.6mmの鉄−50ニッケル合金プレ−ト2を固着し、このプレ−ト2,2間に上記アモルファスワイヤ1を溶接した。
〔実施例2〕
実施例1に対し、鉄−50ニッケル合金に代えフェライトを使用した以外、実施例1と同じにした。
〔比較例〕
実施例1に対し、鉄−50ニッケル合金プレ−トを使用せず、アモルファスワイヤを電極に溶接した以外、実施例1に同じとした。
【0017】
これらの実施例及び比較例の磁気センサを図2に示すようにブリッジ回路に組み込み、外部磁界0のときの出力電圧eLを1.3ボルトとするようにワイヤに微弱な電流を流し、試料をコイルのコア内に入れ、ワイヤ軸方向外部磁界を変化させ、出力電圧eLが変化するときの磁界を測定したところ、比較例では4Gであったが、実施例1では2G、実施例2では2.7Gであり、何れの実施例品とも比較例品より高感度であることが確認できた。
【0018】
【発明の効果】
本発明に係る磁気センサにおいては、零磁歪乃至は負磁歪のアモルファスワイヤの磁気インピ−ダンス効果を利用して外部磁界を検出する場合、アモルファス端部に高透磁率材料を取り付けるだけでその検出感度を充分に向上でき、簡易な構造、低コストで高感度化を達成できる。
【図面の簡単な説明】
【図1】図1の(イ)は本発明に係る磁気センサを示す側面図、図1の(ロ)は同じく平面図である。
【図2】本発明に係る磁気センサ−の使用状態を示す回路図である。
【図3】本発明に係る磁気センサ−の上記とは別の例の要部を示す断面図である。
【図4】
【符号の説明】
1 アモルファスワイヤ
2 高透磁率材料ヘッド
4 基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic sensor using an amorphous magnetic wire.
[0002]
[Prior art]
In an amorphous alloy, since the atomic structure does not have a long-range order but a short-range order, it has an electromagnetic property unique to amorphous and has zero magnetostriction or an outer shell that is easily magnetized in the circumferential direction. Negative magnetostrictive amorphous wires have been developed. For example, Co 70 . 5 B 15 Si 10 Fe 4 has been developed.
When a high-frequency current is applied to the zero-magnetostriction or negative-magnetostriction amorphous wire, the circumferentially magnetizable outer shell is magnetized in the circumferential direction by the circumferential magnetic flux generated in the cross section of the wire. , The circumferential magnetic permeability μ 1 becomes large, and an inductance voltage eL generated at both ends of the amorphous wire, that is, eL = wμ 1 ι (Im−Ic) / 4π
Significantly increases. Here, l is the length of the wire, w is the frequency of the current, Im is the absolute value of the flowing current, Ic is 4πaHc, a is the radius of the wire, and Hc is the circumferential coercive force.
[0003]
When an external magnetic field in the wire axis direction is applied to this energized amorphous wire, the magnetic flux acting on the outer shell portion having the magnetizability in the circumferential direction is obtained by combining the circumferential magnetic flux and the external magnetic flux by the energization. shift direction from the circumferential direction of, the more hardly occur magnetization in the circumferential direction, the mu 1 is decreased, the inductance voltage component eL is reduced.
[0004]
Thus, the inductance voltage eL is remarkably reduced, and the amorphous wire is incorporated into one side of the bridge in order to detect the external magnetic field using the inductance voltage eL. Of the (voltage drop due to the resistance and the voltage drop eL due to the inductance described above), only the inductance voltage eL is detected by canceling the resistance voltage, and the external voltage is determined from the fluctuation of the detected voltage with respect to the external magnetic field in the wire axis direction. It has been proposed to detect a magnetic field (JP-A-6-283344).
[0005]
[Problems to be solved by the invention]
A high S / N ratio is indispensable for improving the performance of the magnetic flux detection type reproducing magnetic head. Therefore, in order to use the external magnetic field detecting means as a magnetic head, it is required to further improve the detection sensitivity (S / N ratio) with respect to the external magnetic field. It has been proposed to anneal while a varying current is applied (Japanese Patent Laid-Open No. 176930/1994).
However, this proposal is a solution from the wire processing surface, and cannot avoid the restriction on the processing surface.
[0006]
An object of the present invention is to supply a current to an amorphous magnetic wire, detect only a voltage component due to an inductance in a voltage generated by the current, and detect an axial external magnetic field of the wire from a change in the detection voltage. It is an object of the present invention to provide a magnetic sensor which can sufficiently improve the detection sensitivity of an external magnetic field only by simple addition of a magnetic sensor.
[0007]
The magnetic sensor according to claim 1, wherein a current flows in the axial direction of the amorphous magnetic wire, and a circumferential magnetic field in the amorphous magnetic wire based on the current is changed by a detected magnetic field passing in the axial direction of the amorphous magnetic wire. In the magnetic sensor that changes the voltage between both ends of the wire based on the tilt and detects the magnetic field to be detected based on the voltage change, a high permeability material is welded to both ends of the amorphous magnetic wire. I do.
The magnetic sensor according to claim 2, wherein a current flows in the axial direction of the amorphous magnetic wire, and a circumferential magnetic field in the amorphous magnetic wire based on the current is changed by a detected magnetic field passing in the axial direction of the amorphous magnetic wire. The magnetic sensor changes the voltage between both ends of the wire based on the tilt, and detects the magnetic field to be detected based on the change in the voltage. One end of the magnetic wire is welded to one high magnetic permeability material, and the other end of the amorphous magnetic wire is welded to the other high magnetic permeability material.
The magnetic sensor according to claim 3, wherein a current flows in the axial direction of the amorphous magnetic wire, and a circumferential magnetic field in the amorphous magnetic wire based on the current is detected by a detected magnetic field passing in the axial direction of the amorphous magnetic wire. In the magnetic sensor that changes the voltage between both ends of the wire based on the tilt and detects the magnetic field to be detected based on the change in voltage, metal electrodes are provided on the substrate at predetermined intervals, and each metal electrode is A high permeability material is provided thereon, one end of the amorphous magnetic wire is welded to one high permeability material, and the other end of the amorphous magnetic wire is welded to the other high permeability material.
A magnetic sensor according to a fourth aspect is characterized in that, in the magnetic sensor according to any one of the first to third aspects, bonding is performed instead of welding.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a side view showing one magnetic sensor according to the present invention, and FIG. 1B is a plan view thereof.
In FIG. 1A and FIG. 1B, reference numeral 1 denotes a zero magnetostrictive or negative magnetostrictive amorphous wire having an easily magnetizable outer shell in a circumferential direction. Reference numerals 2 and 2 denote high magnetic permeability material heads connected to both ends of the amorphous wire. Soft magnetic materials having low remanence and high magnetic permeability, for example, permalloy (iron-nickel alloy), silicon steel, ferrite, etc. Can be used.
[0009]
FIG. 2 shows a bridge circuit for detecting an external magnetic field using the magnetic sensor according to the present invention.
In FIG. 2, reference numeral 3 denotes a high-frequency power supply. A current flows through the amorphous wire by the power supply 3, and a voltage including a resistance voltage component eR and an inductance voltage component eL is generated at both ends aa 'of the wire.
The bridge circuit is balanced so that only the inductance voltage eL is output to the output terminal bb ′. The inductance voltage component eL, as already described, the circumferential permeability of the amorphous wire 1 and mu 1,
│eL│∝μ 1 It is given by (1). Thus, a zero magnetostrictive or negative magnetostrictive amorphous wire has an easily magnetizable outer shell in the circumferential direction, and the outer shell is easily formed by a circumferential magnetic flux generated by a wire axial current. since is magnetized in the circumferential direction, mu 1 is large, │EL│ also large.
[0010]
In FIG. 2, H is an external magnetic field to be detected, the magnetic field direction is the axial direction of the amorphous wire 1, and the magnetic flux entering the distal end face 21 of the high-permeability material head 2 passes through the amorphous wire 1. In this case, assuming that the area of the tip end face 21 of the high-permeability material head 2 is S, and the cross-sectional area of the amorphous wire 1 is s, the magnetic flux passing through the amorphous wire 1 is smaller than that without the high-permeability material head. / S (S / s = k≫1) times.
[0011]
The direction of the external magnetic field H is the axial direction of the amorphous wire 1, and the magnetic flux is a vector composite magnetic flux with the circumferential magnetic flux generated by the above-described wire energization. The direction of the magnetic flux acting in the wire 1 is inclined from the circumferential direction.
Thus, if the inclination angle of the magnetic flux when there is no high-permeability material head is φ, and the inclination angle of the magnetic flux when the high-permeability material head is present is Φ,
cosΦ / cosφ = k≫1 ▲ 2 ▼
Holds.
[0012]
Thus, in the present invention, a high-permeability material head is attached, and the inclination angle of the magnetic flux in the amorphous wire with respect to the circumferential direction becomes large, so that the circumferential magnetization of the outer shell portion of the amorphous wire becomes large. since the degree of circumferential permeability mu 1 of said becomes small weakening increases, the │eL│ varies with high sensitivity. Therefore, an external magnetic field can be detected with high sensitivity.
[0013]
The shape of the high-permeability material head 2 may be a shape having a larger cross-sectional area toward the tip, for example, a conical shape as shown in FIG. The cross-sectional shape may be any of a rectangle such as a rectangle, a polygon other than a rectangle, a triangle, a circle, an ellipse, and the like.
The attachment of the high-permeability material head to the amorphous wire is usually performed by fixing the high-permeability material head to the end of the wire by welding or the like on the outer surface. As shown in FIG. It is also possible to provide a wire insertion hole 22 in 2 and press-fit the wire end into this hole and fix it with an adhesive 23.
[0014]
FIG. 4A shows another magnetic sensor according to the present invention, in which high magnetic permeability material heads 2, 2 are fixed on an insulating substrate, for example, a ceramic substrate 4, and an amorphous wire is provided between these heads 2, 2. 1 are connected by welding or the like.
FIG. 4B shows another example of another magnetic sensor according to the present invention, in which electrodes 5, 5 are coated on an insulating substrate 4, for example, a ceramic substrate by coating a metal (for example, silver-palladium alloy). A high magnetic permeability material head 2 is fixed on each electrode 5 and an amorphous wire 1 is connected between the heads 2 and 2 by welding or the like.
[0015]
In the present invention, instead of the removal of the resistive voltage caused by the bridge, using a resonant circuit, the inductance voltage component eL in the wire across a-a 'voltage due to energization capacitor - canceled by adjusting the [mu 1 iota = L 1, C 1 = adjust 1 / condenser so as to satisfy the (w√L 1) to C 1], the deviation of the resonance when allowed to act the external magnetic field, also be detected inductance voltage change due to an external magnetic field It is possible.
[0016]
【Example】
[Example 1]
The amorphous wire has a composition of Co 70 . In 5 B 15 Si 10 Fe 4, it was from zero magnetostriction, outer diameter 50Myuemufai, length 2 mm.
As shown in FIG. 4B, electrodes 5 and 5 are formed of a silver-palladium alloy on a ceramic substrate 4, and 0.5 mm thick, 4.0 mm long and 1.6 mm wide iron are formed on the electrodes. A -50 nickel alloy plate 2 was fixed, and the amorphous wire 1 was welded between the plates 2 and 2.
[Example 2]
Example 1 was the same as Example 1 except that ferrite was used instead of the iron-50 nickel alloy.
(Comparative example)
Example 1 was the same as Example 1 except that an iron wire was not welded to the electrode without using an iron-50 nickel alloy plate.
[0017]
The magnetic sensors of these Examples and Comparative Examples were incorporated in a bridge circuit as shown in FIG. 2, and a weak current was applied to the wires so that the output voltage eL at an external magnetic field of 0 was 1.3 volts. The magnetic field when the output voltage eL was changed was measured by changing the external magnetic field in the wire axis direction while being inserted into the core of the coil, and was 4 G in the comparative example. 0.7 G, and it was confirmed that each of the examples had higher sensitivity than the comparative example.
[0018]
【The invention's effect】
In the magnetic sensor according to the present invention, when an external magnetic field is detected by utilizing the magnetic impedance effect of a zero-magnetostriction or negative-magnetostriction amorphous wire, the detection sensitivity can be obtained simply by attaching a high magnetic permeability material to the amorphous end. Can be sufficiently improved, and high sensitivity can be achieved at a low cost with a simple structure.
[Brief description of the drawings]
FIG. 1A is a side view showing a magnetic sensor according to the present invention, and FIG. 1B is a plan view thereof.
FIG. 2 is a circuit diagram showing a use state of the magnetic sensor according to the present invention.
FIG. 3 is a cross-sectional view illustrating a main part of another example of the magnetic sensor according to the present invention.
FIG. 4
[Explanation of symbols]
1 amorphous wire 2 high permeability material head 4 substrate

Claims (4)

アモルファス磁性ワイヤの軸方向に電流を流し、この電流に基づくアモルファス磁性ワイヤ内の周方向磁界を、アモルファス磁性ワイヤの軸方向を通過する被検出磁界で前記周方向に対し傾かせ、その傾きに基づき同上ワイヤ両端間の電圧を変化させ、その電圧変化より被検出磁界を検出する磁気センサにおいて、アモルファス磁性ワイヤの両端に高透磁率材料を溶接したことを特徴とする磁気センサ。 A current is caused to flow in the axial direction of the amorphous magnetic wire, and a circumferential magnetic field in the amorphous magnetic wire based on the current is inclined with respect to the circumferential direction by a detected magnetic field passing in the axial direction of the amorphous magnetic wire. A magnetic sensor in which a high magnetic permeability material is welded to both ends of an amorphous magnetic wire, wherein the magnetic sensor changes a voltage between both ends of the wire and detects a magnetic field to be detected from the voltage change . アモルファス磁性ワイヤの軸方向に電流を流し、この電流に基づくアモルファス磁性ワイヤ内の周方向磁界を、アモルファス磁性ワイヤの軸方向を通過する被検出磁界で前記周方向に対し傾かせ、その傾きに基づき同上ワイヤ両端間の電圧を変化させ、その電圧変化より被検出磁界を検出する磁気センサにおいて、基板上に所定の間隔を隔てて高透磁率材料を設け、アモルファス磁性ワイヤの一端を一方の高透磁率材料に溶接し、アモルファス磁性ワイヤの他端を他方の高透磁率材料に溶接したことを特徴とする磁気センサ。 A current is caused to flow in the axial direction of the amorphous magnetic wire, and a circumferential magnetic field in the amorphous magnetic wire based on the current is inclined with respect to the circumferential direction by a detected magnetic field passing in the axial direction of the amorphous magnetic wire. In a magnetic sensor that changes a voltage between both ends of a wire and detects a magnetic field to be detected based on the voltage change, a high permeability material is provided on a substrate at a predetermined interval, and one end of the amorphous magnetic wire is connected to one of the high permeability materials. A magnetic sensor, wherein the magnetic sensor is welded to a magnetic permeability material, and the other end of the amorphous magnetic wire is welded to the other high magnetic permeability material . アモルファス磁性ワイヤの軸方向に電流を流し、この電流に基づくアモルファス磁性ワイヤ内の周方向磁界を、アモルファス磁性ワイヤの軸方向を通過する被検出磁界で前記周方向に対し傾かせ、その傾きに基づき同上ワイヤ両端間の電圧を変化させ、その変化電圧より被検出磁界を検出する磁気センサにおいて、基板上に所定の間隔を隔てて金属電極を設け、各金属電極上に高透磁率材料を設け、アモルファス磁性ワイヤの一端を一方の高透磁率材料に溶接し、アモルファス磁性ワイヤの他端を他方の高透磁率材料に溶接したことを特徴とする磁気センサ。 A current is caused to flow in the axial direction of the amorphous magnetic wire, and a circumferential magnetic field in the amorphous magnetic wire based on the current is inclined with respect to the circumferential direction by a detected magnetic field passing in the axial direction of the amorphous magnetic wire. In the magnetic sensor that changes the voltage between both ends of the wire and detects a magnetic field to be detected from the changed voltage, metal electrodes are provided at predetermined intervals on a substrate, and a high magnetic permeability material is provided on each metal electrode. A magnetic sensor, wherein one end of an amorphous magnetic wire is welded to one high magnetic permeability material, and the other end of the amorphous magnetic wire is welded to the other high magnetic permeability material . 溶接に代え接着したことを特徴とする請求項1〜3何れか記載の磁気センサ。The magnetic sensor according to claim 1, wherein the magnetic sensor is bonded instead of welding.
JP32823695A 1995-11-21 1995-11-21 Magnetic sensor Expired - Fee Related JP3602235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32823695A JP3602235B2 (en) 1995-11-21 1995-11-21 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32823695A JP3602235B2 (en) 1995-11-21 1995-11-21 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPH09145808A JPH09145808A (en) 1997-06-06
JP3602235B2 true JP3602235B2 (en) 2004-12-15

Family

ID=18207970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32823695A Expired - Fee Related JP3602235B2 (en) 1995-11-21 1995-11-21 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP3602235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300831A (en) * 1997-04-22 1998-11-13 Uchihashi Estec Co Ltd Magnetic sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936470B2 (en) * 1998-05-13 2007-06-27 内橋エステック株式会社 Non-contact vibration sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300831A (en) * 1997-04-22 1998-11-13 Uchihashi Estec Co Ltd Magnetic sensor

Also Published As

Publication number Publication date
JPH09145808A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
JP4274420B2 (en) Magnetic field sensor
JP3096413B2 (en) Magnetic sensing element, magnetic sensor, geomagnetic detection type azimuth sensor, and attitude control sensor
US5049809A (en) Sensing device utilizing magneto electric transducers
US6960911B2 (en) Strain sensor
JP2005502888A (en) Method and system for improving efficiency of magnetic sensor set and offset strap
JP3587678B2 (en) Magnetic field sensor
JPH09503297A (en) Current sensor including magnetoresistive tape and method of manufacturing the same
JP2001116814A (en) Magnetic impedance element
JP3602235B2 (en) Magnetic sensor
JP2000019034A (en) Magnetic field detection sensor
JP2000284028A (en) Thin-film magnetic MI element
JPS62184323A (en) Magneto-striction type torque sensor
JP3645553B2 (en) Strain sensor
JP4524195B2 (en) Magnetic detection element
US11333723B2 (en) Magnetic sensor
JP2002289940A (en) Magnetic impedance effect sensor
JP3752054B2 (en) Magnetic field detection method and magnetic sensor
JP2003282995A (en) Magnetic field detecting element
JP2001305163A (en) Current sensor
JP2000149223A (en) Magnetic field sensor
JP2001217484A (en) Giant magnetoresistive sensor manufacturing method
JPH07244142A (en) Magnetic sensor
JP4237855B2 (en) Magnetic field sensor
JP7090818B1 (en) Magnetic detector
JP3494947B2 (en) MI element control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees