[go: up one dir, main page]

JP3601621B2 - Cross-section survey method and surveying instrument - Google Patents

Cross-section survey method and surveying instrument Download PDF

Info

Publication number
JP3601621B2
JP3601621B2 JP14810795A JP14810795A JP3601621B2 JP 3601621 B2 JP3601621 B2 JP 3601621B2 JP 14810795 A JP14810795 A JP 14810795A JP 14810795 A JP14810795 A JP 14810795A JP 3601621 B2 JP3601621 B2 JP 3601621B2
Authority
JP
Japan
Prior art keywords
line
calculated
intersection
point
known point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14810795A
Other languages
Japanese (ja)
Other versions
JPH08313252A (en
Inventor
律雄 先村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP14810795A priority Critical patent/JP3601621B2/en
Publication of JPH08313252A publication Critical patent/JPH08313252A/en
Application granted granted Critical
Publication of JP3601621B2 publication Critical patent/JP3601621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、道路等の路線を建設する場合に必要な路線測量の1つである横断測量を行う横断測量方法及び横断測量を実施する為の測量機に関するものである。
【0002】
【従来の技術】
道路等の路線を建設する場合は、路線の中心線を決定する為の中心線測量、この中心線に沿った縦断測量、前記中心線に直角にレベル地盤の高さを求める横断測量を行う。
【0003】
この横断測量は、縦断測量と共に路線等の土木工事をする為の基礎をなす測量であり、設計された図上の中心線を地上に測設する中心線測量を行い、該測設された中心線に関し、縦断測量で中心線に沿った方向(路線方向)の水準測量を行い、前記中心線の直角方向の横断測量で中心線に直角な方向の水準測量を行う。これらの測量データに基づいて盛土、切土等の実際の土木工事が行われる。
【0004】
斯かる測量を行う為、経緯儀、距離計が用いられる。近年の測量機、特に経緯儀に於いては高度角・水平角の角度読取りが従来の光学式に代わり電気的に読取れる電子式経緯儀が主流となってきている。又、更にこの電子式経緯儀に光波距離計を一体化したトータルステーション(測量機)も多く使用される様になってきている。
【0005】
従来のトータルステーションを使用した横断測量について図4により説明する。
【0006】
既知点から中心測量により中心線1を測設し、該中心線上に既知の中間点No.(N+1)、No.(N+2)、No.(N+3)を等間隔で設定する。更に、該既知中間点に中心杭(図示せず)を立設する。横断測量により該中心杭を基準として左右の地盤高さと前記中心杭からの距離を測定する。前記各中心杭について順次縦断測量を行う。
【0007】
横断測量を例えばNo.(N+3)の中心杭について行う場合は、横断ラインと中心線に対して所要の角度を持ち、横断線が見通せる任意の位置Pにトータルステーションを設置する。該トータルステーションが前記No.(N+3)の中心杭に対して左右いずれの位置にあるかをデータ入力する。これは、路線上の設置する位置によりデータが異なる為である。
【0008】
次に、前記中心杭の位置に測定補助者が光波測定用のプリズムが設けられたポールを立て、測定者がポール迄の距離、基準方向からの水平角、更に高度角を測定し、仮座標を設定する。前記ポールの位置を対象中心杭に対して左右に移動させ、各移動位置でのポール迄の距離、中心杭からの水平角、更に高度角を測定し、最終的には中心杭を基準とした距離、比高に換算し、水準面を数値データとして演算し、これら測定データを入力する。斯かる測定を中心杭の数だけ繰返し行い、中心杭に対応した横断面のデータを得る。該横断面のデータを基に作図することで図5に示す様な横断面の形状が得られる。
【0009】
【発明が解決しようとする課題】
従来の横断測量方法では任意の位置にトータルステーションを設置する為、前記既知の中心杭の位置等必要な測定を行わなければならない。更に、前記中間点に立設した中心杭を基準として左右の地盤高さと前記中心杭からの距離を測定することから、トータルステーションから測定点迄の距離、基準方向からの水平角、及び高度角を測定する必要がある。水平角、高度角の検出は目標物を視準することで殆ど瞬時に検出できるが、測距の場合は時間が掛り、更に複数回測定して平均を取る為更に時間が掛かっていた。又、測距の場合はプリズムが取付けられたポールを持つ人員が必要である為、測定には補助測定者が必要となる。又、測距のプリズムは固定されているほうがよいが、実際には補助測定者が持っている為、常に正しい位置にあるとは限らず、正確な測定ができにくい。更に又、路線4の横断面形状が図6の様に盛上がっている場合、トータルステーション2を路線4上に設置した場合、図6中の路線左端に立設したポール3aは視準できるが、路線右端に立設したポール3bは視準することができない。従って、ポール3bについて測量を行う場合、Turning Point(盛かえ点3c)を設け、先ず路線4上のトータルステーション2により盛かえ点3cについて測量し、次にトータルステーション2を路線4外に移転し、その後盛かえ点3c、ポール3bについて視準測定していた。この為、作業が非常に繁雑となっていた。
【0010】
本発明は斯かる実情に鑑み、測距を行うことなく横断測量が行える様にし、作業の簡略化、作業人員の削減を図るものである。
【0011】
【課題を解決するための手段】
本発明は、中心線を示す中心線式を予め取得し、第1の既知点を設定し、前記中心線上に第2の既知点を設定し、該第2の既知点を通過し前記中心線に直交する指定横断線を演算により求め、前記第1の既知点から前記指定横断線を視準し、該指定横断線を視準した時の水平角、高度角を求め、前記第1の既知点と前記水平角から仮想直線を演算により求め、該仮想直線と前記指定横断線との平面上の交点を演算により求め、該交点の平面座標と前記第1の既知点の平面座標とから交点と第1の既知点間の水平距離を演算により求め、該水平距離と前記高度角により前記交点の比高を演算により求める横断測量方法に係り、又水平角読取り部と、高度角読取り部と、測設される中心線、中心線上の第2の既知点の平面座標、測量機が設置される第1の既知点の平面座標等のデータを記憶する手段と、前記中心線上の第2の既知点を通過し、該中心線に対して直交する指定横断線を演算し、前記第1の既知点から前記指定横断線を視準した時の、前記水平角読取り部で検出した視準方向の水平角度と前記第1の既知点から視準方向の仮想直線を演算し、前記指定横断線と仮想直線との交点を演算すると共に第1の既知点の平面座標と前記交点の平面座標から前記第1の既知点と交点間の水平距離を演算し、該水平距離と前記高度角読取り部で検出した高度角とから前記交点の比高を演算する総合制御部を少なくとも具備する測量機に係るものである。
【0012】
【作用】
測距作業なしに横断測量が可能であり、水平角、高度角の角度の測定だけでよいので、指定横断線に沿った地面を直接測量でき、この為、測量用のポールを持つ為の補助測定者が必要なく測量機を操作する測定者1人で測量することが可能となり、又測距を必要としないので測量時間が大幅に短縮でき、更に測量時間の短縮により消費電力が減少し、電源の消費を防止できる。
【0013】
【実施例】
以下、図面を参照しつつ本発明の一実施例を説明する。
【0014】
中心線測量、縦断測量の測量データ、既知点の座標を装置に蓄積し、中心線測量、縦断測量が完了後、横断測量を行う中間点以外の中間点、基準点等の既知点或は後方測量等で求めた既知の点にトータルステーション2を設置する。図2に示す実施例ではトータルステーション2は後方測量等で求めた既知の設置点8に設置した例を示している。
【0015】
図1により本発明に係る測量機、前記トータルステーション2の制御装置について説明する。
【0016】
図中、10は総合制御部であり、該総合制御部10には測距・測角制御部11、主記憶部12、電源供給制御部13、表示部14、外部記憶装置15、外部入出力端子16が接続され、前記測距・測角制御部11には更に水平角読取り部17、高度角読取り部18、光波距離計部19が接続され、前記電源供給制御部13には更に蓄電池等の電源20が接続されている。
【0017】
前記総合制御部10は前記仮想直線6を演算する演算プログラム、指定横断線5と、仮想直線6の交点を演算するプログラム、更に中間点Mm と交点7、中間点Mm と設置点8との距離を演算するプログラム、更に交点7の比高を演算するプログラム等の演算プログラムを具備しており、又測量機本体を俯仰、水平方向の回転、水準動作等の制御を行う制御信号を前記測距・測角制御部11に発する。
【0018】
前記測距・測角制御部11は前記水平角読取り部17からの検出信号で水平角を演算し、又前記高度角読取り部18からの信号で高度角を演算し、又前記光波距離計部19からの信号で反射プリズム迄の距離を演算し、更にこれらの演算結果を前記総合制御部10に又該総合制御部10を介して前記主記憶部12入力し、更に前記水平角読取り部17、高度角読取り部18、光波距離計部19からの信号と前記総合制御部10からの制御信号を基に図示しない水平回転駆動部、俯仰駆動部を駆動する。
【0019】
前記主記憶部12は前記中心線1、指定横断線5、仮想直線6を記憶すると共に中間点のデータ、指定横断線5に沿った測量データ等のデータを記憶する。
【0020】
前記電源供給制御部13は前記電源20からの供給電力を安定化させ、前記総合制御部10、測距・測角制御部11に供給する。
【0021】
前記表示部14は、例えば図3で示す様に測定中の指定横断線5の測定データを表示するものであり、又断面形状を表示させる様にしてもよい。
【0022】
前記外部記憶装置15は例えばメモリカードであり、該外部記憶装置15に対して総合制御部10が自在に読書きできる様になっており、図上での設計データ、或は測量データを記憶する。
【0023】
前記外部入出力端子16は外部記録装置等の接続端子であり、前記仮想直線6を演算する演算プログラム、指定横断線5と、仮想直線6の交点を演算するプログラム、更に中間点Mm と交点7、中間点Mm と設置点8との距離を演算するプログラム、更に交点7の比高を演算するプログラム等の演算プログラムを外部記録装置に記憶させてもよい。
【0024】
以下、作用を説明する。
【0025】
前記既知の設置点8にトータルステーション2を設置した後、前記外部入出力端子16に接続した外部入力装置(図示せず)を介して前記総合制御部10に該トータルステーション2を設置した座標を入力する(横断測量を行う中間点以外の中間点に設置した場合は設置した中間点の座標を入力する)。
【0026】
トータルステーション2に入力され主記憶部12に蓄積されたデータは既知点間を結ぶ中心線(曲線、或は直線)の式、該中心線を等分して得られる中間点の平面座標である。該中間点にはM1 …Mm …Mn 等の識別番号を自動、或は手動により付す。
【0027】
各中間点について横断測量を行うが、以下は中間点Mm に関する横断測量について説明する。中間点Mm を通り、前記中心線1に直交する直線(指定横断線)5を演算し、入力蓄積する。
【0028】
前記トータルステーション2により前記指定横断線5上の地面、或は指定横断線5上に立設したポールを視準する。
【0029】
視準により前記水平角読取り部17、高度角読取り部18により水平角、高度角が検出され、更に前記得られた水平角、設置点8の座標を基に前記総合制御部10に於いて視準方向の平面座標での仮想直線6が演算され、更に該仮想直線6と前記指定横断線5との平面座標での交点7が演算される。
【0030】
該交点7の平面座標での座標が演算されることで、交点7の座標と中間点Mm の座標から更に前記中間点Mm と前記交点7間の水平距離が演算され、又前記交点7の座標と前記設置点8の座標から交点7と設置点8間の水平距離が演算される。
【0031】
又この時の高度角、前記演算された交点7と設置点8間の水平距離から比高、更に標高が逆算される。前記中間点Mm と前記交点7間の水平距離、標高が入力蓄積される。
【0032】
更に前記トータルステーション2の視準方向を変え、同様に指定横断線5の測定を指定横断線5上の必要ポイントについて行う。
【0033】
上記した横断測量を、各中間点M1 …Mn について行う。前記した様に、各中間点M1 …Mn の座標はすでに蓄積されており、前記中間点Mm についての横断測量は前記した如く測距作業なしに演算することができる。又、横断測量はリアルタイムで行われ、トータルステーション2の視準方向と指定横断線5との交点があれば常に前記データが演算される。
【0034】
尚、本発明によれば地面を直接測量できるのでトータルステーション2を既知点に置くことで図6で示したポール3cの立設は省略することができる。又、指定横断線上の既知点は2以上であってもよい。
【0035】
【発明の効果】
以上述べた如く本発明によれば、測距作業なしに横断測量が可能であり、角度の測定だけでよいので、指定横断線に沿った地面を直接測量でき、この為、測量用のポールを持つ為の補助測定者が必要なく測量機を操作する測定者1人で測量することが可能となり、又測距を必要としないので測量時間が大幅に短縮でき、更に測量時間の短縮により消費電力が減少し、電源の消費を防止でき、更に指定横断線上の現在位置を常に表示することができ、更に測距の場合はポールに設けられたプリズムとの連携により現在位置を表示できるが、表示はトータルステーション2側の測量者の意思で選択できる、等の種々の優れた効果を発揮できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すブロック図である。
【図2】本実施例の測量方法を示す説明図である。
【図3】本実施例の表示部の一例を示す説明図である。
【図4】従来例の測量方法を示す説明図である。
【図5】横断測量により得られた断面形状の一例を示す説明図である。
【図6】従来例の測量方法を示す説明図である。
【符号の説明】
1 中心線
2 トータルステーション
10 総合制御部
11 測距・測角制御部
12 主記憶部
13 電源供給制御部
14 表示部
15 外部記憶装置
16 外部入出力端子
17 水平角読取り部
18 高度角読取り部
19 光波距離計部
20 電源
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-section survey method for performing a cross-section survey, which is one of the route surveys required when constructing a route such as a road, and a surveying instrument for performing the cross-section survey.
[0002]
[Prior art]
In the case of constructing a route such as a road, a centerline survey for determining the centerline of the route, a vertical survey along the centerline, and a cross-sectional survey for determining the height of the level ground perpendicular to the centerline are performed.
[0003]
This cross-section survey is a survey that forms the basis for civil engineering work on routes and the like along with the longitudinal survey, performs a center line survey that measures the designed center line on the ground, and With respect to the line, level measurement is performed in a direction along the center line (road direction) by longitudinal surveying, and level measurement in a direction perpendicular to the center line is performed by crossing surveying in a direction perpendicular to the center line. Actual civil engineering works such as embankment and cut are performed based on these survey data.
[0004]
In order to perform such a survey, a theodolite and a distance meter are used. In recent surveying instruments, particularly in the theodolites, electronic theodolites which can electrically read altitude angle and horizontal angle in place of the conventional optical type have become mainstream. Further, a total station (a surveying instrument) in which a light wave distance meter is integrated with the electronic theodolite has been increasingly used.
[0005]
A cross-sectional survey using a conventional total station will be described with reference to FIG.
[0006]
A center line 1 is measured from a known point by center surveying, and a known intermediate point No. is placed on the center line. (N + 1), No. (N + 2), No. (N + 3) are set at equal intervals. Further, a center pile (not shown) is erected at the known intermediate point. The ground height on the left and right and the distance from the center pile are measured based on the center pile by crossing survey. A longitudinal survey is performed for each of the center piles.
[0007]
For example, a cross-section survey When performing the (N + 3) center pile, the total station is installed at an arbitrary position P which has a required angle with respect to the crossing line and the center line and can see through the crossing line. The total station is no. Data input is performed to determine which position is left or right with respect to the (N + 3) center pile. This is because the data differs depending on the installation position on the route.
[0008]
Next, the measurement assistant sets up a pole provided with a prism for light wave measurement at the position of the center pile, and the measurer measures the distance to the pole, the horizontal angle from the reference direction, and the altitude angle, and temporarily coordinates the coordinates. Set. The position of the pole was moved left and right with respect to the target center pile, the distance to the pole at each movement position, the horizontal angle from the center pile, and the altitude angle were measured, and finally the center pile was referenced. The data is converted into distance and specific height, the level surface is calculated as numerical data, and these measured data are input. Such measurement is repeated as many times as the number of the center piles, and data of a cross section corresponding to the center pile is obtained. By drawing based on the data of the cross section, the shape of the cross section as shown in FIG. 5 can be obtained.
[0009]
[Problems to be solved by the invention]
In the conventional cross-sectional survey method, necessary measurements such as the position of the known center pile must be performed in order to install the total station at an arbitrary position. Furthermore, since the ground height on the left and right and the distance from the center pile are measured based on the center pile erected at the intermediate point, the distance from the total station to the measurement point, the horizontal angle from the reference direction, and the altitude angle are calculated. Need to measure. The detection of the horizontal angle and the altitude angle can be almost instantaneously detected by collimating the target, but in the case of distance measurement, it takes time, and it takes more time to measure a plurality of times and take an average. Further, in the case of distance measurement, a person having a pole on which a prism is mounted is required, so that an auxiliary measurer is required for measurement. It is preferable that the prism for distance measurement is fixed. However, since the auxiliary measurer actually has the prism, the prism is not always at a correct position, and it is difficult to perform accurate measurement. Further, when the cross-sectional shape of the route 4 is raised as shown in FIG. 6, when the total station 2 is installed on the route 4, the pole 3a standing on the left end of the route in FIG. The pole 3b standing on the right end of the route cannot be collimated. Therefore, when performing surveying on the pole 3b, a turning point (refilling point 3c) is provided, first the surveying is performed on the refilling point 3c by the total station 2 on the route 4, then the total station 2 is moved out of the route 4, and thereafter Collimation measurement was performed for the refilling point 3c and the pole 3b. For this reason, the work was very complicated.
[0010]
The present invention has been made in view of the above circumstances, and enables cross-sectional surveying without performing distance measurement, thereby simplifying work and reducing the number of workers.
[0011]
[Means for Solving the Problems]
According to the present invention, a center line formula indicating a center line is acquired in advance, a first known point is set, a second known point is set on the center line, and the center line is passed through the second known point. Calculating a designated crossing line orthogonal to, colliding the designated traversing line from the first known point, calculating a horizontal angle and an altitude angle when the designated traversing line is collimated, A virtual straight line is calculated from a point and the horizontal angle, an intersection on the plane between the virtual straight line and the designated transverse line is calculated, and the intersection is determined from the plane coordinates of the intersection and the plane coordinates of the first known point. A horizontal distance between the first known point and the first known point by calculation, and relates to a cross-sectional surveying method of calculating the specific height of the intersection by the horizontal distance and the altitude angle , and further comprising a horizontal angle reading unit, an altitude angle reading unit, , the center line being staked, the plane coordinates of the second known point on the centerline, the surveying instrument is installed Means for storing the data of the plane coordinates or the like of the first known point, passes through the second known point of the center line, calculating the specified transverse line perpendicular to the center line, the first known When the specified transverse line is collimated from a point, a horizontal line in the collimating direction detected by the horizontal angle reading unit and a virtual straight line in the collimating direction are calculated from the first known point , and the designated transverse line is calculated. An intersection with the virtual straight line is calculated, and a horizontal distance between the first known point and the intersection is calculated from the plane coordinates of the first known point and the plane coordinates of the intersection, and the horizontal distance and the elevation angle reading unit calculate the horizontal distance between the first known point and the intersection. those of the altitude angle detected in the general control unit at least provided to that measured amounts machine for calculating the relative height of the intersection point.
[0012]
[Action]
Crossing surveying is possible without distance measurement work.Since it is only necessary to measure the horizontal angle and altitude angle, it is possible to directly survey the ground along the designated traversing line, and therefore, to have a pole for surveying The surveyor can operate the surveying instrument without the need for a surveyor, and the surveyor can perform surveying without the need for distance measurement. The surveying time can be greatly reduced, and the power consumption is reduced by shortening the surveying time. Power consumption can be prevented.
[0013]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0014]
The survey data of the center line survey and the longitudinal survey and the coordinates of the known points are stored in the device, and after the completion of the center line survey and the longitudinal survey, the intermediate point other than the intermediate point for performing the cross-sectional survey, a known point such as a reference point, or the rear. The total station 2 is installed at a known point obtained by surveying or the like. The embodiment shown in FIG. 2 shows an example in which the total station 2 is installed at a known installation point 8 obtained by a backward survey or the like.
[0015]
A surveying instrument according to the present invention and a control device of the total station 2 will be described with reference to FIG.
[0016]
In the figure, reference numeral 10 denotes a general control unit. The general control unit 10 includes a distance measurement / angle measurement control unit 11, a main storage unit 12, a power supply control unit 13, a display unit 14, an external storage device 15, an external input / output unit. A terminal 16 is connected, a horizontal angle reading unit 17, an altitude angle reading unit 18, and a light wave distance meter unit 19 are further connected to the distance measurement / angle measurement control unit 11, and the power supply control unit 13 is further connected to a storage battery or the like. Power supply 20 is connected.
[0017]
The general control unit 10 calculates a calculation program for calculating the virtual straight line 6, a program for calculating the intersection of the designated crossing line 5 and the virtual straight line 6, and further calculates a distance between the middle point Mm and the intersection 7, and a distance between the middle point Mm and the installation point 8. And a control signal for controlling the elevation of the surveying instrument main body, horizontal rotation, level operation, etc., by using the distance measuring method. -Issued to the angle measurement control unit 11.
[0018]
The distance / angle control unit 11 calculates the horizontal angle based on the detection signal from the horizontal angle reading unit 17, calculates the altitude angle based on the signal from the altitude angle reading unit 18, and calculates the lightwave distance meter unit. The distance to the reflecting prism is calculated based on the signal from the control unit 19, and the calculation results are input to the general control unit 10 and the main storage unit 12 via the general control unit 10. The horizontal rotation drive unit and the elevation drive unit (not shown) are driven based on the signals from the altitude angle reading unit 18, the lightwave distance meter unit 19, and the control signal from the general control unit 10.
[0019]
The main storage unit 12 stores the center line 1, the designated traversing line 5, and the virtual straight line 6, and also stores data such as data of an intermediate point and survey data along the designated traversing line 5.
[0020]
The power supply control unit 13 stabilizes the power supplied from the power supply 20 and supplies the power to the general control unit 10 and the distance / angle measurement control unit 11.
[0021]
The display unit 14 displays the measurement data of the designated crossing line 5 during the measurement as shown in FIG. 3, for example, or may display the cross-sectional shape.
[0022]
The external storage device 15 is, for example, a memory card, and the general control unit 10 can freely read and write the external storage device 15 and stores design data or survey data on the drawing. .
[0023]
The external input / output terminal 16 is a connection terminal for an external recording device or the like. The external input / output terminal 16 is a calculation program for calculating the virtual straight line 6, a program for calculating the intersection of the designated crossing line 5 and the virtual straight line 6, and the intermediate point Mm and the intersection 7. An arithmetic program such as a program for calculating the distance between the intermediate point Mm and the installation point 8 and a program for calculating the specific height of the intersection 7 may be stored in the external recording device.
[0024]
Hereinafter, the operation will be described.
[0025]
After installing the total station 2 at the known installation point 8, the coordinates at which the total station 2 is installed are input to the general control unit 10 via an external input device (not shown) connected to the external input / output terminal 16. (If installed at an intermediate point other than the intermediate point for cross-sectional survey, enter the coordinates of the installed intermediate point.)
[0026]
The data input to the total station 2 and stored in the main storage unit 12 are a formula of a center line (curve or straight line) connecting known points, and plane coordinates of an intermediate point obtained by equally dividing the center line. An identification number such as M1... Mm... Mn is automatically or manually assigned to the intermediate point.
[0027]
A cross-section survey is performed for each intermediate point. Hereinafter, the cross-section survey for the intermediate point Mm will be described. A straight line (designated transverse line) 5 which passes through the intermediate point Mm and is orthogonal to the center line 1 is calculated and input.
[0028]
The total station 2 collimates the ground on the designated crossing line 5 or a pole standing on the designated crossing line 5.
[0029]
The horizontal angle and the altitude angle are detected by the horizontal angle reading unit 17 and the altitude angle reading unit 18 based on the collimation. Further, based on the obtained horizontal angle and the coordinates of the installation point 8, the visual control is performed by the general control unit 10. A virtual straight line 6 is calculated at the plane coordinates in the quasi direction, and an intersection 7 of the virtual straight line 6 and the designated transverse line 5 at the plane coordinates is calculated.
[0030]
By calculating the coordinates of the intersection 7 in the plane coordinates, the horizontal distance between the intermediate point Mm and the intersection 7 is further calculated from the coordinates of the intersection 7 and the coordinates of the intermediate point Mm. The horizontal distance between the intersection 7 and the installation point 8 is calculated from the coordinates of the installation point 8 and the coordinates of the installation point 8.
[0031]
Further, the specific altitude and the altitude are back calculated from the altitude angle at this time and the calculated horizontal distance between the intersection 7 and the installation point 8. The horizontal distance and the altitude between the intermediate point Mm and the intersection 7 are input and accumulated.
[0032]
Further, the collimating direction of the total station 2 is changed, and the measurement of the designated crossing line 5 is similarly performed for the required points on the designated crossing line 5.
[0033]
The above-described cross-sectional survey is performed for each intermediate point M1... Mn. As described above, the coordinates of each intermediate point M1... Mn are already stored, and the cross-sectional survey for the intermediate point Mm can be calculated without the distance measuring operation as described above. The crossing survey is performed in real time, and the data is always calculated whenever there is an intersection between the collimating direction of the total station 2 and the designated crossing line 5.
[0034]
According to the present invention, since the ground can be directly measured, the standing of the pole 3c shown in FIG. 6 can be omitted by placing the total station 2 at a known point. The number of known points on the designated traversing line may be two or more.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to perform a cross-sectional survey without a distance measuring operation, and it is only necessary to measure an angle. It is possible to perform surveying with only one measurer who operates the surveying instrument without the need for an auxiliary measurer to have, and the distance measurement is not necessary, so the surveying time can be greatly reduced, and the power consumption by shortening the surveying time Power consumption can be prevented, the current position on the designated traverse can always be displayed, and in the case of distance measurement, the current position can be displayed in cooperation with the prism provided on the pole. Can exhibit various excellent effects such as selection by the surveyor on the total station 2 side.
[Brief description of the drawings]
FIG. 1 is a block diagram showing one embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating a surveying method according to the present embodiment.
FIG. 3 is an explanatory diagram illustrating an example of a display unit according to the embodiment.
FIG. 4 is an explanatory diagram showing a conventional surveying method.
FIG. 5 is an explanatory diagram showing an example of a cross-sectional shape obtained by cross-sectional survey.
FIG. 6 is an explanatory diagram showing a conventional survey method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Center line 2 Total station 10 Total control unit 11 Distance / angle measurement control unit 12 Main storage unit 13 Power supply control unit 14 Display unit 15 External storage device 16 External input / output terminal 17 Horizontal angle reading unit 18 Altitude angle reading unit 19 Light wave Distance meter unit 20 power supply

Claims (2)

中心線を示す中心線式を予め取得し、第1の既知点を設定し、前記中心線上に第2の既知点を設定し、該第2の既知点を通過し前記中心線に直交する指定横断線を演算により求め、前記第1の既知点から前記指定横断線を視準し、該指定横断線を視準した時の水平角、高度角を求め、前記第1の既知点と前記水平角から仮想直線を演算により求め、該仮想直線と前記指定横断線との平面上の交点を演算により求め、該交点の平面座標と前記第1の既知点の平面座標とから交点と第1の既知点間の水平距離を演算により求め、該水平距離と前記高度角により前記交点の比高を演算により求めることを特徴とする横断測量方法。A center line formula indicating a center line is obtained in advance, a first known point is set, a second known point is set on the center line, and a designation is made that passes through the second known point and is orthogonal to the center line. A crossing line is obtained by calculation, and the specified crossing line is collimated from the first known point, and a horizontal angle and an altitude angle when the specified crossing line is collimated are obtained, and the first known point and the horizontal A virtual straight line is calculated from the corner by calculation, and an intersection on the plane between the virtual straight line and the designated transverse line is obtained by calculation. A cross-sectional surveying method, wherein a horizontal distance between known points is calculated by calculation, and a specific height of the intersection is calculated by the horizontal distance and the altitude angle. 水平角読取り部と、高度角読取り部と、測設される中心線、中心線上の第2の既知点の平面座標、測量機が設置される第1の既知点の平面座標等のデータを記憶する手段と、前記中心線上の第2の既知点を通過し、該中心線に対して直交する指定横断線を演算し、前記第1の既知点から前記指定横断線を視準した時の、前記水平角読取り部で検出した視準方向の水平角度と前記第1の既知点から視準方向の仮想直線を演算し、前記指定横断線と仮想直線との交点を演算すると共に第1の既知点の平面座標と前記交点の平面座標から前記第1の既知点と交点間の水平距離を演算し、該水平距離と前記高度角読取り部で検出した高度角とから前記交点の比高を演算する総合制御部を少なくとも具備することを特徴とする測量機。A horizontal angle reading unit, an altitude angle reading unit, and data such as a center line to be measured, plane coordinates of a second known point on the center line, and plane coordinates of a first known point at which the surveying instrument is installed are stored. Means for calculating a designated transverse line passing through a second known point on the center line and orthogonal to the center line, and collimating the designated transverse line from the first known point, A virtual straight line in the collimation direction is calculated from the horizontal angle in the collimation direction detected by the horizontal angle reading unit and the first known point, and an intersection between the designated transverse line and the virtual straight line is calculated, and a first known line is calculated. A horizontal distance between the first known point and the intersection is calculated from the plane coordinates of the point and the plane coordinates of the intersection, and a specific height of the intersection is calculated from the horizontal distance and the altitude angle detected by the altitude angle reading unit. A surveying instrument comprising at least a general control unit for performing a survey.
JP14810795A 1995-05-23 1995-05-23 Cross-section survey method and surveying instrument Expired - Fee Related JP3601621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14810795A JP3601621B2 (en) 1995-05-23 1995-05-23 Cross-section survey method and surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14810795A JP3601621B2 (en) 1995-05-23 1995-05-23 Cross-section survey method and surveying instrument

Publications (2)

Publication Number Publication Date
JPH08313252A JPH08313252A (en) 1996-11-29
JP3601621B2 true JP3601621B2 (en) 2004-12-15

Family

ID=15445411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14810795A Expired - Fee Related JP3601621B2 (en) 1995-05-23 1995-05-23 Cross-section survey method and surveying instrument

Country Status (1)

Country Link
JP (1) JP3601621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024145224A (en) * 2023-03-31 2024-10-15 株式会社トプコン Surveying equipment, surveying system, surveying method and surveying program

Also Published As

Publication number Publication date
JPH08313252A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
KR101029397B1 (en) How to measure optics, object dimensions and how to measure crack width
JP7487863B2 (en) Surveying system, method for supporting installation of stakes, and program for supporting installation of stakes
JP7494429B2 (en) Surveying system, method for supporting installation of stakes, and program for supporting installation of stakes
JP2023073151A (en) Surveying method, surveying system and surveying program
CN112964237B (en) Measurement control system, method and device for construction engineering and computer equipment
JP4024719B2 (en) Electronic surveying instrument
EP4174254A1 (en) Batter board installation method, batter board installation program and surveying system
US20230272631A1 (en) Batter board placement method, batter board placement program, and survey system
CN1099130A (en) Quick positioning system
JP3601621B2 (en) Cross-section survey method and surveying instrument
RU2383862C1 (en) Method for alignment of metering instrument and device for its realisation (versions)
El-Ashmawy Accuracy, time cost and terrain independence comparisons of levelling techniques
JP3134537B2 (en) Data display device
JP3015956B1 (en) Method for measuring cylindrical features in surveying
JP3481324B2 (en) Method of measuring mechanical height of surveying instrument and measuring instrument
JP2916977B2 (en) Surveying instrument with eccentricity correction function
Zeiske Surveying made easy
JP4460123B2 (en) Position guidance device for slope formation
JP2711329B2 (en) Automatic surveying method for shield machine
KR100571608B1 (en) Method of measuring the edge of the structure using a non-targeted light wave measuring instrument
RU2452920C1 (en) Electro-optical plumb
JPS62169012A (en) Horizontal displacement measuring apparatus for underground excavator
JPH05113330A (en) Leveling apparatus to be operated by single person
JP3000450B2 (en) Electronic measuring board
CN118980363A (en) A method for monitoring lateral displacement of roadbed based on virtual baseline

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees