JP3594598B2 - Improved nucleic acid quantification method - Google Patents
Improved nucleic acid quantification method Download PDFInfo
- Publication number
- JP3594598B2 JP3594598B2 JP50383695A JP50383695A JP3594598B2 JP 3594598 B2 JP3594598 B2 JP 3594598B2 JP 50383695 A JP50383695 A JP 50383695A JP 50383695 A JP50383695 A JP 50383695A JP 3594598 B2 JP3594598 B2 JP 3594598B2
- Authority
- JP
- Japan
- Prior art keywords
- nucleic acid
- sample
- amount
- analyte
- construct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 114
- 238000001921 nucleic acid quantification Methods 0.000 title description 5
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 272
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 266
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 265
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 78
- 230000003321 amplification Effects 0.000 claims abstract description 75
- 239000012491 analyte Substances 0.000 claims abstract description 75
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 13
- 239000000523 sample Substances 0.000 claims description 106
- 238000002955 isolation Methods 0.000 claims description 37
- 239000012085 test solution Substances 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 25
- 239000002773 nucleotide Substances 0.000 claims description 8
- 125000003729 nucleotide group Chemical group 0.000 claims description 8
- 238000007865 diluting Methods 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 239000012470 diluted sample Substances 0.000 claims description 2
- 238000011002 quantification Methods 0.000 abstract description 19
- 239000002253 acid Substances 0.000 abstract description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 51
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 19
- 238000003556 assay Methods 0.000 description 15
- 239000011324 bead Substances 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 238000011109 contamination Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 238000003752 polymerase chain reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 239000012139 lysis buffer Substances 0.000 description 5
- BZSVVCFHMVMYCR-UHFFFAOYSA-N 2-pyridin-2-ylpyridine;ruthenium Chemical compound [Ru].N1=CC=CC=C1C1=CC=CC=N1.N1=CC=CC=C1C1=CC=CC=N1.N1=CC=CC=C1C1=CC=CC=N1 BZSVVCFHMVMYCR-UHFFFAOYSA-N 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 241001493065 dsRNA viruses Species 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- 238000013381 RNA quantification Methods 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- WZSDNEJJUSYNSG-UHFFFAOYSA-N azocan-1-yl-(3,4,5-trimethoxyphenyl)methanone Chemical compound COC1=C(OC)C(OC)=CC(C(=O)N2CCCCCCC2)=C1 WZSDNEJJUSYNSG-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 2
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 2
- 101710137500 T7 RNA polymerase Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004705 quadratic configuration interaction calculation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 239000008051 TBE buffer Substances 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000013026 undiluted sample Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6865—Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
- C12Q1/702—Specific hybridization probes for retroviruses
- C12Q1/703—Viruses associated with AIDS
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- AIDS & HIV (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明は改良された核酸定量方法に係わる。核酸の定量は種々の研究及び診断分野において極めて重要である。また核酸の定量は遺伝子調節を理解する上で重要なツールであると共に、治療効果をモニターするのに使用することもできる。例えばヒト血液または他の体液のごとき試料中に存在する特定の核酸配列の量は、例えば所定のウイルスに感染した人の疾患状態や所定の医薬による治療効能に関する貴重な情報を与え得る。
核酸を量的増幅する種々の方法が記載されている。国際特許出願WO91/02817号明細書には、増幅技術としてポリメラーゼ連鎖反応(PCR)を使用して核酸を定量する方法が記載されている。この方法は、試料中に存在する未知量のターゲット核酸の増幅に使用される同じプライマーと反応し得る標準核酸セグメントを試料に添加することを含む。増幅後、2種のPCR産物の量をそれぞれ測定し、もとの試料中のターゲットセグメントの量を、標準曲線に対して外挿することにより定量する。標準曲線は、ポリメラーゼ連鎖反応において生成された標準セグメントの量を、増幅前に存在した核酸の可変既知量に対してプロットすることにより生成される。
被分析核酸と同時に増幅され得る他の配列を、被分析核酸を含む試料に加えることがBecker及びHahlbrock(N ucleic Acids Research,Vol.17,Number 22,1989)に記載されている。Becker及びHahlbrockによって記載されている方法は、被分析核酸と1ヌクレオチドだけ異なる核酸配列(点突然変異)を含む種々の既知量の内部標準を、未知量の被分析核酸を含む既知容量の試料フラクションに加え、被分析核酸と共にPCRによって同時増幅するという核酸の定量方法である。即ち、全RNAの同一部分が、段階的に減らされた既知量の内部標準RNAによって「スパイク(spike)」される。内部標準配列中に1塩基の変更を導入することによって特異的制限部位を生成し、適当な制限酵素を用いて突然変異配列を切断してから、増幅された核酸を含む試料を電気泳動ゲルにかける。突然変異列(の一部)及び被分析核酸を表わすゲル中のバンドを比較することにより、核酸を定量する。この方法の欠点の1つは、制限酵素による内部標準の消化が不完全であると、存在する核酸の量の判定が不正確となり得ることである。
Becker及びHahlbrockは彼らの定量方法において内部標準をマーカーとして使用し、そこで被分析物質及びマーカーの両方を非競合的に増幅している。
更に、ターゲット核酸に対応する既知分子数の核酸配列を、未知量のターゲット核酸配列を含む試料に添加する核酸の定量方法は、本出願人名義の同時係属欧州特許出願公開第525882号明細書にも記載されている。欧州特許出願公開第525882号明細書に記載の方法は、既知量の明確に定義された突然変異配列を添加した、未知濃度の野生型ターゲット核酸を含む試料由来の核酸を増幅することに基づいている。ターゲット配列及び突然変位配列にハイブリダイズし得る1組のプライマーを用いて増幅を実施する。欧州特許出願公開第525882号明細書に記載の競合的増幅は、固定量の試料と連続希釈系列の突然変異配列またはこの逆の組合せを用いて実施され得る。
上記方法は、明確に定義された標準配列を増幅混合物に添加することを含む。上記方法を用いて正確な信頼性のある測定値を得るためには、多数の増幅反応を実施せねばならない。試料を種々の既知量部分に分割し、それらに種々の既知量の標準核酸を添加する必要がある。また国際特許出願WO91/02817号明細書に記載の方法によれば希釈系列から標準曲線を生成する必要があるが、それはかなり労力を要すると共に、ターゲット核酸に係わる実際の増幅と標準曲線に係わる増幅とを別々に実施するが故に、存在する核酸の量の推定が不正確となり得る。
正確で信頼性のあるように核酸の量を決定し得るためには多数の増幅反応を実施せねばならないことから、上述の方法はかなりの労力及び時間を要する。従って、労力及び時間がそれほどかからない核酸定量方法が必要とされている。本発明はそのような方法を提供する。
本発明は、試料中の被分析核酸を定量する方法であって、
−被分析核酸から区別し得るが被分析核酸と同時に増幅され得る種々の拡散構築物をそれぞれ異なる量で試料に添加するステップ;
−被分析核酸及び核酸構築物の両方と反応し得る増幅試薬を使用し、試料に核酸増幅処理を実施するステップ;
−被分析核酸及び各核酸構築物から誘導された増幅物の相対量を検出するステップ;及び
−前記相対量から被分析核酸の量を計算するステップ
を含む方法を提供する。本発明の方法によれば、種々の核酸構築物を試料に添加する。
各核酸構築物は異なっており、核酸構築物は相互に及び被分析核酸から区別可能である。核酸構築物は、全てが同じ増幅試薬と反応し得る点で相互に及び被分析核酸と類似である。増幅試薬とは、特に、被分析核酸及び核酸構築物にハイブリダイズし得る1つ以上の増幅プライマーを意味する。他の増幅試薬としては、当分野において公知の種々の増幅技術に使用される必須酵素、核酸ポリメラーゼのごとき増幅処理に使用される慣用試薬が挙げられる。本発明の方法は、任意の種類の増幅処理、例えば米国特許第4,683,195号明細書及び第4,683,202号明細書に記載のごとき所謂ポリメラーゼ連鎖反応(PCR)に使用し得る。別の核酸増幅方法としては欧州特許出願第0,329,822号明細書に記載のごとき「核酸配列基準増幅(NASBA)」がある。
本発明の方法に使用される核酸構築物は、同じ増幅試薬と反応し得る点で被分析核酸と類似である核酸配列である。従って各核酸構築物は少なくとも、被分析核酸中にも存在し、使用した核酸増幅プライマーがアニーリングし得る配列を含むべきである。本発明の方法に使用される核酸構築物は、被分析核酸から及び相互に区別し得る。これは、核酸構築物を、使用する他の核酸構築物及び被分析核酸のいずれにも存在しない固有の区別可能な配列を各構築物が含むように構築することにより実現し得る。固有の区別可能な配列が例えば約20ヌクレオチドを含むランダムな配列であり、構築物と被分析核酸の長さ及びヌクレオチド構成を同じに維持する核酸構築物を使用することが好ましい。検出においては、試料中に存在する被分析核酸及び核酸構築物を増幅した後、各々が核酸構築物中に存在する固有の配列の1つのみを認識し得る種々の検出プローブを使用することにより、種々の核酸構築物を別々に測定し得る。勿論、核酸構築物を固有となるよう構築する他の方法もある。しかしながら、好ましくは核酸構築物は、増幅が妨害されるよう突然変異すべきではない。本発明の方法では、被分析核酸と同じ効率で増幅され得る核酸構築物を使用することが好ましく、そうでないと、増幅後に試料中に存在する被分析核酸及び構築核酸の量に基づいて正確な計算を行うことが困難となる。
核酸構築物は、当分野において公知の種々の方法により作製し得るポリヌクレオチドである。核酸構築物は例えば種々の組換えDNA方法によって作製し得る。例えば、被分析配列を含むプラスミドを制限酵素で消化してもとの配列を除去し、核酸合成装置において作製したかまたは異なるプラスミドからサブクローニングした新規の配列を挿入することにより、新規の配列を被分析配列中に導入し得る。核酸合成装置を使用して核酸構築物を丸ごと作製することもできる。
核酸構築物は、試料に増幅処理を実施する前に、未知量の被分析核酸を含む試料に添加すべきである。既知量の種々の核酸構築物を添加する試料は、あとで試料中に存在する核酸の濃度を計算し得るよう、当然ながら所定の容量を有するべきである。試料は、核酸量を決定すべき材料を既知容量または既知量で取分けたものを含む必要がある。所定の試験液中の核酸の濃度を決定する場合には、試料は、既知量の問題の試験材料から単離した全核酸を含むべきである。
核酸構築物は、問題の試験液(例えばヒト血清)に核酸単離処理を実施する前または後に添加し得る。核酸の単離方法は記載されており、当業者には公知である。本発明の方法を実施する試料を調製するのに使用し得る核酸単離方法は例えばManiatisら,Molecular Cloning,a laboratory manual,Cold Spring Harbor Laboratoryに記載されている。核酸含有試料を処理する別の方法はBoomら,J.Clin.Microbiol.28:495−503,1990に記載されている。
本発明の好ましい実施態様においては、所定量の試験液から核酸を単離する前に核酸構築物を添加する。こうすると、単離処理の際に場合によっては生じ得る核酸の損失が、結果的に試料中に存在する被分析核酸及び構築核酸の両方の量に反映され得る。従って、問題のもとの試験液中に存在する被分析核酸の量は、得られた結果から直接計算し得る。
核酸構築物を既知量の試験液に、試験液を核酸単離処理する前に添加した場合、核酸単離処理を実施した後に試料に単離対照核酸構築物を添加するとよい。IC(単離対照)配列を添加すると、核酸単離処理の効率を決定することができる。即ち、各試料に対して、しきい値を単離効率に調整し得る。単離対照構築物は、例えば固有の配列を含むことから被分析核酸及び他の核酸構築物とは異なるが、好ましくは同じ効率で増幅される配列であり得る。ICは別の「核酸構築物」と見なし得るが、本発明の好ましい実施態様においては核酸構築物は試験液に核酸単離処理を実施する前に添加されるが、IC配列は核酸単離処理を実施した後に添加される点で異なる。試験液に核酸単離処理を実施する前に明確に定義された分子数の各核酸構築物を添加し、核酸単離処理を実施した後に明確に定義された分子数のICを添加することから、単離処理効率を計算し得る。例えば100分子の特定の核酸構築物を添加し、同じ量のIC分子を添加した場合、単離効率が100%ならば、核酸構築物とICとで(増幅後に)同じシグナルがもたらされる。得られたICシグナルが核酸構築物に対して得られたシグナルの2倍であるならば、核酸単離処理効率は50%でしかなかった(もともと存在した核酸分子の半分が単離処理の際に失われたことを意味する)。これに従ってしきい値を調整し、偽陰性試験結果を得る危険性を低下し得る。
1種以上の核酸構築物をそれぞれ異なる既知量で添加する。核酸構築物は、相互に一定係数(例えば係数10)ずつ異なる一連の量で添加するのが好ましい。例えば3種の核酸構築物QA、QB及びQCを使用する場合、QA 102分子、QB 103分子及びQC 104分子を試料に添加し得る。
試料を、各々が既知容量の1つ以上の反応アリコートに分割し、それらに核酸を種々の量範囲で添加することができる。その場合、各反応アリコートに同じ核酸構築物を添加することが好ましい。例えば2種の反応を使用する場合、「低域」反応と「高域」反応とを実施し得る。核酸構築物の範囲が重複する場合、低域反応アリコートにはQA、QB及びQCを前述のごとき量で添加し、広域反応アリコートにはQA、QB及びQCをそれぞれ104、105及び106分子添加し得る。核酸構築物の量範囲は重複してもよいし、低域と高域とでそれぞれ核酸構築物の量にギャップがあってもよい。1種以上の反応アリコートを使用することは、1種以上の増幅反応を実施する必要があることを意味するが、最少の反応で極めて広範囲の被分析物質濃度をカバーし得るので、従来の核酸定量方法と比較した作業及び時間の節約は尚も十分である。
重複しない量範囲の核酸構築物を使用することの利点は、使用する構築物の数を減らし得る一方で、尚も広い範囲の濃度をカバーし得ることである。被分析物質が核酸構築物量範囲間のギャップに当たる量で存在するならば、試料または反応アリコート中に存在する核酸構築物から発したシグナル範囲と直接比較することはできない。しかしながら、被分析核酸のシグナルが低域シグナルよりは強く高域シグナルよりは弱いことから被分析核酸の量が決定され、かかるデータを用いて濃度を計算し得る。
本発明の方法により種々の範囲の核酸構築物を1つ以上の反応アリコートに添加する場合、被分析核酸の濃度を決定すべき試料を種々の容量のアリコートに分け、かかるアリコートに核酸構築物を添加した後に各アリコートに核酸単離処理を適用することができる。単離処理においては各アリコートを別々に取扱うべきであるが、添加した核酸構築物が全く同じ処理を経て同じ変動を被ることで性能の変動が補正されるが故に、単離の際に起こり得る被分析核酸の損失を補正する必要はない。当然ながら、全量に核酸単離処理を実施し、それを種々の容量のアリコートに分け、そのあと所定範囲の構築物を添加してもよい。
増幅反応を実施する際に起こり得る問題は、例えば同じ実験室で以前に試験した他の試料に由来する核酸分子で試料が汚染され得ることである。この結果、試験結果が偽陽性となったり、定量化の場合には、試料中に存在する核酸分子数の計算に誤りが生じる。
本発明の方法で試験する試料が10〜100分子で汚染されていても、汚染が主に被分析物質分子からなり、試験している試料中の被分析核酸の量が100分子未満であるならば、内部校正直線は変化しないが、被分析核酸の分子数計算には影響がある。試料中の被分析分子数が1000分子未満の場合は、約100〜1000分子で汚染されると内部校正直線はわずかに影響され、試料中に存在する被分析核酸分子数の計算は妨害される。1000分子以上による汚染は校正直線及び計算結果を変化させる。
本発明の好ましい実施態様では、以前に試験した試料または他の試料に由来する核酸分子による試料の汚染を検出し得る。
本発明の方法を使用して1種以上の試料を試験する場合、同じ核酸構築物を全ての試料に使用するが、各々特定の核酸構築物の量を変えれば、汚染を検出し得る。例えば3種の核酸構築物を使用する場合(Qa、Qb及びQc)、試料「A」にはこれらの構築物をQa高、Qb中及びQc低の量で添加し、試料「B」には同じ構築物をQa低、Qb高及びQc中の量で添加し、試料「C」にはQa中、Qb低及びQc高の量で添加するなどとし得る。勿論、同じ組合せの核酸構築物を1つ以上の試料、例えば続けて10の試料に使用してから、別の組合せに変えて使用してもよい。
3種の構築物を使用する場合は、同じ組合せの核酸構築物を再び使用せねばならなくなるまでに最高6種の変形態様が可能である。4種の構築物を使用する場合は最高24種の変形態様が可能となり得るなどとなる。種々の試料に種々の組合せの核酸構築物を使用すると、異なる組合せを使用した試料に由来する核酸材料による汚染が検出可能となる。汚染により、問題の試料における内部校正直線は変化する。校正直線の勾配は別のものとなり、正常データと比較して相関係数が小さくなり、従って汚染として区別可能である。
各試料において1種の構築物をゼロレベルで使用すると(ゼロレベルで使用する構築物は試料ごとに変える)、極めて少量の汚染分子が検出され得る。ゼロ量で添加した特定の構築物が検出可能量で存在することは、この特定の試料が、別の組合せを選択した試料に由来する材料で汚染されていたことを示すことは明らかである。
増幅後の核酸構築物及び被分析核酸の検出は種々の方法で実施し得る。シグナルが表わす増幅された核酸(構築物または被分析物質)の量に対応して異なる測定可能なシグナルを生成する限りは、当分野において公知の多くの検出方法を使用し得る。本発明の方法に使用し得る検出方法としては、酵素及び発光(蛍光、電気化学発光、リン光)現象、例えば金または染料ゲルのごとき固体ラベル使用の検出方法、及び凝集に基づく検出方法が挙げられる。
試料中に存在する被分析核酸の濃度は、検出処理の間に生成されたシグナルによって表わされる被分析核酸及び核酸構築物の相対量から計算し得る。
例えば構築物の配列を表わすシグナル(Q)と被分析物質の配列を表わすシグナル(A)の比の対数log(Q/A)は、試料に加えた構築物の量の対数log(Q−input)の線形関数である。log(Q/A)をQ(input)の関数としてプロットすると直線グラフが得られ、該直線とX軸との交点から被分析核酸の量が容易に得られる(但し、被分析核酸の量が、添加した核酸構築物の量範囲の近傍にある場合)。
本発明の別の実施態様は、一群の試験液において被分析核酸を定量する方法であって、所定量の前記試験液を既知の係数で希釈することを含む方法からなる。試料は、所定範囲内にあると推定される量の被分析核酸を含む前記希釈試験液からとることができる。一群の試験液のそれぞれの被分析核酸の量を決定する場合、全試験液を、所定範囲内にあると推定される濃度に前希釈するとよい。前希釈は、ほとんどの試料が前記範囲内になり、残りの試料は全てが前記範囲より低い濃度を有するかまたは全てが前記範囲より高い濃度を有するように行なうべきである。希釈ステップ後、全試験液に、試料に添加する核酸構築物の量が前記範囲内である前述のごとき本発明の方法を実施する。
一群の試験液から得た前記範囲以下(または以上)である残りの試験液は、別の調整希釈または未希釈試料を用いて再度試験し得る。この方法の利点は、増幅反応が前述した高/低域分離より少なくてよいことである。
本発明の試料中の被分析核酸を定量する方法の別の実施態様においては、試料中に存在する被分析核酸の推定量と同じ範囲内にあると推定される量の核酸構築物を試料に添加し、試料に、被分析核酸及び核酸構築物の両方と反応し得る増幅試薬を使用して核酸増幅処理を実施し、被分析核酸及び核酸構築物から誘導された増幅物の相対量を検出し、前記相対量から前記試料中に存在する被分析核酸の量を推算することからなる。この推算を行った後、同じ試験液から得た第2試料に、添加する核酸構築物の量が第1試料中に存在する被分析核酸の推算量と同じ範囲にある上述のごとき本発明の方法を実施する。
上記方法の利点は、使用する構築物の量範囲をかなり狭く選択することができ、それによって該方法の精度を高めると共に、実施する必要がある増幅反応の数をいっそう少なくすることである。
【図面の簡単な説明】
図1A:実施例1に記載の実験1における核酸構築物及び試料(被分析)核酸の投入量及び増幅量を示す。
図1B:実施例1に記載の実験1に使用した、投入構築物コピー量に対して対数尺でプロットした構築物シグナル及び試料シグナルの比を示す。被分析核酸の量はグラフ内の縦線によりX軸上に示される。
図2A:実施例1に記載の実験2における核酸構築物及び試料(被分析)核酸の投入量及び増幅量を示す。
図2B:実施例1に記載の実験2に使用した、投入構築物コピー量に対して対数尺でプロットした構築物シグナル及び試料シグナルの比を示す。被分析核酸の量はグラフ内の縦線によりX軸上に示される。
図3A:実施例1に記載の実験3における核酸構築物及び試料(被分析)核酸の投入量及び増幅量を示す。
図3B:実施例1に記載の実験3に使用した、投入構築物コピー量に対して対数尺でプロットした構築物シグナル及び試料シグナルの比を示す。被分析核酸の量はグラフ内の縦線によりX軸上に示される。
図4A:実施例1に記載の実験4における核酸構築物及び試料(被分析)核酸の投入量及び増幅量を示す。
図4B:実施例1に記載の実験4に使用した、投入構築物コピー量に対して対数尺でプロットした構築物シグナル及び試料シグナルの比を示す。被分析核酸の量はグラフ内の縦線によりX軸上に示される。
図5A:実施例1に記載の実験5における核酸構築物及び試料(被分析)核酸の投入量及び増幅量を示す。
図5B:実施例1に記載の実験5に使用した、投入構築物コピー量に対して対数尺でプロットした構築物シグナル及び試料シグナルの比を示す。被分析核酸の量はグラフ内の縦線によりX軸上に示される。
図6:1チューブQ−NASBAの動的範囲。定量のために101.44、102.83、104.23及び104.83in vitro生成WT−RNA分子を投入した。全てのWT−RNA量の定量を8〜10回実施した。QA、QB及びQCRNAはそれぞれ104、103及び102RNA分子の量で使用した。
図7:核酸単離前に溶解緩衝液中にQA、QB及びQC内部標準RNAを添加する1チューブQ−NASBAの概略流れ図。
以下、実施例によって本発明を更に説明する。
実施例:
実施例1:
本発明の方法に従って実施される定量アッセイ及びその後の検出の理論的実施例を以下に与える。これらの実験から、本発明のアッセイがどのように実施され得るか及び得られるであろう結果が明らかとなろう。
本発明の方法により実施し得る5つの実験を以下に略述する。これらの実験は、被分析核酸分子の投入量及び増幅する前に添加する核酸構築物の範囲が異なる。
被分析物質及び構築物の投入量を下記の表(表1)に示す。
上記表から判るように、最初の3つの理論的実験においては3種の構築物を添加し(それぞれQA、QB及びQC)、「低域」構築物量及び「高域」構築物量の2種の増幅反応を実施した。かかる実験において低域と高域とは重複していた。これらの2つの範囲の重複点を使用して増幅を比較し得る(増幅が同様に実施されたならば、生成されるシグナルは2つの範囲内にある重複量の構築物に対して同じとなるべきである)。実験4及び5においては2つの範囲の構築物量を使用したが、低域と高域とは重複しなかった。その結果、1つの増幅反応に使用する構築物の量を減らしながら、同じ全量範囲をカバーし得る。
Q−RNA(構築物)及び野生型RNAは、20のランダムなヌクレオチド配列が異なるだけで大きさは同じあり、同じプライマー及び酵素を増幅に使用したので、それらの増幅速度は同じである。従って、各構築物RNAの量と野生型RNAの量との初期の比は増幅の間に変化しない。増幅後の検出処理においては、各増幅物混合物を、野生型、QA、QBまたはQC RNA増幅物を検出するため4つのアッセイに分割する(実験4及び5の増幅物混合物は3つのアッセイに分割しさえすればよい)。
構築物シグナルと野生型シグナルの対数比を構築物RNAの投入量の対数に対して表わすと、直線が期待される。野生型RNAの量はこの直線から計算し得る。上記実験により得られる結果を図1〜5に示す。
各図面の最初のグラフ(a)には、増幅の前と後の種々の構築物の量が表わされており、更に被分析核酸の量も示されている。
各図面の2番目のグラフ(b)は、推定された構築物のシグナルと被分析物質のシグナル(試料シグナル)との対数比を、構築物の投入量の対数の関数として表わしている。被分析核酸分子の投入量はこれらのグラから誘導し得、比が1である縦軸上の点に従属する(横軸上に示された)投入値の対数に従う。
実施例2:
まず、それぞれ200、2000及び20000コピーの3種の核酸構築物QA、QB及びQCを含む定量済の量の構築物HIV−1 gag1 RNA転写物の混合物を作製した。次いで、それぞれ200000、20000、2000、200、20コピーの5種の異なる定量済の量の野生型HIV−1 gag1転写物及びブランクを前記Q構築物RNAの混合物と混合した。
各量のwt−RNAに対して1つずつ6つの増幅反応を標準方法(T.Kievitsら)に従って実施した。
各増幅物から5μlをTBE緩衝液(90mM Tris−ホウ酸、1mM EDTA pH8.4)で100μlに希釈した。各希釈液から5μlを、6.67×SSC緩衝液(0.75M NaCl、0.075Mクエン酸ナトリウムpH7〜8)中の、全ての増幅物を捕獲するためのビオチン−オリゴ3pmol、各々が野生型RNA増幅器または1種の構築物(QA、QBまたはQC)増幅物に特異的な配列を含む種々のトリス(2,2'−ビピリジン)ルテニウムIIキレート標識オリゴヌクレオチド3pmol、及びストレプトアビジン被覆磁性ジナルビーズM280 20μgの混合物15μlを含む試験管に添加した。
WT、QA,QBまたはQC検出のための4種のハイブリダイゼーションアッセイを1種の増幅について実施した。混合物を41℃で、10分ごとに混合しながら30分間ハイブリダイズした。IGENのORIGEN1.5検出系を使用する電気化学発光ECL検出のためのアッセイ緩衝液300μlを添加及び混合した。ORIGEN1.5検出系における実際の検出を製造業者指示に従って実施した。
実施例3:
本実施例においては、3種のQ−RNA内部標準を104、103及び102分子の量でWT−RNA試料中にスパイクするQ−NASBAアッセイを記載する。3種の内部標準RNA分子は、各内部標準に特異的な20ヌクレオチドランダム配列(Van Gemenら,J.Virol.Methods.43,177−188,1993)に特異的なECL標識プローブを使用して区別し得る。NASBA増幅された内部標準及びWT−RNAの比を、ECL検出装置を使用して測定した。
ECLは、電極の表面に光を放射する化学発光標識に基づくものである(Blackburnら,Clin.Chem.37,1534−1539,1991)。シグナル検出は、特別に開発された検出装置を使用して5桁にわたる大きさの動的範囲で定量し得る。ECL法は、ハイブリダイゼーションアッセイにおいてECL標識オリゴヌクレオチドを使用して増幅された核酸を検出するよう適合されている(Kenten,J.H.ら,Clin.Chem.38,873−879,1992)。WT、QA、QB及びQCECLプローブの比活性は既知であるので、WT、QA、QB及びQCNASBA増幅されたRNAの比は、それぞれのプローブのシグナル比から決定し得る。
ECLビーズベースアッセイにおいてQA、QB及びQCシグナルに対するWTシグナルの比から、WT投入RNAの初期量を読取った。
Q−構築物を調製しアッセイを実施した方法は本実施例の「材料及び方法」セクションに記載する。
種々の量のin vitro生成WT−RNAを定量するために、ECL検出を含む1チューブQ−NASBA法を使用した。それぞれ投入量として101.44、102.83、104.23及び104.83の初期WT−RNA分子を使用し、3種の異なるアッセイを実施した。ECLビーズベースのアッセイを使用するQ−NASBAは、1回のNASBA増幅において104QARNA分子、103QBRNA分子及び102QCRNA分子とWT−RNAを混合することにより定量した各WT−RNA量に対して8〜10回実施した。実施した定量の結果(平均±標準偏差)は、それぞれ101.44、102.83、104.23及び104.83のWT−RNA分子を初期投入すると、101.54±0.23、102.68±0.21、104.16±0.20及び104.81±0.23であった。
実施したアッセイの結果を図6に示す。この図から判るように、1チューブ定量法に使用された最低のQ−RNA量の1/10まで信頼性をもってWT−RNA量を定量し得る。
材料及び方法
プラスミド及びRNA合成
遺伝子組換えDNA法は標準方法に従った(Sambrook,J.ら,Molecular cloning.A laboratory manual,Cold Spring Harbor,NY:Cold Spring Harbor Lab.,1989,第2版)。22ヌクレオチドランダム配列(位置1429−1451 HIV−1pv22配列(Muesing,M.A.ら,Nature 313,450−458,1985)を含むプラスミドpGEM3RNA(Van Gemenら,1993)を使用し、定量的NASBA増幅と関連のないことから、多重クローニング部位のAcc I部位とHIV−1クローン化配列(位置1691−2105 HIV−1 pv22)の一部とを欠失させた。このプラスミドにおいて、ランダムな配列を5'ATG.GAA.GGT.CGC.ATA.TGA.GTA.A3'または5'ATA.AGC.ACG.TGA.CTG.AGT.ATG.A3'で置き換え、それぞれpGEM3QBδgag3及びpGEMQCδgag3を生成した。プラスミドpGEM3RANの呼び名をpGEM3QAと変えた。
SP6 RNAポリメラーゼ(Sambrook,1989)を使用し、pGEM3p24(WT−RNA)、pGEM3QA(QA−RNA)、pGEM3QBδgag3(QB−RNA)及びpGEM3QCδgag3(QC−RNA)からin vitro RNAを生成した。pGEM3p24及びpGEM3QAのクローン化挿入物をベクターpGEM4中に再クローニングしてpGEM4p24及びpGEM4QAを生成した。これらのプラスミドを使用し、T7 RNAポリメラーゼ(Sambrook,1989)を用いてin vitro RNAを作製した。in vitro RNAの長さは、プラスミドpGEMp24(WT−RNA)及びpGEM3QA(QA−RNA)が1514ヌクレオチド、pGEM3QBδgag3(QB−RNA)及びpGEMQCδgag3(QC−RNA)が1090ヌクレオチドであった。RNAをDNaseで処理してプラスミドDNAを除去し、アニオン交換カラム(Qiagen)において精製した。in vitro RNAを分光光度法により定量し、水で所望の濃度に希釈した。全てのRNA溶液を−20℃で保存した。
核酸単離
Boomらの方法(Boom,R.ら,J.Clin.Microbiol.28,495−503,1990;Van Gemenら,1993)に従って血漿から核酸を単離した。最終的に、100μlの血漿の核酸を100μlの水中に再懸濁させ、−70℃で保存した。
NASBA
AMV逆転写酵素をSeikagakuから購入したことを除き、全ての酵素はPharmaciaから購入した。BSAはBoehringer Mannheimから購入した。23μlのNASBA反応混合液(25μl反応混合液中の終濃度:40mM Tris,pH8.5,12mM MgCl2,42mM KCl,15%v/v DMSO,1mM 各dNTP,2mM 各NTP,0.2μmプライマー1:5'AAT.TCT.AAT.ACG.ACT.CAC.TAT.AGG.GTG.CTA.TGT.CAC.TTC.CCC.TTG.GTT.CTC.TCA,0.2μmプライマー2:5'AGT.GGG.GGG.ACA.TCA,AGC,AGC.CAT.GCA.AA、0.2〜2μl野生型RNA及び2μl in vitroQ−RNA(Kievits,Tら,J.Virol.Methods.35,273−286,1991;Van Gemenら,1993))を65℃で5分間インキュベートし、RNAの2次構造を不安定化し、次いで41℃に冷却してプライマーをアニーリングした。2μlの酵素混合物(0.1μg/μl BSA,0.1単位RNase H,40単位T7 RNAポリメラーゼ及び8単位AMV逆転写酵素)を添加することにより増幅を開始した。41℃で90分間反応物をインキュベートした。全ての定量において2つの陰性対照を加えた。
酵素ビーズベースの検出
前述の定量方法(Van Gemenら,1993)においてNASBA増幅したWT及びQARNAを検出し、その比を決定するため、ビーズベース酵素アッセイを開発した。ストレプトアバジンで被覆した2.8μmポリスチレン常磁性ビーズ(Dynal Inc.,Great Neck,N.Y.,USA)100μlを200μl 1×PBS,0.1%BSAで2回洗浄し、100μl 1×PBS,0.1%BSA中に再懸濁させた。洗浄したビーズを、300pmolのHIV−1特異的ビオチニル化捕獲プローブ(5'TGT.TAA.AAG.AGA.CCA.TCA.ATG.AGG.A)と一緒に室温で1時間インキュベートし、まず200μl 5×SSPE,0.1%SDSで1回、次いで200μl 1×PBS,0.1%BSAで1回洗浄した。ビーズを100μl 1×PBS,0.1%BSA中に再懸濁させた。
5μlビーズ、5μlNASBA反応混合液及び50μlハイブリダイゼーション緩衝液(5×SSPE,0.1%SDS,0.1%ブロッキング試薬,10μg/mlサケ精子DNA)を45℃で30分間インキュベートした。ビーズを100μl 2×SSC,0.1%BSAで2回洗浄し、次いで、そのうちの10%をHRP標識したWTまたはQ検出オリゴヌクレオチドプローブ5×10-7μmolと一緒に50μlのハイブリダイゼーション緩衝液中45℃で30分間インキュベートした。
ビーズ捕獲オリゴヌクレオチド−NASBA増幅されたWTまたはQARNA検出プローブ複合体を、まず100μl 2×SSC,0.1%BSAで1回、次いで100μlTBSTで1回、更に100μlTBSで2回洗浄した。次に、100μlの有色基質(TMB/ペルオキシド溶液)をビーズに加え、室温で3分間インキュベートした。50μlの250mMオキサレートを添加することにより呈色反応を停止させた。マイクロプレートリーダー(Micro SLT 510,Organon Teknika,Boxtel,オランダ)において150μl呈色反応物の450nmでの吸収を読み取った。
吸収値をバックグラウンドシグナル(即ち陰性対照)に対して補正し、シグナルを、独立に増幅されたWTまたはQARNAによって得られたシグナルのパーセントとして計算した。
ECLビーズベースの検出
水で20倍に希釈したNASBA増幅RNA(WT、QA、QB及びQC)5μlを、HIV−1特異的ビオチニル化捕獲プローブ(酵素ビーズベース検出参照)20μl(3.3pmol)、WT、QA、QBまたはQCNASBA増幅RNAのいずれかに特異的なECL(トリス[2,2−ビピリジン]ルテニウム[II]複合体)標識オリゴヌクレオチドプローブ3.3pmol、ストレプトアビジン被覆磁性ビーズ20μg(2μl)と一緒に5×SSC中41℃で30分間インキュベートした。インキュベーションの間、10分おきに撹拌して試験管を混合した。次いで300μlのTPA溶液(100mMトリプロピルアミン,pH=7.5)を添加し、ハイブリダイゼーション混合物をOrigen 1.5 ECL検出装置(Organon Teknika,Boxtel,オランダ)に仕込んだ。
実施例4
核酸単離効率はWT−RNA定量結果に影響し得る。単離時の核酸損失の影響を阻止するため、QA,QB及びQCRNAを第1ステップたる核酸単離(図7)の前または間に添加することができる。このことを、in vitro培養ウイルスストック液から単離したin vitro生成WT−RNA及びHIV−1 RNA 104分子を使用して試験した。in vitro生成WT−RNA及びHIV−1ウイルスストックRNAを、第1ステップたる核酸単離で(即ち溶解緩衝液中に)QA,QB及びQCRNAを添加した場合としない場合とで再単離した。使用した方法は実施例3の「材料及び方法」セクションに記載されている。
増幅時にQA,QB及びQCを添加することにより、もともと単離されているWT−RNA及びHIV−1ウイルスストックRNAを定量すると(即ち対照定量)、in vitro生成WT−RNA及びHIV−1ウイルスストックRNAについてそれぞれ3.3×104及び2.1×104の結果となった。再単離処理前にQA,QB及びQCRNAを添加して再単離したRNAを定量すると、in vitro生成WT−RNA及びHIV−1ウイルスストックRNAについてそれぞれ2.5×104及び1.5×104となった。しかしながら、再単離処理後にQA,QB及びQCRNAを添加して再単離されたRNAを定量した場合は、in vitro生成WT−RNA及びHIV−1ウイルスストックRNAについてそれぞれ4.7×103及び2.0×103となった。これは、RNAの再単離効率が約10%であることを示している。しかしながら、再単離前にQA,QB及びQCを添加すると、単離される核酸の絶対量に関係なく比WT:QA:QB:QCRNAが一定となるため、RNA定量は対照定量に等しい結果となる。
結果は表2に示す。
実施例5
本発明の方法を既に記載されているQ−NASBA法(Van Gemenら,1993;Jurriaansら,提出,1993)と比較した。Q−NASBA法では1種のQ−RNAしか使用せず、5対数の動的範囲を得ようとするならば、1臨床(野生型)試料当たり少なくとも6つの増幅反応、即ち内部標準を添加しない陽性WT対照反応1つと、内部標準RNA分子の量を段階的に増量した(102〜106)反応5つとを必要とする。
数種の区別可能な内部標準を1つの増幅にスパイクする本発明の方法によれば、増幅反応数を減少し得る。
これに対して、ただ1種のQ−RNAを酵素標識プローブと組み合わせて使用する場合(QA)、別個の増幅において種々の濃度のQ−RNAを使用し、WT−シグナル対Q−シグナルの比から初期WT−RNA濃度を導出する必要がある。
これら2つの方法を、モデル系及びHIV−1感染個体の血漿試料を使用して比較した。
3人の無症候HIV−1感染個体の血漿試料0.1mlを分析することにより、QA、QB及びQCRNAを使用する1チューブQ−NASBAを、1回の定量で6つの増幅を使用する既に記載されているQ−NASBA法(Van Gemenら,1993)と比較した。同じ実験で、核酸単離の前と後とにQA、QB及びQCを添加したときの差も調査した(表3)。WT−RNAを1チューブQ−NASBA法によって定量した場合、WT−RNA量は1チューブ定量法に使用された最低Q−RNA量の1/10まで信頼性をもって定量し得る。
溶解緩衝液に添加する場合はQA、QB及びQCを(それぞれ6×105、6×104及び6×103で)0.1mlの血漿に添加すると、信頼定量下限は血漿0.1ml当たり6×102RNAコピーであった。1μl血漿等価物の核酸を増幅に使用する場合は、単離後の核酸にQA、QB及びQCを(それぞれ104、103及び102)で添加し、血漿0.1ml当たり103RNAコピーの信頼定量下限が得られた。両ケースで、1チューブ定量法に使用される最低Q−RNA量の1/10まで信頼性をもってWT−RNAを定量し得る。1μl血漿等価物の核酸を増幅に使用する場合で、最低内部標準Q−RNA定量を102として1回の定量で6つの増幅を行う方法によると、血漿0.1ml当たり104RNAコピーの信頼定量下限が得られた。この結果は、この特定の実施態様においては核酸単離効率が100%(患者1)と50%(患者2)の間で変動したことを示す。患者3は常に信頼定量限界を下回ったが、核酸単離前に溶解緩衝液にQA、QB及びQCを添加する1チューブQ−NASBAアッセイにおいてこの限界は最も正確(即ち最低)であった(表3)。
実施例6:
最後に、核酸単離前にQA、QB及びQCを溶解緩衝液に加える1チューブQ−NASBAの再現性を、ウイルス粒子量を電子顕微鏡により定量したin vitro培養HIV−1ウイルスストック液(Layne,S.P.ら,Virology.189,695−714,1992)を使用して試験した。2.9×1010ウイルス粒子/mlを含むHIV−1ウイルスストックを水で10,000に希釈し、100μlの希釈ウイルスストック液にQA、QB及びQCを(それぞれ6×105、6×104及び6×103で)添加し、4.35×1010RNA分子/mlの測定値を得た。結果を表4に示す。RNA定量の平均±標準偏差は1010.64±0.05であり、1チューブQ−NASBAの精度は、このin vitro培養ウイルスストック液の定量の場合は0.1対数値内であったことが判る(実施した方法は実施例3の材料及び方法セクションに記載されている)。
表4から、本発明の方法によれば、in vitro培養ウイルスストック液中のHIV−1 RNAを定量する場合には0.1対数値以内のアッセイ精度が得られることが判る。この結果から、0.4対数値以上のHIV−1 RNA負荷の差の信頼性のある測定が可能である。
The present invention relates to an improved nucleic acid quantification method. Quantification of nucleic acids is extremely important in various research and diagnostic fields. Quantitation of nucleic acids is also an important tool in understanding gene regulation and can be used to monitor therapeutic effects. The amount of a particular nucleic acid sequence present in a sample, such as, for example, human blood or other body fluids, can provide valuable information, for example, about the disease state of a person infected with a given virus and the efficacy of treatment with a given drug.
Various methods for quantitatively amplifying nucleic acids have been described. International Patent Application WO 91/02817 describes a method for quantifying nucleic acids using the polymerase chain reaction (PCR) as an amplification technique. The method involves adding to the sample a standard nucleic acid segment that can react with the same primers used to amplify the unknown amount of target nucleic acid present in the sample. After amplification, the amount of each of the two PCR products is measured, and the amount of the target segment in the original sample is quantified by extrapolating to a standard curve. A standard curve is generated by plotting the amount of standard segment generated in the polymerase chain reaction against a variable known amount of nucleic acid that was present before amplification.
Adding other sequences that can be amplified simultaneously with the analyte nucleic acid to a sample containing the analyte nucleic acid can be performed by Becker and Hahlbrock (N ucleic Acids Research, Vol. 17, Number 22,1989)It is described in. The method described by Becker and Hahlbrock uses a method to convert various known amounts of an internal standard containing a nucleic acid sequence (point mutation) that differs from the analyte nucleic acid by one nucleotide by a known volume of a sample fraction containing an unknown amount of the analyte nucleic acid. In addition to the above, a nucleic acid quantification method of co-amplifying with a nucleic acid to be analyzed by PCR. That is, the same portion of the total RNA is "spiked" by a stepwise reduced amount of a known amount of an internal standard RNA. A specific restriction site is created by introducing a single base change into the internal standard sequence, the mutated sequence is cut with an appropriate restriction enzyme, and the sample containing the amplified nucleic acid is loaded onto an electrophoresis gel. Multiply. Nucleic acids are quantified by comparing bands in the gel representing (a portion of) the mutant train and the nucleic acid to be analyzed. One of the drawbacks of this method is that incomplete digestion of the internal standard with restriction enzymes can lead to inaccurate determination of the amount of nucleic acid present.
Becker and Hahlbrock use an internal standard as a marker in their quantification method, where they non-competitively amplify both the analyte and the marker.
Further, a nucleic acid quantification method for adding a nucleic acid sequence of a known number of molecules corresponding to a target nucleic acid to a sample containing an unknown amount of the target nucleic acid sequence is described in co-pending European Patent Application Publication No. 525882 in the name of the present applicant. Are also described. The method described in EP-A-525882 is based on amplifying nucleic acids from a sample containing an unknown concentration of a wild-type target nucleic acid to which a known amount of a well-defined mutant sequence has been added. I have. Amplification is performed using a set of primers that can hybridize to the target sequence and the mutated sequence. The competitive amplification described in EP-A-525882 can be performed using a fixed amount of sample and a serial dilution series of the mutant sequence or vice versa.
The method involves adding a well-defined standard sequence to the amplification mixture. In order to obtain accurate and reliable measurements using the above methods, a number of amplification reactions must be performed. It is necessary to divide the sample into various known portions and add to them various known amounts of standard nucleic acid. Also, according to the method described in International Patent Application WO 91/02817, it is necessary to generate a standard curve from a dilution series, which requires considerable effort, and also involves actual amplification of the target nucleic acid and amplification of the standard curve. Is performed separately, the estimation of the amount of nucleic acid present may be inaccurate.
The above method requires considerable effort and time, since a large number of amplification reactions must be performed to be able to determine the amount of nucleic acid in an accurate and reliable manner. Therefore, there is a need for a nucleic acid quantification method that requires less labor and time. The present invention provides such a method.
The present invention is a method for quantifying an analyte nucleic acid in a sample,
Adding to the sample different amounts of different diffusion constructs which can be distinguished from the analyte nucleic acid but can be amplified simultaneously with the analyte nucleic acid;
Performing a nucleic acid amplification treatment on the sample using an amplification reagent capable of reacting with both the analyte nucleic acid and the nucleic acid construct;
Detecting the relative amounts of the analyte nucleic acid and the amplification derived from each nucleic acid construct; and
Calculating the amount of the nucleic acid to be analyzed from the relative amount;
A method comprising: According to the method of the present invention, various nucleic acid constructs are added to a sample.
Each nucleic acid construct is different and the nucleic acid constructs are distinguishable from each other and from the nucleic acid being analyzed. Nucleic acid constructs are similar to each other and to the nucleic acid to be analyzed in that all can react with the same amplification reagent. By amplification reagent is meant, in particular, one or more amplification primers capable of hybridizing to the nucleic acid to be analyzed and the nucleic acid construct. Other amplification reagents include essential enzymes used in various amplification techniques known in the art, and conventional reagents used in amplification processes such as nucleic acid polymerases. The method of the present invention may be used for any type of amplification process, for example, the so-called polymerase chain reaction (PCR) as described in US Patent Nos. 4,683,195 and 4,683,202. Another nucleic acid amplification method is "Nucleic acid sequence-based amplification (NASBA)" as described in European Patent Application No. 0,329,822.
The nucleic acid construct used in the method of the present invention is a nucleic acid sequence that is similar to the nucleic acid to be analyzed in that it can react with the same amplification reagent. Accordingly, each nucleic acid construct should at least include a sequence that is also present in the nucleic acid to be analyzed and to which the nucleic acid amplification primers used can anneal. The nucleic acid constructs used in the method of the invention can be distinguished from the nucleic acids to be analyzed and from each other. This can be achieved by constructing the nucleic acid constructs such that each construct contains a unique distinguishable sequence that is not present in any of the other nucleic acid constructs used and the nucleic acid being analyzed. Preferably, the unique distinguishable sequence is a random sequence containing, for example, about 20 nucleotides, and a nucleic acid construct is used that maintains the same length and nucleotide composition of the construct and the analyte nucleic acid. Detection involves amplification of the analyte nucleic acid and nucleic acid construct present in the sample, followed by the use of various detection probes, each of which can recognize only one of the unique sequences present in the nucleic acid construct. Of the nucleic acid constructs can be measured separately. Of course, there are other ways to construct a nucleic acid construct to be unique. However, preferably, the nucleic acid construct should not be mutated so as to prevent amplification. In the method of the present invention, it is preferable to use a nucleic acid construct that can be amplified with the same efficiency as the analyte nucleic acid, otherwise, accurate calculations will be based on the amount of the analyte nucleic acid and the constructed nucleic acid present in the sample after amplification. Is difficult to do.
A nucleic acid construct is a polynucleotide that can be made by various methods known in the art. Nucleic acid constructs can be made, for example, by various recombinant DNA methods. For example, a plasmid containing the sequence to be analyzed is digested with a restriction enzyme to remove the original sequence, and the new sequence is inserted by inserting a new sequence prepared in a nucleic acid synthesizer or subcloned from a different plasmid. It can be introduced into the analysis sequence. An entire nucleic acid construct can also be prepared using a nucleic acid synthesizer.
The nucleic acid construct should be added to the sample containing the unknown amount of the nucleic acid to be analyzed before performing the amplification process on the sample. The sample to which the known amounts of the various nucleic acid constructs are added should of course have a given volume so that the concentration of the nucleic acid present in the sample can be calculated later. The sample must contain a known volume or amount of the material whose nucleic acid content is to be determined. When determining the concentration of nucleic acid in a given test solution, the sample should contain a known amount of total nucleic acid isolated from the test material in question.
The nucleic acid construct may be added to the test solution in question (eg, human serum) before or after performing the nucleic acid isolation procedure. Methods for isolating nucleic acids have been described and are known to those skilled in the art. Nucleic acid isolation methods that can be used to prepare samples for performing the methods of the invention are described, for example, in Maniatis et al., Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratory. Another method for processing nucleic acid-containing samples is described in Boom et al., J. Clin. Microbiol. 28: 495-503, 1990.
In a preferred embodiment of the present invention, the nucleic acid construct is added before isolating the nucleic acid from a predetermined amount of the test solution. In this way, any loss of nucleic acid that may occur during the isolation process can be reflected in the amount of both the analyte nucleic acid and the constructed nucleic acid present in the sample. Thus, the amount of nucleic acid to be analyzed present in the test solution at issue can be calculated directly from the results obtained.
When the nucleic acid construct is added to a known amount of the test solution before the test solution is subjected to the nucleic acid isolation treatment, the isolation control nucleic acid construct may be added to the sample after performing the nucleic acid isolation treatment. The addition of an IC (isolation control) sequence can determine the efficiency of the nucleic acid isolation process. That is, for each sample, the threshold can be adjusted to the isolation efficiency. The isolated control construct can be a sequence that differs from the analyte nucleic acid and other nucleic acid constructs, for example, by including a unique sequence, but that is preferably amplified with the same efficiency. Although IC can be considered as another `` nucleic acid construct '', in a preferred embodiment of the invention the nucleic acid construct is added to the test solution before performing the nucleic acid isolation procedure, whereas the IC sequence is subjected to the nucleic acid isolation procedure. It differs in that it is added after the addition. Since each nucleic acid construct having a clearly defined number of molecules is added to the test solution before performing the nucleic acid isolation treatment, and an IC having a clearly defined number of molecules is added after performing the nucleic acid isolation treatment, The efficiency of the isolation process can be calculated. For example, if 100 molecules of a particular nucleic acid construct are added and the same amount of IC molecules is added, 100% isolation efficiency will result in the same signal (after amplification) between the nucleic acid construct and IC. If the resulting IC signal was twice that obtained for the nucleic acid construct, the efficiency of the nucleic acid isolation process was only 50% (half of the originally existing nucleic acid molecules during the isolation process). Means lost). Adjusting the threshold accordingly may reduce the risk of obtaining false negative test results.
One or more nucleic acid constructs are each added in different known amounts. Preferably, the nucleic acid construct is added in a series of amounts that differ from each other by a constant factor (eg a factor of 10). For example, when using three nucleic acid constructs QA, QB and QC,
The sample can be divided into one or more reaction aliquots, each of known volume, to which nucleic acid can be added in varying amounts. In that case, it is preferred to add the same nucleic acid construct to each reaction aliquot. For example, if two reactions are used, a "low pass" reaction and a "high pass" reaction may be performed. If the range of nucleic acid constructs overlaps, QA, QB and QC are added to the low-pass reaction aliquot in the amounts described above, and QA, QB and QC are added to theFour,TenFiveAnd 106Molecules can be added. The amount ranges of the nucleic acid constructs may overlap, and there may be gaps in the amount of the nucleic acid construct between the low band and the high band. The use of one or more reaction aliquots means that one or more amplification reactions need to be performed, but the ability to cover a very wide range of analyte concentrations with a minimal number of reactions requires the use of conventional nucleic acids. The work and time savings compared to the quantification method are still sufficient.
The advantage of using non-overlapping amounts of the nucleic acid constructs is that they can cover a broader range of concentrations while reducing the number of constructs used. If the analyte is present in an amount that falls in the gap between the nucleic acid construct amount ranges, it cannot be compared directly with the signal range emitted from the nucleic acid construct present in the sample or reaction aliquot. However, since the signal of the nucleic acid to be analyzed is stronger than the low-frequency signal and weaker than the high-frequency signal, the amount of the nucleic acid to be analyzed is determined, and the concentration can be calculated using such data.
When adding a range of nucleic acid constructs to one or more reaction aliquots according to the method of the present invention, the sample for which the concentration of the nucleic acid to be analyzed is to be determined is divided into aliquots of various volumes and the nucleic acid construct is added to such aliquots. Thereafter, a nucleic acid isolation procedure can be applied to each aliquot. In the isolation process, each aliquot should be handled separately, but the added nucleic acid construct undergoes the same process and undergoes the same variation to compensate for variations in performance, which may result in potential losses during isolation. There is no need to correct for loss of the analyzed nucleic acid. Of course, the nucleic acid isolation procedure may be performed on the entire volume, divided into aliquots of various volumes, and then a range of constructs may be added.
A potential problem when performing amplification reactions is that the sample can be contaminated, for example, with nucleic acid molecules from other samples previously tested in the same laboratory. As a result, if the test result is false positive or quantified, an error occurs in the calculation of the number of nucleic acid molecules present in the sample.
Even if the sample to be tested by the method of the present invention is contaminated with 10 to 100 molecules, if the contamination mainly consists of the analyte molecules and the amount of the nucleic acid to be analyzed in the sample being tested is less than 100 molecules. If the internal calibration straight line does not change, the calculation of the number of molecules of the nucleic acid to be analyzed is affected. If the number of molecules to be analyzed in the sample is less than 1000 molecules, contamination with about 100 to 1000 molecules will slightly affect the internal calibration straight line and hinder the calculation of the number of analyte nucleic acid molecules present in the sample. . Contamination with more than 1000 molecules changes the calibration line and the calculation results.
In a preferred embodiment of the present invention, contamination of a sample by nucleic acid molecules from previously tested or other samples may be detected.
When testing one or more samples using the methods of the present invention, the same nucleic acid construct is used for all samples, but varying the amount of each particular nucleic acid construct can detect contamination. For example, if three nucleic acid constructs are used (Qa, Qb, and Qc), sample "A" contains these constructs in QaHigh, QbDuring ~And QcLowAnd the same construct was added to sample "B" in Qa.Low, QbHighAnd QcDuring ~Of the sample “C” and QaDuring ~, QbLowAnd QcHighAnd the like. Of course, the same combination of nucleic acid constructs may be used for one or more samples, eg, 10 samples in a row, and then used in another combination.
If three constructs are used, up to six variants are possible before the same combination of nucleic acid constructs must be used again. If four constructs are used, up to 24 variants may be possible, and so on. The use of different combinations of nucleic acid constructs in different samples allows for detection of contamination by nucleic acid material from samples using different combinations. Contamination changes the internal calibration line in the sample in question. The slope of the calibration straight line is different and has a lower correlation coefficient compared to the normal data and is therefore distinguishable as contamination.
If one construct is used at zero level in each sample (the construct used at zero level varies from sample to sample), very small amounts of contaminating molecules can be detected. It is clear that the presence of a particular construct, added at zero amount, in a detectable amount indicates that this particular sample was contaminated with material from a sample selected for another combination.
Detection of the nucleic acid construct and the nucleic acid to be analyzed after the amplification can be performed by various methods. Many detection methods known in the art can be used, so long as they produce a different measurable signal corresponding to the amount of amplified nucleic acid (construct or analyte) represented by the signal. Detection methods that can be used in the method of the present invention include enzyme and luminescence (fluorescence, electrochemiluminescence, phosphorescence) phenomena, such as detection methods using solid labels such as gold or dye gels, and detection methods based on aggregation. Can be
The concentration of the analyte nucleic acid present in the sample can be calculated from the relative amounts of the analyte nucleic acid and the nucleic acid construct represented by the signal generated during the detection process.
For example, the log (Q / A) of the ratio of the signal (Q) representing the sequence of the construct to the signal (A) representing the sequence of the analyte is the log of the amount of the construct added to the sample (Q-input). It is a linear function. When log (Q / A) is plotted as a function of Q (input), a straight line graph is obtained, and the amount of the nucleic acid to be analyzed can be easily obtained from the intersection of the straight line and the X axis (however, the amount of the nucleic acid to be analyzed is , Near the amount range of the added nucleic acid construct).
Another embodiment of the present invention comprises a method for quantifying a nucleic acid to be analyzed in a group of test solutions, comprising diluting a predetermined amount of said test solution by a known factor. A sample can be taken from the diluted test solution containing an amount of the nucleic acid to be analyzed presumed to be within a predetermined range. When determining the amount of each nucleic acid to be analyzed in a group of test solutions, the entire test solution may be pre-diluted to a concentration presumed to be within a predetermined range. The pre-dilution should be performed so that most samples fall within the range and all remaining samples have concentrations below the range or all have concentrations above the range. After the dilution step, the method of the present invention is performed on all test solutions as described above, wherein the amount of the nucleic acid construct to be added to the sample is within the above range.
Remaining test solutions from the group of test solutions that are below (or above) the above range can be tested again with another adjusted diluted or undiluted sample. An advantage of this method is that the amplification reaction can be less than the high / low pass separation described above.
In another embodiment of the method of the present invention for quantifying an analyte nucleic acid in a sample, the nucleic acid construct is added to the sample in an amount estimated to be in the same range as the estimated amount of the analyte nucleic acid present in the sample. The sample is then subjected to a nucleic acid amplification treatment using an amplification reagent capable of reacting with both the analyte nucleic acid and the nucleic acid construct, and detecting the relative amounts of the analyte nucleic acid and the amplified product derived from the nucleic acid construct, Estimating the amount of the analyte nucleic acid present in the sample from the relative amounts. After performing this estimation, the method of the present invention as described above, wherein the amount of the nucleic acid construct to be added to the second sample obtained from the same test solution is in the same range as the estimated amount of the analyte nucleic acid present in the first sample. Is carried out.
The advantage of the above method is that the range of the amount of construct used can be selected quite narrow, thereby increasing the accuracy of the method and further reducing the number of amplification reactions that need to be performed.
[Brief description of the drawings]
FIG. 1A: Input amount and amplification amount of nucleic acid construct and sample (analyte) nucleic acid in Experiment 1 described in Example 1.
FIG. 1B: Shows the ratio of construct signal and sample signal plotted on a logarithmic scale against input construct copy amount used for Experiment 1 described in Example 1. The amount of the analyte nucleic acid is indicated on the X-axis by a vertical line in the graph.
FIG. 2A: Input amount and amplification amount of nucleic acid construct and sample (analyte) nucleic acid in
FIG. 2B shows the ratio of construct signal and sample signal plotted on a logarithmic scale against the amount of input construct copy used for
FIG. 3A: Input amount and amplification amount of nucleic acid construct and sample (analyte) nucleic acid in
FIG. 3B shows the ratio of construct signal and sample signal plotted on a logarithmic scale against the amount of input construct copy used in
FIG. 4A: Input amount and amplification amount of nucleic acid construct and sample (analyte) nucleic acid in
FIG. 4B shows the ratio of construct signal and sample signal plotted on a logarithmic scale against the amount of input construct copy used for
FIG. 5A: Input amount and amplification amount of nucleic acid construct and sample (analyte) nucleic acid in
FIG. 5B: Shows the ratio of construct signal and sample signal plotted on a logarithmic scale against input construct copy amount used for
Figure 6: Dynamic range of 1 tube Q-NASBA. 10 for quantification1.44,Ten2.83,Ten4.23And 104.83In vitro generated WT-RNA molecules were introduced. All WT-RNA amounts were quantified 8 to 10 times. QA, QBAnd QCRNA is 10 eachFour,TenThreeAnd 10TwoUsed in the amount of RNA molecules.
Figure 7: Q in lysis buffer prior to nucleic acid isolationA, QBAnd QC1 is a schematic flow chart of one-tube Q-NASBA to which an internal standard RNA is added.
Hereinafter, the present invention will be further described with reference to examples.
Example:
Example 1:
Theoretical examples of quantitative assays and subsequent detection performed according to the methods of the invention are provided below. These experiments will clarify how the assays of the present invention can be performed and the results that will be obtained.
The five experiments that can be performed by the method of the present invention are outlined below. These experiments differ in the input amounts of nucleic acid molecules to be analyzed and the range of nucleic acid constructs added before amplification.
The input amounts of the analyte and the construct are shown in the following table (Table 1).
As can be seen from the above table, in the first three theoretical experiments, three constructs were added (QA, QB and QC respectively) and two amplifications of the "low" construct amount and the "high" construct amount were performed. The reaction was performed. In such an experiment, the low range and the high range overlapped. Amplifications can be compared using these two ranges of overlap (if the amplification was performed similarly, the signal generated should be the same for overlapping amounts of constructs within the two ranges) Is). In
The Q-RNAs (constructs) and wild-type RNAs are the same size except for the 20 random nucleotide sequences, and their amplification rates are the same because the same primers and enzymes were used for amplification. Thus, the initial ratio of the amount of each construct RNA to the amount of wild-type RNA does not change during amplification. In the post-amplification detection process, each amplificate mixture is divided into four assays to detect wild-type, QA, QB or QC RNA amplicons (the amplificate mixture in
If the log ratio of the construct signal to the wild-type signal is expressed relative to the log of the input of construct RNA, a straight line is expected. The amount of wild-type RNA can be calculated from this line. The results obtained from the above experiment are shown in FIGS.
The first graph (a) in each figure shows the amounts of the various constructs before and after amplification, as well as the amounts of nucleic acids to be analyzed.
The second graph (b) in each figure shows the log ratio of the estimated construct signal and the analyte signal (sample signal) as a function of the log of the construct input. The input of the analyte nucleic acid molecule can be derived from these graphs and follows the logarithm of the input (shown on the horizontal axis) depending on the point on the vertical axis where the ratio is 1.
Example 2:
First, a mixture of quantified amounts of the construct HIV-1 gag1 RNA transcript containing 200, 2000 and 20,000 copies of each of the three nucleic acid constructs QA, QB and QC was made. Five different quantified amounts of wild-type HIV-1 gag1 transcript and blanks of 200,000, 20000, 2000, 200, and 20 copies, respectively, were then mixed with the mixture of Q construct RNAs.
Six amplification reactions, one for each amount of wt-RNA, were performed according to standard methods (T. Kievits et al.).
5 μl from each amplification was diluted to 100 μl with TBE buffer (90 mM Tris-borate, 1 mM EDTA pH 8.4). 5 μl from each dilution is 3 pmol of biotin-oligo to capture all amplifications in 6.67 × SSC buffer (0.75 M NaCl, 0.075 M sodium citrate pH 7-8), each with a wild-type RNA amplifier or 15 μl of a mixture of 3 pmol of various tris (2,2′-bipyridine) ruthenium II chelate-labeled oligonucleotides containing a sequence specific to one construct (QA, QB or QC) amplification and 20 μg of streptavidin-coated magnetic dinal beads M280 Was added to the test tube containing.
Four hybridization assays for WT, QA, QB or QC detection were performed on one amplification. The mixture was hybridized at 41 ° C. for 30 minutes with mixing every 10 minutes. 300 μl of assay buffer for electrochemiluminescent ECL detection using IGEN's ORIGEN 1.5 detection system was added and mixed. Actual detection in the ORIGEN 1.5 detection system was performed according to the manufacturer's instructions.
Example 3:
In this example, three Q-RNA internal standards wereFour,TenThreeAnd 10TwoA Q-NASBA assay spiking in WT-RNA samples in molecular quantities is described. The three internal standard RNA molecules were distinguished using an ECL-labeled probe specific for a 20 nucleotide random sequence specific to each internal standard (Van Gemen et al., J. Virol. Methods. 43, 177-188, 1993). obtain. The ratio of the NASBA amplified internal standard and WT-RNA was measured using an ECL detector.
ECL is based on a chemiluminescent label that emits light on the surface of the electrode (Blackburn et al., Clin. Chem. 37, 1534-1539, 1991). Signal detection can be quantified over a dynamic range of five orders of magnitude using specially developed detectors. The ECL method has been adapted to detect amplified nucleic acids using ECL-labeled oligonucleotides in hybridization assays (Kenten, J.H. et al., Clin. Chem. 38, 873-879, 1992). WT, QA, QBAnd QCSince the specific activity of the ECL probe is known, WT, QA, QBAnd QCThe ratio of NASBA amplified RNA can be determined from the signal ratio of each probe.
Q in ECL bead-based assaysA, QBAnd QCFrom the ratio of WT signal to signal, the initial amount of WT input RNA was read.
The manner in which the Q-constructs were prepared and the assays performed were described in the "Materials and Methods" section of this example.
To quantify various amounts of in vitro generated WT-RNA, a one-tube Q-NASBA method with ECL detection was used. 10 for each input1.44,Ten2.83,Ten4.23And 104.83Three different assays were performed using the initial WT-RNA molecule. Q-NASBA using the ECL bead-based assay is 10-fold in a single NASBA amplification.FourQARNA molecule, 10ThreeQBRNA molecule and 10TwoQCThe test was performed 8 to 10 times for each WT-RNA amount determined by mixing the RNA molecule and the WT-RNA. The results of the quantification performed (mean ± standard deviation) were 101.44,Ten2.83,Ten4.23And 104.83Initial loading of WT-RNA molecules1.54 ± 0.23,Ten2.68 ± 0.21,Ten4.16 ± 0.20And 104.81 ± 0.23Met.
The results of the assays performed are shown in FIG. As can be seen from this figure, the amount of WT-RNA can be reliably quantified up to 1/10 of the lowest amount of Q-RNA used in the one-tube assay.
Materials and methods
Plasmid and RNA synthesis
The recombinant DNA method followed a standard method (Sambrook, J. et al., Molecular cloning. A laboratory manual, Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1989, 2nd edition). Using plasmid pGEM3RNA (Van Gemen et al., 1993) containing a 22 nucleotide random sequence (pos. 1429-1451 HIV-1 pv22 sequence (Muesing, MA et al., Nature 313, 450-458, 1985)), not relevant for quantitative NASBA amplification Deleted the AccI site of the multiple cloning site and part of the HIV-1 cloning sequence (positions 1691-2105 HIV-1 pv22) In this plasmid, the random sequence was changed to 5'ATG.GAA. Replace with GGT.CGC.ATA.TGA.GTA.A3 'or 5'ATA.AGC.ACG.TGA.CTG.AGT.ATG.A3', respectively pGEM3QBδgag3 and pGEMQCδgag3 was generated. Call the plasmid pGEM3RAN pGEM3QAWas changed.
PGEM3p24 (WT-RNA), pGEM3Q using SP6 RNA polymerase (Sambrook, 1989)A(QA-RNA), pGEM3QBδgag3 (QB-RNA) and pGEM3QCδgag3 (QC-RNA) to generate in vitro RNA. pGEM3p24 and pGEM3QAWas cloned into the vector pGEM4 to give pGEM4p24 and pGEM4QAGenerated. Using these plasmids, in vitro RNA was prepared using T7 RNA polymerase (Sambrook, 1989). The length of in vitro RNA was determined using plasmids pGEMp24 (WT-RNA) and pGEM3QA(QA-RNA) is 1514 nucleotides, pGEM3QBδgag3 (QB-RNA) and pGEMQCδgag3 (QC-RNA) was 1090 nucleotides. The RNA was treated with DNase to remove the plasmid DNA and purified on an anion exchange column (Qiagen). In vitro RNA was quantified spectrophotometrically and diluted with water to the desired concentration. All RNA solutions were stored at -20 ° C.
Nucleic acid isolation
Nucleic acids were isolated from plasma according to the method of Boom et al. (Boom, R. et al., J. Clin. Microbiol. 28, 495-503, 1990; Van Gemen et al., 1993). Finally, 100 μl of plasma nucleic acid was resuspended in 100 μl of water and stored at −70 ° C.
NASBA
All enzymes were purchased from Pharmacia, except that AMV reverse transcriptase was purchased from Seikagaku. BSA was purchased from Boehringer Mannheim. 23 μl NASBA reaction mixture (final concentration in 25 μl reaction mixture: 40 mM Tris, pH 8.5, 12 mM MgClTwo, 42 mM KCl, 15% v / v DMSO, 1 mM each dNTP, 2 mM each NTP, 0.2 μm Primer 1: 5 'AAT.TCT.AAT.ACG.ACT.CAC.TAT.AGG.GTG.CTA.TGT.CAC. TTC.CCC.TTG.GTT.CTC.TCA, 0.2 μm primer 2: 5′AGT.GGG.GGG.ACA.TCA, AGC, AGC.CAT.GCA.AA, 0.2 to 2 μl wild-type RNA and 2 μl in vitro Q- RNA (Kievits, T et al., J. Virol. Methods. 35, 273-286, 1991; Van Gemen et al., 1993)) was incubated at 65 ° C for 5 minutes to destabilize the secondary structure of the RNA, then cooled to 41 ° C. To anneal the primers. Amplification was started by adding 2 μl of the enzyme mixture (0.1 μg / μl BSA, 0.1 unit RNase H, 40 units T7 RNA polymerase and 8 units AMV reverse transcriptase). The reaction was incubated at 41 ° C. for 90 minutes. Two negative controls were added for all quantifications.
Enzyme bead based detection
WT and Q amplified by NASBA in the aforementioned quantification method (Van Gemen et al., 1993).AA bead-based enzyme assay was developed to detect RNA and determine its ratio. 100 μl of 2.8 μm polystyrene paramagnetic beads (Dynal Inc., Great Neck, NY, USA) coated with streptavidin were washed twice with 200 μl 1 × PBS, 0.1% BSA, and placed in 100 μl 1 × PBS, 0.1% BSA. Resuspended. The washed beads were incubated with 300 pmol of the HIV-1 specific biotinylated capture probe (5'TGT.TAA.AAG.AGA.CCA.TCA.ATG.AGG.A) for 1 hour at room temperature and first 200
5 μl beads, 5 μl NASBA reaction mixture and 50 μl hybridization buffer (5 × SSPE, 0.1% SDS, 0.1% blocking reagent, 10 μg / ml salmon sperm DNA) were incubated at 45 ° C. for 30 minutes. The beads were washed twice with 100
Bead capture oligonucleotide-NASBA amplified WT or QAThe RNA detection probe complex was first washed once with 100
Absorbance values were corrected for a background signal (ie, a negative control) and the signal was independently amplified WT or QACalculated as percent of signal obtained by RNA.
ECL bead-based detection
NASBA amplified RNA (WT, QA, QBAnd QC) 5 μl of HIV-1 specific biotinylated capture probe (see enzyme bead based detection) 20 μl (3.3 pmol), WT, QA, QBOr QCECL (Tris [2,2-bipyridine] ruthenium [II] complex) -labeled oligonucleotide probe specific to any of the NASBA amplified RNAs, 3.3 pmol, 20 μg (2 μl) of streptavidin-coated magnetic beads in 5 × SSC Incubated at 41 ° C. for 30 minutes. During the incubation, the tubes were mixed with agitation every 10 minutes. Then 300 μl of TPA solution (100 mM tripropylamine, pH = 7.5) was added and the hybridization mixture was loaded on an Origen 1.5 ECL detector (Organon Teknika, Boxtel, The Netherlands).
Example 4
Nucleic acid isolation efficiency can affect WT-RNA quantification results. To prevent the effects of nucleic acid loss during isolation,A, QBAnd QCRNA can be added before or during the first step, nucleic acid isolation (FIG. 7). This indicates that in vitro produced WT-RNA and HIV-1
Q during amplificationA, QBAnd QCWhen the originally isolated WT-RNA and HIV-1 virus stock RNA were quantified by adding (i.e., control quantification), the in vitro-generated WT-RNA and HIV-1 virus stock RNA were 3.3 × 10FourAnd 2.1 × 10FourWas the result. Q before re-isolationA, QBAnd QCQuantification of the re-isolated RNA with the addition of RNA yielded 2.5 × 10 5 in vitro-produced WT-RNA and HIV-1 virus stock RNA, respectively.FourAnd 1.5 × 10FourIt became. However, after re-isolation, QA, QBAnd QCWhen RNA was added and the re-isolated RNA was quantified, 4.7 × 10 4 in vitro-generated WT-RNA and HIV-1 virus stock RNA, respectively.ThreeAnd 2.0 × 10ThreeIt became. This indicates that the RNA re-isolation efficiency is about 10%. However, before re-isolation,A, QBAnd QCIs added, regardless of the absolute amount of nucleic acid to be isolated, the ratio WT: QA: QB: QCSince the RNA is constant, the RNA quantification is equivalent to the control quantification.
The results are shown in Table 2.
Example 5
The method of the present invention was compared to the previously described Q-NASBA method (Van Gemen et al., 1993; Jurriaans et al., Submission, 1993). The Q-NASBA method uses only one Q-RNA and does not add at least 6 amplification reactions per clinical (wild-type) sample, ie, no internal standard, if a dynamic range of 5 logs is to be obtained. One positive WT control reaction and the amount of internal standard RNA molecule were escalated (10Two~Ten6) 5 reactions are required.
According to the method of the invention in which several distinguishable internal standards are spiked into one amplification, the number of amplification reactions can be reduced.
In contrast, when only one type of Q-RNA is used in combination with an enzyme-labeled probe (Q-RNAA), Using different concentrations of Q-RNA in separate amplifications and deriving the initial WT-RNA concentration from the ratio of WT-signal to Q-signal.
The two methods were compared using a model system and plasma samples from HIV-1 infected individuals.
By analyzing a 0.1 ml plasma sample of three asymptomatic HIV-1 infected individuals,A, QBAnd QCOne tube Q-NASBA using RNA was compared to the previously described Q-NASBA method using six amplifications in one quantification (Van Gemen et al., 1993). In the same experiment, Q before and after nucleic acid isolationA, QBAnd QCWas also investigated (Table 3). When WT-RNA is quantified by the one-tube Q-NASBA method, the amount of WT-RNA can be reliably quantified to 1/10 of the minimum Q-RNA amount used in the one-tube quantification method.
Q when adding to lysis bufferA, QBAnd QC(6 × 10 eachFive, 6 × 10FourAnd 6 × 10ThreeWhen added to 0.1 ml of plasma, the lower confidence limit of quantification is 6 × 10TwoRNA copy. If 1 μl of plasma equivalent nucleic acid is used for amplification,A, QBAnd QC(10 eachFour,TenThreeAnd 10Two) And add 10 per 0.1 ml of plasmaThreeA lower confidence limit for RNA copies was obtained. In both cases, WT-RNA can be reliably quantified up to 1/10 of the minimum amount of Q-RNA used in the one-tube assay. When using 1 μl of plasma equivalent nucleic acid for amplification, a minimum internal standard Q-RNA quantification of 10TwoAccording to the method of performing six amplifications in one quantification, 10FourA lower confidence limit for RNA copies was obtained. This result indicates that the nucleic acid isolation efficiency varied between 100% (patient 1) and 50% (patient 2) in this particular embodiment.
Example 6:
Finally, before nucleic acid isolation,A, QBAnd QCIs added to the lysis buffer. The reproducibility of one tube Q-NASBA was determined using an in vitro cultured HIV-1 virus stock solution (Layne, SP et al., Virology. 189, 695-714, 1992) in which the amount of virus particles was quantified by electron microscopy. And tested. 2.9 × 10TenThe HIV-1 virus stock containing virus particles / ml is diluted to 10,000 with water and 100 μl of diluted virus stockA, QBAnd QC(6 × 10 eachFive, 6 × 10FourAnd 6 × 10Three4.) Add 4.35 x 10TenA measurement of RNA molecules / ml was obtained. Table 4 shows the results. Mean ± standard deviation of RNA quantification is 1010.64 ± 0.05It can be seen that the accuracy of the one-tube Q-NASBA was within 0.1 log value for the quantification of this in vitro cultured virus stock (the method performed was described in the Materials and Methods section of Example 3). ing).
Table 4 shows that according to the method of the present invention, when quantifying HIV-1 RNA in a virus stock solution cultured in vitro, an assay accuracy within 0.1 logarithm can be obtained. From this result, a reliable measurement of the difference in HIV-1 RNA load of 0.4 log values or more is possible.
Claims (17)
−各々が被分析核酸から区別し得るが被分析核酸と同時に増幅され得る互いに区別し得る核酸構築物をそれぞれ異なる量で試料に添加するステップ;
−被分析核酸及び核酸構築物の両方と反応し得る増幅試薬を使用し、試料に核酸増幅処理を実施するステップ;
−被分析核酸及び各核酸構築物から誘導された増幅物の相対量を検出するステップ;及び
−前記相対量から被分析核酸の量を計算するステップ
を含む方法。A method for quantifying an analyte nucleic acid in a sample,
Adding to the sample different amounts of each distinguishable nucleic acid construct, each distinguishable from the analyte nucleic acid but capable of being amplified simultaneously with the analyte nucleic acid;
Performing a nucleic acid amplification treatment on the sample using an amplification reagent capable of reacting with both the analyte nucleic acid and the nucleic acid construct;
Detecting the relative amounts of the analyte nucleic acid and the amplification product derived from each nucleic acid construct; and calculating the amount of the analyte nucleic acid from said relative amounts.
−ある量の前記試験液を既知の係数ずつ希釈し、所定範囲内にあると推定される量の被分析核酸を含む前記希釈試験液から試料を得るステップ;及び
−前記所定範囲内にある拡散構築物の添加されている前記試料を、請求項1に記載の方法で処理するステップ
を含む方法。A method for quantifying an analyte nucleic acid in a group of test solutions,
-Diluting an amount of said test solution by a known factor to obtain a sample from said diluted test solution containing an amount of analyte nucleic acid presumed to be within a predetermined range; and-diffusion within said predetermined range. A method comprising treating the sample to which a construct has been added with the method of claim 1.
−ある量の前記試験液を既知の係数ずつ希釈し、所定範囲内にあると推定される量の被分析核酸を含む前記希釈試験液から試料を得るステップ;
−前記所定範囲内にある拡散構築物の添加されている前記試料を、請求項1に記載の方法で処理するステップ;
−処理された試料の中に含まれる被分析核酸の量が、前記所定範囲より少ないかどうかを決定するステップ;
−処理された試料中の被分析核酸の量が予想より低かった場合には、前記試験液をより低い係数で希釈するステップ;及び
−希釈して得られた試料を請求項1に記載の方法で処理するステップ
を含む方法。A method for quantifying an analyte nucleic acid in a group of test solutions,
Diluting an amount of the test solution by a known factor to obtain a sample from the diluted test solution containing an amount of the analyte nucleic acid estimated to be within a predetermined range;
Processing said sample to which said diffusion construct within said predetermined range has been added, in accordance with the method of claim 1;
Determining whether the amount of the analyte nucleic acid contained in the processed sample is less than the predetermined range;
-Diluting the test solution by a lower factor if the amount of the analyte nucleic acid in the processed sample is lower than expected; and-the method of claim 1 wherein the diluted sample is obtained. A method comprising the steps of:
−ある量の前記試験液を既知の係数ずつ希釈し、所定範囲内にあると推定される量の被分析核酸を含む前記希釈試験液から試料を得るステップ;
−前記所定範囲内にある拡散構築物の添加されている前記試料を、請求項1に記載の方法で処理するステップ;
−処理された試料の中に含まれる被分析核酸の量が、前記所定範囲より高いかどうかを決定するステップ;
−処理された試料中の被分析核酸の量が予想より高かった場合には、前記試験液をより高い係数で希釈するステップ;及び
−希釈して得られた試料を請求項1に記載の方法で処理するステップ
を含む方法。A method for quantifying an analyte nucleic acid in a group of test solutions,
Diluting an amount of the test solution by a known factor to obtain a sample from the diluted test solution containing an amount of the analyte nucleic acid estimated to be within a predetermined range;
Processing said sample to which said diffusion construct within said predetermined range has been added, in accordance with the method of claim 1;
Determining whether the amount of the analyte nucleic acid contained in the processed sample is higher than said predetermined range;
2. A method according to claim 1, wherein, if the amount of the nucleic acid to be analyzed in the treated sample is higher than expected, diluting the test solution by a higher factor; and A method comprising the steps of:
−前記試料中に存在する被分析核酸の推定量と同じ範囲内にあると推定される量の核酸構築物を試料に添加するステップ;
−前記被分析核酸及び核酸構築物の両方と反応し得る増幅試薬を使用し、前記試料に核酸増幅処理を実施するステップ;
−被分析核酸及び核酸構築物から誘導された増幅物の相対量を検出するステップ;
−前記相対量から前記試料中に存在する被分析核酸の量を推算するステップ;及び
−添加する核酸構築物の量が第1試料中に存在した被分析核酸の前記推定量と同じ範囲内となる条件下で、前記試験液から得た第2試料を請求項1に記載の方法で処理するステップ
を含む方法。A method for quantifying an analyte nucleic acid in a sample,
-Adding to the sample an amount of the nucleic acid construct estimated to be in the same range as the estimated amount of the analyte nucleic acid present in the sample;
Performing a nucleic acid amplification treatment on the sample using an amplification reagent capable of reacting with both the analyte nucleic acid and the nucleic acid construct;
Detecting the relative amounts of the analyte nucleic acid and the amplified product derived from the nucleic acid construct;
Estimating the amount of the analyte nucleic acid present in the sample from the relative amount; and the amount of the nucleic acid construct to be added is within the same range as the estimated amount of the analyte nucleic acid present in the first sample. A method comprising, under conditions, treating a second sample obtained from the test solution with the method of claim 1.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93202015 | 1993-07-09 | ||
EP93202015.9 | 1993-07-09 | ||
EP93203424.2 | 1993-12-06 | ||
EP93203424 | 1993-12-06 | ||
PCT/EP1994/002295 WO1995002067A1 (en) | 1993-07-09 | 1994-07-08 | Improved method for the quantification of nucleic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08501222A JPH08501222A (en) | 1996-02-13 |
JP3594598B2 true JP3594598B2 (en) | 2004-12-02 |
Family
ID=26133903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50383695A Expired - Lifetime JP3594598B2 (en) | 1993-07-09 | 1994-07-08 | Improved nucleic acid quantification method |
Country Status (10)
Country | Link |
---|---|
JP (1) | JP3594598B2 (en) |
KR (1) | KR100312800B1 (en) |
AT (1) | ATE178946T1 (en) |
AU (1) | AU668659B2 (en) |
CA (1) | CA2143857C (en) |
DE (1) | DE69417863T2 (en) |
DK (1) | DK0662156T3 (en) |
ES (1) | ES2131699T3 (en) |
FI (1) | FI112094B (en) |
WO (1) | WO1995002067A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9388467B2 (en) | 2009-09-16 | 2016-07-12 | Seiko Epson Corporation | Biochip and target DNA quantitative method |
US9580761B2 (en) | 2011-02-25 | 2017-02-28 | Novartis Ag | Exogenous internal positive control |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0722508B1 (en) * | 1993-09-22 | 2003-04-02 | Igen International, Inc. | Self-sustained sequence replication electrochemiluminescent nucleic acid assay |
CA2159044A1 (en) * | 1994-09-26 | 1996-03-27 | Falko-Guenter Falkner | Method of quantitating nucleic acids |
AU709292B2 (en) * | 1995-06-07 | 1999-08-26 | Gen-Probe Incorporated | Methods and kits for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product |
US5705365A (en) * | 1995-06-07 | 1998-01-06 | Gen-Probe Incorporated | Kits for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product |
US5710029A (en) * | 1995-06-07 | 1998-01-20 | Gen-Probe Incorporated | Methods for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product |
GB9519638D0 (en) * | 1995-09-26 | 1995-11-29 | Dynal As | Method |
US5795722A (en) * | 1997-03-18 | 1998-08-18 | Visible Genetics Inc. | Method and kit for quantitation and nucleic acid sequencing of nucleic acid analytes in a sample |
US5939262A (en) * | 1996-07-03 | 1999-08-17 | Ambion, Inc. | Ribonuclease resistant RNA preparation and utilization |
US5677124A (en) * | 1996-07-03 | 1997-10-14 | Ambion, Inc. | Ribonuclease resistant viral RNA standards |
US6143496A (en) | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
FR2765590B1 (en) * | 1997-07-01 | 2002-08-09 | Pasteur Institut | SEMI-QUANTIFICATION METHOD OF WHEELS |
WO2000000638A2 (en) * | 1998-06-26 | 2000-01-06 | Akzo Nobel N.V. | Tagging of rna amplicons generated by transcription-based amplification |
EP1013776A1 (en) * | 1998-12-22 | 2000-06-28 | Universiteit van Amsterdam | A sensitive assay for the detection or quantitation of human cytomegalovirus nucleic acid |
GB9902422D0 (en) * | 1999-02-03 | 1999-03-24 | Lgc Teddington Limited | Reference material for nucleic acid amplification |
ATE304061T1 (en) * | 1999-07-23 | 2005-09-15 | Gen Probe Inc | POLYNUCLEOTIDE AMPLIFICATION METHOD |
AT409383B (en) * | 1999-12-22 | 2002-07-25 | Baxter Ag | METHOD FOR DETECTING AND QUANTIFYING NUCLEIC ACIDS IN A SAMPLE |
US7790368B1 (en) | 2000-09-22 | 2010-09-07 | Hitachi, Ltd. | Method for analyzing nucleic acid |
US6312929B1 (en) * | 2000-12-22 | 2001-11-06 | Cepheid | Compositions and methods enabling a totally internally controlled amplification reaction |
JP5564795B2 (en) * | 2009-01-06 | 2014-08-06 | 株式会社島津製作所 | DNA quantification method and gene analysis method |
KR102108855B1 (en) | 2017-10-30 | 2020-05-12 | 한국표준과학연구원 | Method for quantification of nucleic acids wherein stable isotope-labelled nucleic acids are used as internal standards and uses thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4942124A (en) * | 1987-08-11 | 1990-07-17 | President And Fellows Of Harvard College | Multiplex sequencing |
ATE257860T1 (en) * | 1991-08-02 | 2004-01-15 | Biomerieux Bv | QUANTIFICATION OF NUCLEIC ACIDS |
FR2683827B1 (en) * | 1991-11-15 | 1994-03-04 | Institut Nal Sante Recherc Medic | METHOD FOR DETERMINING THE QUANTITY OF A FRAGMENT OF DNA OF INTEREST BY AN ENZYMATIC AMPLIFICATION METHOD. |
-
1994
- 1994-07-08 AU AU74928/94A patent/AU668659B2/en not_active Expired
- 1994-07-08 AT AT94924750T patent/ATE178946T1/en active
- 1994-07-08 ES ES94924750T patent/ES2131699T3/en not_active Expired - Lifetime
- 1994-07-08 CA CA002143857A patent/CA2143857C/en not_active Expired - Lifetime
- 1994-07-08 WO PCT/EP1994/002295 patent/WO1995002067A1/en active IP Right Grant
- 1994-07-08 KR KR1019950700919A patent/KR100312800B1/en not_active IP Right Cessation
- 1994-07-08 DE DE69417863T patent/DE69417863T2/en not_active Expired - Lifetime
- 1994-07-08 DK DK94924750T patent/DK0662156T3/en active
- 1994-07-08 JP JP50383695A patent/JP3594598B2/en not_active Expired - Lifetime
-
1995
- 1995-03-08 FI FI951082A patent/FI112094B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9388467B2 (en) | 2009-09-16 | 2016-07-12 | Seiko Epson Corporation | Biochip and target DNA quantitative method |
US9416418B2 (en) | 2009-09-16 | 2016-08-16 | Seiko Epson Corporation | Biochip and target DNA quantitative method |
US9580761B2 (en) | 2011-02-25 | 2017-02-28 | Novartis Ag | Exogenous internal positive control |
Also Published As
Publication number | Publication date |
---|---|
WO1995002067A1 (en) | 1995-01-19 |
CA2143857C (en) | 2005-09-20 |
ATE178946T1 (en) | 1999-04-15 |
FI951082A (en) | 1995-03-08 |
ES2131699T3 (en) | 1999-08-01 |
CA2143857A1 (en) | 1995-01-19 |
KR100312800B1 (en) | 2002-02-28 |
FI951082A0 (en) | 1995-03-08 |
JPH08501222A (en) | 1996-02-13 |
DE69417863T2 (en) | 1999-10-07 |
FI112094B (en) | 2003-10-31 |
DK0662156T3 (en) | 1999-10-25 |
AU668659B2 (en) | 1996-05-09 |
AU7492894A (en) | 1995-02-06 |
DE69417863D1 (en) | 1999-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5837501A (en) | Nucleic acid quantitation by co-amplification of target with multiple internal controls | |
JP3594598B2 (en) | Improved nucleic acid quantification method | |
US5834255A (en) | Quantification of nucleic acid | |
US5800984A (en) | Nucleic acid sequence detection by triple helix formation at primer site in amplification reactions | |
US6541205B1 (en) | Method for assaying nucleic acid | |
US7384769B2 (en) | Method for the quantitative detection of nucleic acids | |
JP3560974B2 (en) | Excluding false negatives in nucleic acid detection | |
US20030157499A1 (en) | Method of assessing the amount of nucleic acid in a sample | |
IE83814B1 (en) | Quantification of nucleic acid | |
KR20010022730A (en) | Nucleic acid sequences that can be used as primers and probes in the amplification and detection of all subtypes of hiv-1 | |
EP3018218B1 (en) | Methods for detection of nucleic acid sequences over an extended dynamic range | |
Romano et al. | NASBA: a novel, isothermal detection technology for qualitative and quantitative HIV-1 RNA measurements | |
JP2009000063A (en) | Improved norovirus RNA detection method | |
JP4209977B2 (en) | Detection of Neisseria gonorrhoeae by amplification and detection of Neisseria gonorrhoeae nucleic acid | |
US6830887B2 (en) | Method and kit for quantitation and nucleic acid sequencing of nucleic acid analytes in a sample | |
CN113322308A (en) | Fluorescence sensor for detecting HBV (hepatitis B virus), and preparation and application thereof | |
US20060228698A1 (en) | Oligonucleotide for detection of HIV-1 and detection method | |
EP0662156B1 (en) | Improved method for the quantification of nucleic acid | |
JP2009017824A (en) | Improved method for detecting norovirus RNA | |
US6881544B2 (en) | Method of amplifying or detecting HIV-1 RNA | |
US6756198B2 (en) | Oligonucleotide for highly sensitive detection of hepatitis C virus and method for detection thereof | |
Wang et al. | One-pot MCDA-CRISPR-Cas-based detection platform for point-of-care testing of severe acute respiratory syndrome coronavirus 2 | |
JP2000139500A (en) | Method for measuring HIV gene by real-time detection PCR and primers and probes used therefor | |
JPH11103897A (en) | Assay of hbv gene by real-time detection pcr technique, and primer and probe to be used therefor | |
Romano et al. | Quantitation of RNA by NASBA™: Applications and Issues for HIV-1 and AIDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040824 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110910 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120910 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |