[go: up one dir, main page]

JP3602204B2 - Device for reducing particulates in exhaust gas - Google Patents

Device for reducing particulates in exhaust gas Download PDF

Info

Publication number
JP3602204B2
JP3602204B2 JP15715695A JP15715695A JP3602204B2 JP 3602204 B2 JP3602204 B2 JP 3602204B2 JP 15715695 A JP15715695 A JP 15715695A JP 15715695 A JP15715695 A JP 15715695A JP 3602204 B2 JP3602204 B2 JP 3602204B2
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
reduction device
pipe
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15715695A
Other languages
Japanese (ja)
Other versions
JPH08326522A (en
Inventor
義博 畑中
泰三 川村
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Seta Giken KK
Original Assignee
Omron Corp
Seta Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Seta Giken KK filed Critical Omron Corp
Priority to JP15715695A priority Critical patent/JP3602204B2/en
Publication of JPH08326522A publication Critical patent/JPH08326522A/en
Application granted granted Critical
Publication of JP3602204B2 publication Critical patent/JP3602204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • General Induction Heating (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車や船舶等のディーゼルエンジン又はボイラから排出される微粒子のうち可燃微粒子を効率よく燃焼させて、排ガス中の微粒子を低減することができる排ガス中の微粒子低減装置に関する。
【0002】
【従来の技術】
近年、ディーゼルエンジンやボイラから排出される微粒子が、環境悪化の原因として問題になっている。その対策として、微粒子をフィルターで捕捉し、捕捉された微粒子を燃焼させる微粒子低減装置が検討されるようになった。
【0003】
ところで、捕捉された微粒子を燃焼させる方式としては、Journal of the M.E.S.J.,Vol.27,No.8,pp.570〜575に開示されるように電気ヒータを使う方式が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、電気ヒータによる加熱燃焼では、ヒータの耐久性や信頼性において問題があり実用化には至っていなかった。なお、燃料の気化という分野では、燃料が通過する部分に、金網、鉄くず、発砲金属の如き多孔質磁性材料を配設し、この多孔質磁性材料を電磁誘導で加熱するという加熱装置が提案されている。(特開昭55−82210号、特開昭61−38318号、特開昭64−58906号公報参照)。このような多孔質磁性材料に対して燃料の代わりに排気ガスを通すことも考えられなくはないが、多孔質磁性材料を通過する際の圧力損失が大きく、多孔質磁性材料の断面方向の温度ムラも大きく、実用的なものになりえない。
【0005】
本発明は、この問題を解決するためになされたもので、電磁誘導によって金属フィルターを加熱し、排ガス中の可燃性微粒子を効率的に燃焼させることができる排ガス中の微粒子低減装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決する本発明の排ガス中の微粒子低減装置は、排ガスが通過する非磁性材料のパイプと、該パイプに巻かれたコイルと、前記パイプ内に収納され前記コイルによる電磁誘導で加熱される金属フィルターとを備え、該金属フィルターはガスの通過方向に沿って規則的に配列された多数の部材からなり、該部材が互いに電気的に結合され、フィルター断面の全体において渦電流が発生して加熱されるように形成され、排ガス中の可燃微粒子を加熱されたフィルターに接触させて燃焼させるようにしたものである。前記フィルターの前記部材は、前記パイプの軸方向に延在する板又小径パイプで構成されているものが好ましく、前記フィルターの前記部材の電気的結合は、前記部材同士の溶接又は金属ロー付によるものが好ましい。
【0007】
そして、前記微粒子低減装置の下流に、排ガス中の微量金属粒子を除去する金属除去装置や、排ガス中の凝縮成分を除去する凝縮器を配設したシステムにすることもできる。
【0008】
【作用】
ガスの通過方向に沿って規則的に配列された多数の部材であるため、圧力損失が少ないわりに、排ガス中の微粒子が部材の壁に接触する機会が増やせる。この多数の部材は互いに電気的に結合されて断面全体が加熱されるため、所定の温度によって可燃性微粒子を断面方向のムラがないように燃焼させうる。
【0009】
可燃性微粒子を燃焼させた後の排ガスを金属除去装置に通すと、微量金属粒子が除去される。また、可燃性微粒子を燃焼させた後の排ガスを凝縮器に通すと、排ガス中の凝縮成分も除去される。
【0010】
【実施例】
以下、本発明の実施例を図面を参照しつつ説明する。図1は微粒子低減装置の機器構成図であり、図2は金属フィルターの断面図である。
【0011】
図1において、微粒子低減装置1は、エンジン等の排ガス発生装置2の煙突部分3に取り付けられる。排ガス発生装置2からの高温・高圧の排ガスに近い部分に微粒子低減装置1を取り付けると、エネルギー効率が高くなり、特別のブロアー等が必要なく好都合である。
【0012】
この微粒子低減装置1は、パイプ11と、コイル12と、金属フィルター13と、インバータ14とからなっている。
【0013】
パイプ11はセラミックの如く非磁性体であって耐熱性と耐腐食性に優れた材質で形成されたものである。普通は丸形であるが、楕円断面のパイプ又は四角断面のパイプであってもよい。このパイプ11の内に金属フィルター13が収納されており、パイプ11の外周であって金属フィルター13が収納された部分に、コイル12が巻かれている。
【0014】
コイル12はリッツ線を撚り合わせたものが用いられる。このコイル12に高周波電流を供給するためのインバータ14が接続されている。
【0015】
金属フィルター13の材質は、電磁誘導が生じやすい程度の透磁率を有し、排ガスに対する耐蝕性を兼ね備えたものである。このような材料としては、マルテンサイト系ステンレス、ニッケル合金、クロム合金等がある。
【0016】
つぎに、金属フィルター13の構造を図2により説明する。図2には3種類のものが図示されているが、いずれのフィルターもパイプ11の軸方向に延びる板部材又は小径パイプ部材の多数を規則的に配列したものであり、これらの板部材又は小径パイプ部材は電気的導通が可能なように溶接又は金属ろー付けで接合されている。
【0017】
図2(a)のものは横板部材21と縦板部材22とを格子状に組み上げ、各板部材21,22同士を溶接又は金属ろー付けで接合したものである。図2(b)のものは板部材23を平行且つ等間隔に列設し、各板部材23同士を要所に配設されたバー24で貫き、形状保持と板部材間の電気的導通を確保したものである。図2(c)のものは小径パイプ25を密に束ねて溶接又は金属ろー付けで接合したものであり、小径パイプ25内の空間及び小径パイプ25間の空間を排ガス通路にしたものである。
【0018】
このように、金属フィルターの断面が板部材又は小径パイプ部材を規則正しく組み上げ、これら部材が電気的に独立することなく、特に半径方向に導通しやすい構造にすると、電磁誘導による渦電流の発生が金属フィルターの断面の略全域にわたって生じ、断面での発熱ムラが少なくなる。また、板部材又は小径パイプ部材は軸方向に延在しているため、排ガスは、板部材又は小径パイプ部材で区切られた小さなセグメントに沿って軸方向に流れる。その結果、排ガスの圧力損失が少ない割に、板部材又は小径パイプ部材で区切られた小さくて細長いセグメントの壁に排ガス中に含まれる微粒子が接触する可能性が大きくなる。
【0019】
つぎに、インバータ14の構造例を図3により説明する。図3のインバータ14は、4個の主スイッチS1〜S4を順次切り換えて正逆の電流を生じさせるものである。この主スイッチS1〜S4には、IGBT,B−SIT,MOSFET等の半導体デバイスによる自己消弧型スイッチが用いられる。
【0020】
特に図3の回路は、ソフトスイッチングが可能なように、主スイッチS1,S2に逆並列にダイオードDp1,Dp2を接続し、このダイオードDp1,Dp2に小リアクトルL1,L2をそれぞれ接続し、主スイッチS3,S4には逆並列ダイオードを接続せず、直列にそれぞれ逆電流防止、逆耐圧用のダイオードDs3,Ds4を接続して構成したものである。なお、Edは商用電源、整流部及び非平滑フィルタ等からなる電源部である。また、主スイッチS1,S4の中間と主スイッチS2,S3の中間に接続される金属フィルター13は、漏れインダクタンスの大きいトランス回路モデルに近似でき、LoとRoからなる単純なR−L回路で表示できる。このR−L回路に補償コンデンサCoを直列に接続すると、電気回路定数が殆ど変化しない不時変回路系になる。
【0021】
図4(a)(b)の波形図において、i1,i2波形に示されるように、Dp1,Dp2が導通している(i1=i2<0)時点で、S3,S4をトリガーしてターンオンすると、Dp1,Dp2を流れていた電流は、L1,L2の作用により急激に零にならず、ある傾きをもって減少する。それと同時に、S3,S4のターンオンによる電流i3,i4も、Loを流れる電流i0=i1−i4が急変できないため、零からある傾きをもって増加する。
【0022】
すなわち、Dp1,Dp2ターンオフにおけるZCS動作と、S3,S4ターンオンにおけるZCS(Zero,Current Switching)動作とが実現する。ターンオンしたS3,S4の電流は、共振によりi3=i4=0になると、自然にZCS動作によりターンオフする。また、S1,S2は、t=0においてトリガするとi1=i2=0から立ち上がり、ZCS動作をする。このように余分なアクティブスイッチを付加することなく、全てのスイッチがソフトスイッチングとしてのZCS動作を実現することができる。
【0023】
さらに、図4(a)に対する図4(b)のように、S1,S2とS3,S4のトリガする時間遅れtd(位相差)を変化させると、Dp1,Dp2を流れる電流(回生電流)の大きさを制御することができ、その結果入力電流idひいては入出力電力を調整できる。すなわち、出力周波数を変化して、入出力電力を制御する方法に対して、一定周波数で、入出力電力を制御できることを意味し、しかも、高周波特有のサージ電圧やスイッチィング損失をZCS動作によって解決している。
【0024】
なお、上述したソフトスイッチングが可能なインバータに限らず、電圧型直列付加共振フルブリッジによる位相シフトPWM方式や、アクティブPAM整流回路や高周波トランジスタチョッパによる電流電源制御(PAM方式)や可変周波数制御(PFM方式)やパルスサイクル制御によるパルス密度変調制御(PDM方式)やこれらの各種方式にソフトスイッチング促進用補助回路を備えたものが使用できる。
【0025】
上述した各機器を備えた図1の微粒子低減装置1においては、インバータ14によって高周波(10〜100KHz)を励磁コイルとしてのコイル12に印加すると、高周波磁束が金属フィルター13を貫通することになる。すると、金属フィルター13を構成する部材の表面に起電力が発生し、その結果渦電流が流れる。この渦電流が金属フィルター13の断面の全体に略均一又は中心部が周辺部より多く生じ、金属フィルター13の部材の表面が非接触加熱され、600°C以上、好ましくは650°C以上の高温になる。
【0026】
この金属フィルター13の各部材に沿って排ガス通路が形成され、排ガスが各部材で区画された軸方向に細長いセグメントを通過する。その際、排ガス中に含まれる可燃性微粒子が各部材の壁に接触して瞬時に燃焼し、低減される。なお、排ガスの微粒子中には、有機化合物のような可燃性のものだけではなく、微量金属等の不燃焼物が含まれるが、この不燃焼物はそのまま通過して排出されるため、微粒子が完全に除去されるわけではない。
【0027】
そのため、図5に示されるように、本発明の微粒子低減装置1の下流に、金属除去装置としての液体槽4を配設し、排ガス中の微量金属粒子を沈殿させて、微粒子のほぼ全部を除去する微粒子低減装置又は微粒子低減システムにすることもできる。また、排ガス中の除去成分が凝縮可能な成分で構成される場合には、図6に示されるように、本発明の微粒子低減装置1の下流に、凝縮器5を配設し、濃縮された除去成分を取り出す微粒子低減装置又は微粒子低減システムにすることもできる。この際、除去成分の一部を微粒子低減装置1の上流に戻す循環サイクルにして除去成分の濃度を上げて、除去を促進することもできる。
【0028】
さらに、微粒子低減装置1の金属フィルターの材質を触媒金属を含有又は付属させたものにすると、排ガスの特性成分(例えばNOx)を加熱反応によって無害化することも可能である。
【0029】
【発明の効果】
以上のように構成された本発明は、600°C以上まで電磁誘導によって非接触加熱された金属フィルター内に、排ガスを通過させるものである。そのため、排ガス中の可燃性微粒子は金属フィルターを構成する部材に接触して瞬時に燃焼して除去される。金属フィルターの構造がガスの通過方向に沿って規則的に配列された多数の部材からなり、該部材が互いに電気的に結合され、フィルター断面の全体で発熱する構造であるため、局所加熱が少なく、必要以上に金属フィルターを加熱することなく、効率良く可燃性微粒子を燃焼させることができる。また、本発明の微粒子低減装置の下流側に金属除去装置や凝縮器を配設すると、排ガス中の微量金属粒子や凝縮成分まで除去かれ、排ガスのクリーン度がよりアップする。
【図面の簡単な説明】
【図1】微粒子低減装置の機器構成図である。
【図2】金属フィルターの断面図である。
【図3】インバータの回路図である。
【図4】インバータの波形図である。
【図5】他の微粒子低減装置のシステム図である。
【図6】更に他の微粒子低減装置のシステム図である。
【符号の説明】
1 微粒子低減装置
2 排ガス発生装置
3 煙突
4 流体槽(金属除去装置)
5 凝縮器
11 パイプ
12 コイル
13 金属フィルター
14 インバータ
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a device for reducing particulates in exhaust gas, which can efficiently burn combustible particulates among particulates discharged from a diesel engine or a boiler of an automobile or a ship, thereby reducing particulates in exhaust gas.
[0002]
[Prior art]
In recent years, fine particles discharged from diesel engines and boilers have become a problem as a cause of environmental degradation. As a countermeasure, a particulate reduction device that captures fine particles with a filter and burns the captured fine particles has been studied.
[0003]
By the way, as a method of burning the captured fine particles, Journal of the M.D. E. FIG. S. J. , Vol. 27, no. 8, pp. As disclosed in 570 to 575, a system using an electric heater has been proposed.
[0004]
[Problems to be solved by the invention]
However, the heating and burning by the electric heater has not been put into practical use due to problems in durability and reliability of the heater. In the field of fuel vaporization, a heating device has been proposed in which a porous magnetic material such as a wire mesh, scrap iron, or foam metal is disposed in a portion where fuel passes, and the porous magnetic material is heated by electromagnetic induction. Have been. (See JP-A-55-82210, JP-A-61-38318, and JP-A-64-58906). It is not surprising that exhaust gas can be passed through such a porous magnetic material instead of fuel, but the pressure loss when passing through the porous magnetic material is large, and the temperature in the cross-sectional direction of the porous magnetic material is high. The unevenness is too large to be practical.
[0005]
The present invention has been made to solve this problem, and it is an object of the present invention to provide an apparatus for reducing fine particles in exhaust gas, which can heat a metal filter by electromagnetic induction and efficiently burn combustible fine particles in exhaust gas. With the goal.
[0006]
[Means for Solving the Problems]
The apparatus for reducing particulates in exhaust gas of the present invention that solves the above-mentioned problem is a pipe made of a nonmagnetic material through which exhaust gas passes, a coil wound around the pipe, and heated by electromagnetic induction caused by the coil housed in the pipe. A metal filter comprising a plurality of members regularly arranged along a gas passage direction, the members being electrically connected to each other, and an eddy current is generated over the entire cross section of the filter. The combustible fine particles in the exhaust gas are brought into contact with the heated filter and burned. It is preferable that the member of the filter is formed of a plate or a small-diameter pipe extending in the axial direction of the pipe, and the electrical connection of the member of the filter is performed by welding or brazing the members. Are preferred.
[0007]
Further, a system in which a metal removing device for removing trace metal particles in exhaust gas or a condenser for removing condensed components in exhaust gas may be provided downstream of the particle reducing device.
[0008]
[Action]
Since a large number of members are regularly arranged along the gas passage direction, the chance of the fine particles in the exhaust gas coming into contact with the wall of the member can be increased while the pressure loss is small. Since the plurality of members are electrically connected to each other and the entire cross section is heated, the combustible fine particles can be burned at a predetermined temperature without unevenness in the cross section direction.
[0009]
When the exhaust gas after burning the combustible fine particles is passed through a metal removing device, trace metal particles are removed. When the exhaust gas after burning the combustible fine particles is passed through a condenser, the condensed components in the exhaust gas are also removed.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a device configuration diagram of a particle reduction device, and FIG. 2 is a cross-sectional view of a metal filter.
[0011]
In FIG. 1, a particulate reduction device 1 is attached to a chimney portion 3 of an exhaust gas generator 2 such as an engine. When the particulate reduction device 1 is attached to a portion close to the high-temperature and high-pressure exhaust gas from the exhaust gas generator 2, energy efficiency is increased, and a special blower or the like is not required, which is convenient.
[0012]
The particulate reduction device 1 includes a pipe 11, a coil 12, a metal filter 13, and an inverter 14.
[0013]
The pipe 11 is a non-magnetic material such as ceramic and is formed of a material having excellent heat resistance and corrosion resistance. It is usually round, but may be an elliptical or square pipe. The metal filter 13 is housed in the pipe 11, and the coil 12 is wound around the outer periphery of the pipe 11 where the metal filter 13 is housed.
[0014]
The coil 12 is formed by twisting litz wires. An inverter 14 for supplying a high-frequency current to the coil 12 is connected.
[0015]
The material of the metal filter 13 has a magnetic permeability such that electromagnetic induction easily occurs, and also has corrosion resistance to exhaust gas. Such materials include martensitic stainless steel, nickel alloys, chromium alloys and the like.
[0016]
Next, the structure of the metal filter 13 will be described with reference to FIG. Although three types are shown in FIG. 2, each filter has a large number of plate members or small-diameter pipe members extending in the axial direction of the pipe 11 regularly arranged. The pipe members are joined by welding or metal brazing so as to enable electrical conduction.
[0017]
In FIG. 2A, the horizontal plate member 21 and the vertical plate member 22 are assembled in a lattice, and the respective plate members 21 and 22 are joined by welding or metal brazing. In FIG. 2B, the plate members 23 are arranged in parallel and at equal intervals, and each plate member 23 is penetrated by a bar 24 arranged at a key position, thereby maintaining shape and electrical conduction between the plate members. It was secured. FIG. 2C shows a small-diameter pipe 25 closely bundled and joined by welding or metal brazing, and the space in the small-diameter pipe 25 and the space between the small-diameter pipes 25 are used as exhaust gas passages. .
[0018]
In this way, if the cross section of the metal filter assembles a plate member or a small-diameter pipe member regularly, and these members are not electrically independent, and have a structure particularly easy to conduct in the radial direction, the generation of eddy current due to electromagnetic induction causes This occurs over substantially the entire area of the cross section of the filter, and heat generation unevenness in the cross section is reduced. Further, since the plate member or the small-diameter pipe member extends in the axial direction, the exhaust gas flows in the axial direction along small segments separated by the plate member or the small-diameter pipe member. As a result, although the pressure loss of the exhaust gas is small, there is a high possibility that the fine particles contained in the exhaust gas come into contact with the walls of the small and elongated segments separated by the plate member or the small-diameter pipe member.
[0019]
Next, a structural example of the inverter 14 will be described with reference to FIG. The inverter 14 shown in FIG. 3 sequentially switches the four main switches S1 to S4 to generate forward and reverse currents. As the main switches S1 to S4, self-extinguishing switches using semiconductor devices such as IGBTs, B-SITs, and MOSFETs are used.
[0020]
In particular, the circuit of FIG. 3 connects the diodes Dp1 and Dp2 in antiparallel to the main switches S1 and S2 so that soft switching is possible, and connects the small reactors L1 and L2 to the diodes Dp1 and Dp2, respectively. No anti-parallel diodes are connected to S3 and S4, and diodes Ds3 and Ds4 for reverse current prevention and reverse withstand voltage are connected in series, respectively. In addition, Ed is a power supply unit including a commercial power supply, a rectifying unit, a non-smoothing filter, and the like. The metal filter 13 connected between the main switches S1 and S4 and between the main switches S2 and S3 can be approximated to a transformer circuit model having a large leakage inductance, and is represented by a simple RL circuit composed of Lo and Ro. it can. When a compensation capacitor Co is connected in series to this RL circuit, a non-time-variable circuit system in which the electric circuit constant hardly changes is obtained.
[0021]
As shown by the waveforms i1 and i2 in the waveform diagrams of FIGS. 4A and 4B, when Dp1 and Dp2 are conducting (i1 = i2 <0), S3 and S4 are triggered to turn on. , Dp1 and Dp2 do not suddenly become zero due to the action of L1 and L2, but decrease with a certain slope. At the same time, the currents i3 and i4 due to the turn-on of S3 and S4 also increase with a certain slope from zero because the current i0 = i1-i4 flowing through Lo cannot be changed abruptly.
[0022]
That is, a ZCS operation when Dp1 and Dp2 are turned off and a ZCS (Zero, Current Switching) operation when S3 and S4 are turned on are realized. When i3 = i4 = 0 due to resonance, the turned-on currents of S3 and S4 naturally turn off by the ZCS operation. When S1 and S2 are triggered at t = 0, they rise from i1 = i2 = 0 and perform ZCS operation. As described above, all switches can realize the ZCS operation as soft switching without adding an extra active switch.
[0023]
Further, as shown in FIG. 4B with respect to FIG. 4A, when the time delay td (phase difference) at which S1, S2 and S3, S4 are triggered is changed, the current (regeneration current) flowing through Dp1, Dp2 is reduced. The magnitude can be controlled, so that the input current id and thus the input / output power can be adjusted. In other words, this means that the input and output power can be controlled at a constant frequency, as opposed to the method of controlling the input and output power by changing the output frequency. In addition, the surge voltage and switching loss peculiar to high frequency are solved by the ZCS operation. are doing.
[0024]
Not only the inverter capable of soft switching described above, but also a phase shift PWM method using a voltage-type series additional resonance full bridge, a current power supply control (PAM method) using an active PAM rectifier circuit or a high-frequency transistor chopper, and a variable frequency control (PFM) Method), pulse density modulation control (PDM method) by pulse cycle control, or any of these various methods provided with an auxiliary circuit for promoting soft switching.
[0025]
In the particle reduction device 1 of FIG. 1 provided with the above-described devices, when a high frequency (10 to 100 KHz) is applied to the coil 12 as the excitation coil by the inverter 14, the high frequency magnetic flux passes through the metal filter 13. Then, an electromotive force is generated on the surface of the member constituting the metal filter 13, and as a result, an eddy current flows. This eddy current is generated substantially uniformly or more in the center than in the peripheral portion over the entire cross section of the metal filter 13, and the surface of the member of the metal filter 13 is heated in a non-contact manner. become.
[0026]
An exhaust gas passage is formed along each member of the metal filter 13, and the exhaust gas passes through an axially elongated segment defined by each member. At that time, the combustible fine particles contained in the exhaust gas come into contact with the walls of the respective members and are burned instantaneously and reduced. The fine particles of the exhaust gas include not only flammable substances such as organic compounds but also non-combustible substances such as trace metals. It is not completely eliminated.
[0027]
Therefore, as shown in FIG. 5, a liquid tank 4 as a metal removing device is provided downstream of the particle reducing device 1 of the present invention to precipitate a trace amount of metal particles in exhaust gas, and almost all of the particles are removed. It can also be a particulate reduction device or a particulate reduction system for removal. When the components removed in the exhaust gas are composed of condensable components, as shown in FIG. 6, a condenser 5 is provided downstream of the particulate reduction device 1 of the present invention, and the components are concentrated. A particulate reduction device or a particulate reduction system for removing the component to be removed may be used. At this time, a removal cycle can be promoted by increasing the concentration of the removal component by setting a circulation cycle in which a part of the removal component is returned to the upstream of the particle reduction device 1.
[0028]
Further, when the material of the metal filter of the particulate reduction device 1 contains or is attached with a catalyst metal, it is possible to detoxify the characteristic components (for example, NOx) of the exhaust gas by a heating reaction.
[0029]
【The invention's effect】
The present invention configured as described above allows exhaust gas to pass through a metal filter that has been contactlessly heated to 600 ° C. or higher by electromagnetic induction. Therefore, the combustible fine particles in the exhaust gas come into contact with the members constituting the metal filter and are instantaneously burned and removed. The structure of the metal filter is composed of a large number of members arranged regularly along the gas passage direction, and the members are electrically coupled to each other, so that the entire cross section of the filter generates heat. The combustible fine particles can be efficiently burned without heating the metal filter more than necessary. In addition, if a metal removing device or a condenser is disposed downstream of the particle reduction device of the present invention, trace metal particles and condensed components in the exhaust gas are removed, and the cleanness of the exhaust gas is further improved.
[Brief description of the drawings]
FIG. 1 is a device configuration diagram of a particle reduction device.
FIG. 2 is a sectional view of a metal filter.
FIG. 3 is a circuit diagram of an inverter.
FIG. 4 is a waveform diagram of an inverter.
FIG. 5 is a system diagram of another particle reduction device.
FIG. 6 is a system diagram of still another particle reduction device.
[Explanation of symbols]
1 particle reduction device 2 exhaust gas generator 3 chimney 4 fluid tank (metal removal device)
5 Condenser 11 Pipe 12 Coil 13 Metal filter 14 Inverter

Claims (5)

排ガスが通過する非磁性材料のパイプと、該パイプに巻かれたコイルと、前記パイプ内に収納され前記コイルによる電磁誘導で加熱される金属フィルターとを備え、該金属フィルターはガスの通過方向に沿って規則的に配列された多数の部材からなり、該部材が互いに電気的に結合され、フィルター断面の全体において渦電流が発生して加熱されるように形成され、排ガス中の可燃微粒子を加熱されたフィルターに接触させて燃焼させるようにした排ガス中の微粒子低減装置。A pipe made of a non-magnetic material through which exhaust gas passes, a coil wound around the pipe, and a metal filter housed in the pipe and heated by electromagnetic induction by the coil, the metal filter is arranged in a gas passing direction. It is composed of a large number of members regularly arranged along a line, and the members are electrically coupled to each other, so that an eddy current is generated and heated over the entire cross section of the filter, thereby heating the combustible fine particles in the exhaust gas. A device for reducing particulates in exhaust gas that is brought into contact with a burned filter and burned. 前記フィルターの前記部材は、前記パイプの軸方向に延在する板又小径パイプで構成されている請求項1記載の微粒子低減装置。The apparatus according to claim 1, wherein the member of the filter is a plate or a small-diameter pipe extending in an axial direction of the pipe. 前記フィルターの前記部材の電気的結合は、前記部材同士の溶接又は金属ロー付けにより行われる請求項1記載の微粒子低減装置。The particulate reduction device according to claim 1, wherein the electrical connection of the members of the filter is performed by welding or brazing the members. 請求項1記載の微粒子低減装置の下流に、排ガス中の微量金属粒子を除去する金属除去装置を配設した微粒子低減装置。A particle reduction device provided with a metal removal device for removing trace metal particles in exhaust gas downstream of the particle reduction device according to claim 1. 請求項1記載の微粒子低減装置の下流に、排ガス中の凝縮成分を除去する凝縮器を配設した微粒子低減装置。A particle reduction device provided with a condenser for removing a condensed component in exhaust gas downstream of the particle reduction device according to claim 1.
JP15715695A 1995-05-30 1995-05-30 Device for reducing particulates in exhaust gas Expired - Fee Related JP3602204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15715695A JP3602204B2 (en) 1995-05-30 1995-05-30 Device for reducing particulates in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15715695A JP3602204B2 (en) 1995-05-30 1995-05-30 Device for reducing particulates in exhaust gas

Publications (2)

Publication Number Publication Date
JPH08326522A JPH08326522A (en) 1996-12-10
JP3602204B2 true JP3602204B2 (en) 2004-12-15

Family

ID=15643416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15715695A Expired - Fee Related JP3602204B2 (en) 1995-05-30 1995-05-30 Device for reducing particulates in exhaust gas

Country Status (1)

Country Link
JP (1) JP3602204B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328362B1 (en) * 1999-04-26 2002-03-12 이계안 Elimination device for dust metal in exhaust gas
JP4073601B2 (en) * 2000-03-21 2008-04-09 株式会社瀬田技研 Heating element for electromagnetic induction heating
JP3899404B2 (en) 2002-12-26 2007-03-28 国立大学法人東京海洋大学 Equipment for removing particulate matter in exhaust gas
US8071914B2 (en) * 2007-12-26 2011-12-06 Noboru Oshima Heating apparatus
US9488085B2 (en) * 2013-09-18 2016-11-08 Advanced Technology Emission Solutions Inc. Catalytic converter structures with induction heating
US10207222B2 (en) * 2013-09-18 2019-02-19 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment with induction heating of loop conductors
US9657622B2 (en) * 2013-09-18 2017-05-23 Advanced Technology Emission Solutions Inc. Catalytic converter system with control and methods for use therewith
US10918994B2 (en) * 2013-09-18 2021-02-16 Advanced Technology Emission Solutions Inc. Induction heating apparatus and methods
US10132221B2 (en) * 2013-09-18 2018-11-20 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment with enhanced catalyst distribution
US10590819B2 (en) 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
US10143967B2 (en) * 2013-09-18 2018-12-04 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment with directed induction heating
US10557392B2 (en) 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
US10590818B2 (en) 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith
US10226738B2 (en) * 2013-09-18 2019-03-12 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment using front end induction heating
US10450915B2 (en) * 2013-09-18 2019-10-22 Advanced Technology Emission Solutions Inc. Emission control system with induction heating and methods for use therewith
WO2017198292A1 (en) * 2016-05-18 2017-11-23 Volvo Truck Corporation An exhaust gas treatment system with inductive heating
JP6585548B2 (en) * 2016-06-01 2019-10-02 株式会社クボタ Diesel engine exhaust treatment equipment
JP6471815B1 (en) * 2018-01-25 2019-02-20 不二製油株式会社 Strainer equipment

Also Published As

Publication number Publication date
JPH08326522A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
JP3602204B2 (en) Device for reducing particulates in exhaust gas
US10207222B2 (en) Apparatus and method for gaseous emissions treatment with induction heating of loop conductors
US20170022868A1 (en) Apparatus and method for gaseous emissions treatment with enhanced catalyst distribution
US10143967B2 (en) Apparatus and method for gaseous emissions treatment with directed induction heating
US10226738B2 (en) Apparatus and method for gaseous emissions treatment using front end induction heating
Ekkaravarodome et al. The simple temperature control for induction cooker based on Class-E resonant inverter
Geetha et al. A single switch parallel quasi resonant converter topology for induction heating application
CN109424401B (en) Apparatus and method for gaseous emission treatment using induction heating with movable thermal profile
JP5920985B2 (en) NOx removal injector ignition control circuit
US20190160429A1 (en) Gaseous emissions treatment structure and method for induction heating
US10760462B2 (en) Apparatus and method for gaseous emissions treatment using induction heating with movable heat profile
Sadakata et al. Development of induction heated hot water producer using soft switching PWM high frequency inverter
CN101257742A (en) High frequency heating device
Gamage et al. Series load resonant phase shifted ZVS-PWM high-frequency inverter with a single auxiliary edge resonant AC load side snubber for induction heating super heated steamer
Kaneda et al. Innovative electromagnetic induction eddy current-based dual packs heater using voltage-fed high-frequency PWM resonant inverter for continuous fluid processing in pipeline
Hatanaka et al. Investigation of High Frequency Induction Heating Power Supply for Reduction of Particulate Matter
Uchihori et al. New induction heated fluid energy conversion processing appliance incorporating auto-tuning PID control-based PWM resonant IGBT inverter with sensorless power factor correction
Kaneda et al. High frequency eddy current-based fluid heater using soft-switching inverter
Jakubowski et al. New resonant inverter topology with active energy recovery in PDM mode for DBD plasma reactor supply
Çayır et al. PSIM simulation of voltage-fed series resonant inverter for induction heating systems
Rajanikanth et al. Solar powered high voltage energization for vehicular exhaust cleaning: A step towards possible retrofitting in vehicles
JPH09184631A (en) Air cleaning heater
JPH08193510A (en) Particulate eliminating device
JP3577342B2 (en) Power supply for heating the catalyst
Ahmed et al. Asymmetrical duty cycle controlled edge resonant soft switching high frequency inverter for consumer electromagnetic induction fluid heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees