[go: up one dir, main page]

JP3593021B2 - Synchronous acquisition system - Google Patents

Synchronous acquisition system Download PDF

Info

Publication number
JP3593021B2
JP3593021B2 JP2000309710A JP2000309710A JP3593021B2 JP 3593021 B2 JP3593021 B2 JP 3593021B2 JP 2000309710 A JP2000309710 A JP 2000309710A JP 2000309710 A JP2000309710 A JP 2000309710A JP 3593021 B2 JP3593021 B2 JP 3593021B2
Authority
JP
Japan
Prior art keywords
synchronization
timing
range
synchronization acquisition
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000309710A
Other languages
Japanese (ja)
Other versions
JP2002118499A (en
Inventor
智行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000309710A priority Critical patent/JP3593021B2/en
Publication of JP2002118499A publication Critical patent/JP2002118499A/en
Application granted granted Critical
Publication of JP3593021B2 publication Critical patent/JP3593021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同期捕捉システムに係り、特に、DS/SS(Direct Sequence /Spread Spectrum;直接スペクトラム拡散)方式を用いた受信機などに用いて好適な、メモリ蓄積型の同期捕捉システムに関するものである。
【0002】
【従来の技術】
図4は、従来のDS/SS方式を用いた受信機における、メモリ蓄積型の同期捕捉システムの簡単な構成を示すブロック図である。
【0003】
図4において、受信信号(IF信号)は、まず周波数変換回路401でベースバンド信号に変換されてから、一度メモリ402に書き込まれる。その後、指定のアドレスから読み出された信号を、相関器403で逆拡散および加算して相関値の計算を行ない、その相関値がしきい値を超えたら、読み出したアドレスが正しい逆拡散のタイミングであると判断し、超えなかったら読み出すアドレスを1サンプルもしくは数サンプルずらして、同様に相関値の計算およびしきい値判定を行なう。
【0004】
しきい値を超える相関値を検出するまでこれを繰り返し、こうして得た逆拡散タイミングから、拡散符号発生器404で発生させる拡散符号の位相をリアルタイムの受信信号に合うようにずらして発生させる。一般に、DS/SS方式に用いられる拡散系列は有限長の擬似雑音の繰り返しであるので、メモリ402に書き込んだ時点から拡散符号の周期を数えていれば、メモリ402内の信号と同じタイミングを知ることができる。具体的には、メモリ402への書き込みと同時に拡散符号発生器404をリセットし、相関器403で得られた逆拡散タイミングのメモリの先頭アドレスからのずれの分だけ拡散符号発生器404のタイミングをずらしてやれば良い。
【0005】
その後、乗算器405で受信信号と拡散符号とをかけ合わせて、LPF(Low Pass Filter)406で希望信号成分を取り出すことにより逆拡散が行なわれ、復調が可能となり、同時にDLL(Delay Locked Loop)407を動作させることによって、同期追従が開始される。
【0006】
この同期捕捉方式は、書き込み速度より読み出し速度を速くすることで高速な同期捕捉を実現したい場合や、SNR(Signal to Noise Ratio)が低く相関ピークを得るために長い積分時間を要すなどの理由からリアルタイムでの同期捕捉が困難な場合等に用いられる。
【0007】
【発明が解決しようとする課題】
上記の手法では、同期捕捉で得た逆拡散タイミングは、メモリ402に書き込まれた受信信号に対するものであるので、これをリアルタイムの受信信号に反映させると、タイミングにずれが生じてしまう。これは送信機側と受信機側とのクロックに含まれる相互の誤差等によるもので、クロックの誤差自体は非常に小さなものでも経過した時間に比例してずれが大きくなるので、同期捕捉に長時間かかると、リアルタイムに反映させる逆拡散タイミングに含まれる誤差の範囲が無視できないものになってしまう。例として同期追従にDLLを用いるとすると、一般に±1/2チップ以内程度の誤差であればタイミング補正が可能であるが、もし誤差がそれを超えるようになれば同期追従が不可態となり、当然、同期捕捉は失敗となる。そのため、クロックの精度の向上や同期捕捉自体の高速処理が不可欠となり、並列処理による回路規模の増大や、動作速度の高速化による回路負荷の増加などが発生してしまう。
【0008】
したがって本発明の解決すべき技術的課題は、上記した従来技術のもつ問題点を解消することにあり、その目的とするところは、DS/SS方式において、必要以上の高速化および回路規模の増大を招来することなく、精度の良い同期捕捉が可能なシステムを実現することにある。
【0009】
【課題を解決するための手段】
上記した目的を達成するため、本発明による同期捕捉システムでは、最初の同期捕捉の後にもう一度短時間での同期捕捉を行なうことにより、同期捕捉の精度を向上させる。
【0010】
一般に、同期捕捉では、拡散符号1周期分の各逆拡散タイミングに対して相関値の検出を行ない、しきい値を超えるような相関ピークを持つ点、またはすべての相関値の中で最大となる点を見つけ出すことによって、正しい逆拡散タイミングを得る。このとき、クロックの精度およびメモリに受信信号を書き込んでからその同期捕捉にかかった時間を求めることにより、検出された逆拡散タイミングに含まれるリアルタイムの受信信号に対する誤差の範囲が求められる。この求められた誤差の範囲内のタイミングに対して、もう一度メモリへの書き込みおよび相関値の検出を行なうことにより、一度目と比較して遥かに短時間での同期捕捉が可能となるため、このとき含まれる逆拡散タイミングの誤差の範囲も小さくなり、リアルタイムでの復調および同期追従ができる可能性が飛躍的に高くなる。もしも、二度で十分でなければ、タイミング誤差の範囲が十分小さくなるまで同様の操作を数回繰り返せば良い。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。
【0012】
図1は、本発明の第1実施形態に係るDS/SS方式を用いた受信機における、同期捕捉システムの構成を示すブロック図である。本実施形態の同期捕捉システムは、受信信号をベースバンド信号に変換する周波数変換回路101と、同期捕捉時に受信信号を書き込むメモリ102と、相関ピークを探し出し同期を確立する相関器103と、クロック数をカウントするクロックカウンタ106と、用いているクロックの精度とクロックカウンタ106の出力より、メモリ内の受信信号とリアルタイムの受信信号とのタイミングのずれの範囲が何クロック程度であるかをカウントする誤差カウンタ105と、相関器103より得られた逆拡散タイミングが同期追従可能範囲内であるかを誤差カウンタ105より判断して、復調を始めるかもう一度同期捕捉を行なうかを切り替えるスイッチ104と、復調に用いる拡散符号発生器107、乗算器108、およびLPF109と、同期追従を行なうDLL110とを有する。
【0013】
同期捕捉時は、まず、周波数変換回路101で変換されたベースバンド信号をメモリ102に書き込む。そして、書き込みが終わったら読み出しを行ない、読み出した信号に対して相関器103で相関値の検出を行なう。このとき、相関ピークしきい値を超えるような高い相関値を得たなら、これが正しい逆拡散タイミングと判断して同期捕捉を完了し、しきい値を超えない低い相関値であった場合は、正しい逆拡散タイミングではないと判断して、1サンプルまたは数サンプルずらした位置から読み出しを行なって、同様に相関値の計算およびしきい値判定を行なう。これを繰り返して逆拡散のタイミングを見つけ出す。
【0014】
このとき、メモリ102への書き込みと同時に、クロックカウンタ106を動作させ、送受のクロックの精度を考慮して互いのクロックのずれが受信側の1クロック以内である間カウントを続け、ずれの範囲が1クロックを超える程度となったら、誤差カウンタ105を1つカウントすると同時に、クロックカウンタ106をリセットして同様の動作を繰り返す。そして、相関器103による同期捕捉が完了した時点での誤差カウンタ105の値から、DLL110での同期追従が可能かどうかをスイッチ104により判断し、同期追従可能な場合、拡散符号発生器107で発生させる拡散符号の位相を修正し、乗算108で受信信号と掛け合わせて、LPF109で希望信号成分を取り出すことにより、逆拡散を行なうと同時に、DLL110を動作させて同期追従も開始する。
【0015】
また、同期追従可能な範囲を超えていた場合、誤差カウンタ105の示す誤差範囲+相関値検出必要分の受信信号をもう一度メモリ102に書き込むと同時に、クロックカウンタ106および誤差カウンタ105をリセットし、再び同様に同期捕捉の操作を行なう。このとき、一度目の同期捕捉が、最大で拡散符号1周期分のタイミングをすべてサーチしなければならないのに対して、二度目の同期捕捉は、一度目の同期捕捉で発生した誤差範囲内の限定されたタイミングだけをサーチすれば良いので、一度目よりも遥かに短い時間で同期捕捉を完了することができ、誤差カウンタ105が同期追従可能範囲を超える前に同期捕捉を完了できる確率は飛躍的に高くなる。
【0016】
もしも、二度目の同期捕捉でも同期追従可能とならなかった場合、同様にメモリ102への書き込みから繰り返すことによって、さらに短時間で同期捕捉を完了できるため、これを何度か繰り返すうちにタイミング誤差の範囲が十分小さくなり、いずれ同期追従可能範囲内に捕捉できる。
【0017】
具体例として、送信側クロックに対する受信側クロックの精度が1ppmで、10サンプル/チップでサンプリングしている場合の動作フローを、図2に示す。
【0018】
図2ではクロック精度が1ppmであるから、クロックカウンタ106が100万クロックカウントした時点で、誤差カウンタ105を1つカウントして、クロックカウンタ106をリセットする。さらに、DLL110で同期追従可能な誤差範囲を±1/2チップ以内とすると、10サンプル/チップより5サンプル以内のずれは補正可能で、つまり相関器103で同期捕捉が完了した時点で誤差カウンタ105の値が5未満のときは、誤差が同期追従可能な範囲とみなして復調を開始し、5以上のときは誤差が同期追従不可能な範囲にある可能性があるとして、相関器103および誤差カウンタ105の値をパラメータにしてもう一度同期捕捉を行なう。
【0019】
次に、本発明の第2実施形態について説明する。図3は、本発明の第2実施形態に係るDS/SS方式を用いた受信機における、同期捕捉システムの構成を示すブロック図である。図3において、301は周波数変換回路、302はメモリ、303は相関器、304はループ用カウンタ、305は拡散符合発生器、306は乗算器、307はLPF、308はDLLである。
【0020】
図3に示す構成において、まず、前記第1実施形態と同様に、周波数変換回路301でベースバンド信号に変換した受信信号をメモリ302に書き込んだ後、随時読み出して相関ピークを見つける。このとき、相関器303では拡散符号1周期分の全タイミングに対して相関を求めて、その中から最大値を選び出すことで相関ピークを見つけ出す手法をとることにより、同期捕捉にかかる時間は常に一定となる。そして、同期捕捉にかかる時間が一定であれば、得られた逆拡散タイミングに含まれる誤差の範囲も一定となるので、あらかじめクロックの精度および同期捕捉にかかる時間よりその範囲を知ることができる。さらに、その誤差の範囲すべてのタイミングに対してもう一度相関を求め、一度目と同様に最大値を選び出すことで相関ピークを見つけ出す。このときもまた、同期捕捉にかかる時間および逆拡散タイミングに含まれる誤差の範囲は既知で一定となり、かつ一度目よりも遥かに小さくなるので、この同期捕捉のループを繰り返すごとに同期捕捉の精度が向上していき、あらかじめ何度繰り返せば十分な精度が得られるかを知ることができる。
【0021】
よって、十分な精度を得るために同期捕捉を繰り返す回数を、クロックの精度、拡散符号の長さおよび1チップ当りのサンプル数等からあらかじめ決めておいて、ループ用カウンタ304でその回数をカウントし、規定回数の同期捕捉を終えてから拡散符号発生器305の方へ逆拡散タイミングを出力するようにする。
【0022】
逆拡散タイミングを拡散符号発生器305に出力した後は、前記第1実施形態と同様に、逆拡散および同期追従を行なう。
【0023】
【発明の効果】
以上のように請求項1に記載の発明によれば、必要以上に高速化を行なわなくても同期捕捉部分と同じ回路を使用してタイミング誤差の補正が行なえるため、無駄に回路規模を増大させたり、負荷を大きくしたりすることなく、メモリ蓄積型の同期捕捉が可能となる。また、同期捕捉を完了するまでの許容時間を長くとれるならば、逆にある程度回路規模を小さく抑えることが可能となる。
【0024】
また、請求項2に記載の発明によれば、簡単なカウンタだけでタイミングの誤差範囲の判断が可能となり、請求項1における誤差範囲を判定するアルゴリズムを容易に実現できる。
【0025】
さらに、請求項3に記載の発明によれば、相関ピークの検出に要する時間がほぼ一定で既知であるような相関器を用いることによって、得られた逆拡散タイミングに含まれる誤差の範囲をあらかじめ知ることができるので、誤差範囲を予測するための手段を必要とすることがなく、さらに誤差補正のための同期捕捉を繰り返す回数を一定に決めておいてカウントするだけの単純なアルゴリズムで、精度の良い同期捕捉を実現できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るDS/SS方式を用いた受信機における、同期捕捉システムの構成を示すブロック図である。
【図2】本発明の第1実施形態における具体的な同期捕捉アルゴリズムを示すフローチャートである。
【図3】本発明の第2実施形態に係るDS/SS方式を用いた受信機における、同期捕捉システムの構成を示すブロック図である。
【図4】従来技術によるDS/SS方式を用いた受信機における、同期捕捉システムの構成を示すブロック図である。
【符号の説明】
101、301 周波数変換回路
102、302 メモリ
103、303 相関器
104 スイッチ
105 誤差カウンタ
106 クロックカウンタ
107、305 拡散符号発生器
108、306 乗算器
109、307 LPF
110、308 DLL
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a synchronization acquisition system, and more particularly, to a memory accumulation type synchronization acquisition system suitable for use in a receiver using a direct sequence / spread spectrum (DS / SS) system. .
[0002]
[Prior art]
FIG. 4 is a block diagram showing a simple configuration of a memory storage type synchronization acquisition system in a conventional receiver using the DS / SS system.
[0003]
In FIG. 4, a received signal (IF signal) is first converted into a baseband signal by a frequency conversion circuit 401, and then written into a memory 402 once. Thereafter, the signal read from the designated address is despread and added by the correlator 403 to calculate a correlation value. If the correlation value exceeds a threshold value, the read address becomes the correct despread timing. Is determined, and if it does not exceed, the address to be read is shifted by one sample or several samples, and the calculation of the correlation value and the determination of the threshold value are similarly performed.
[0004]
This is repeated until a correlation value exceeding the threshold is detected, and the phase of the spread code generated by the spread code generator 404 is shifted from the despread timing thus obtained so as to match the real-time received signal. Generally, a spreading sequence used in the DS / SS system is a repetition of finite-length pseudo-noise. Therefore, if the period of the spreading code is counted from the time when the spreading code is written to the memory 402, the same timing as the signal in the memory 402 is known. be able to. More specifically, the spreading code generator 404 is reset at the same time as writing to the memory 402, and the timing of the spreading code generator 404 is deviated from the head address of the memory by the despreading timing obtained by the correlator 403. Just shift it.
[0005]
Thereafter, the received signal and the spreading code are multiplied by a multiplier 405, and a desired signal component is extracted by an LPF (Low Pass Filter) 406 to perform despreading, demodulation becomes possible, and at the same time, DLL (Delay Locked Loop) By operating 407, synchronization tracking is started.
[0006]
This synchronization acquisition method is required to realize a high-speed synchronization acquisition by making the reading speed faster than the writing speed, or to require a long integration time to obtain a correlation peak due to low SNR (Signal to Noise Ratio). It is used when it is difficult to acquire synchronization in real time from
[0007]
[Problems to be solved by the invention]
In the above method, since the despread timing obtained by the synchronization acquisition is for the received signal written in the memory 402, if this is reflected in the real-time received signal, the timing will be shifted. This is due to the mutual error included in the clocks on the transmitter side and the receiver side, and even if the clock error itself is very small, the deviation increases in proportion to the elapsed time. If it takes time, the range of the error included in the despreading timing to be reflected in real time cannot be ignored. As an example, if a DLL is used for synchronization tracking, timing correction is generally possible if the error is within about ± 1/2 chip. However, if the error exceeds that, synchronization tracking is disabled, and , Synchronization acquisition fails. Therefore, improvement in clock accuracy and high-speed processing of synchronization acquisition itself are indispensable, and an increase in circuit scale due to parallel processing and an increase in circuit load due to an increase in operating speed occur.
[0008]
Therefore, a technical problem to be solved by the present invention is to solve the above-mentioned problems of the prior art. The purpose of the present invention is to increase the speed and circuit scale more than necessary in the DS / SS system. It is an object of the present invention to realize a system capable of acquiring synchronization with high accuracy without causing the problem.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the synchronization acquisition system according to the present invention improves the accuracy of synchronization acquisition by performing synchronization acquisition again in a short time after the first synchronization acquisition.
[0010]
In general, in synchronization acquisition, a correlation value is detected for each despread timing for one cycle of a spreading code, and a point having a correlation peak exceeding a threshold value or the maximum value among all correlation values is obtained. By finding the points, the correct despread timing is obtained. At this time, the range of the error with respect to the real-time received signal included in the detected despread timing is obtained by determining the accuracy of the clock and the time taken to acquire the synchronization after writing the received signal into the memory. By writing the data into the memory and detecting the correlation value again for the timing within the obtained error range, the synchronization can be acquired in a much shorter time than the first time. Also, the range of the error of the despreading timing included becomes smaller, and the possibility of real-time demodulation and synchronization tracking becomes dramatically higher. If twice is not enough, the same operation may be repeated several times until the range of the timing error becomes sufficiently small.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a block diagram showing a configuration of a synchronization acquisition system in a receiver using the DS / SS system according to the first embodiment of the present invention. The synchronization acquisition system according to the present embodiment includes a frequency conversion circuit 101 for converting a reception signal into a baseband signal, a memory 102 for writing the reception signal at the time of synchronization acquisition, a correlator 103 for finding a correlation peak and establishing synchronization, and a clock number. Counter for counting the number of clocks based on the accuracy of the clock being used and the output of the clock counter 106, and counting the range of the timing deviation between the received signal in the memory and the real-time received signal. A counter 105, a switch 104 for judging from the error counter 105 whether the despread timing obtained from the correlator 103 is within the synchronization tracking range, and switching between starting demodulation or performing synchronization acquisition again, The spreading code generator 107, multiplier 108 and LPF 109 used And a DLL110 performing synchronization tracking.
[0013]
At the time of synchronization acquisition, first, the baseband signal converted by the frequency conversion circuit 101 is written into the memory 102. When the writing is completed, reading is performed, and a correlation value is detected by the correlator 103 for the read signal. At this time, if a high correlation value that exceeds the correlation peak threshold is obtained, it is determined that this is the correct despreading timing, synchronization acquisition is completed, and if a low correlation value that does not exceed the threshold is obtained, When it is determined that the timing is not correct despreading timing, reading is performed from a position shifted by one sample or several samples, and the calculation of the correlation value and the determination of the threshold value are similarly performed. This is repeated to find the timing of despreading.
[0014]
At this time, at the same time as writing to the memory 102, the clock counter 106 is operated, and counting is continued while the difference between the clocks is within one clock of the receiving side in consideration of the accuracy of the transmission and reception clocks. When the time exceeds one clock, the error counter 105 is counted by one, and at the same time, the clock counter 106 is reset and the same operation is repeated. Then, from the value of the error counter 105 at the time when the synchronization acquisition by the correlator 103 is completed, it is determined by the switch 104 whether or not the synchronization can be followed by the DLL 110. If the synchronization can be followed, the spread code generator 107 generates The phase of the spreading code to be corrected is corrected, multiplied by the received signal by the multiplication 108, and the desired signal component is extracted by the LPF 109, so that the despreading is performed, and at the same time, the DLL 110 is operated to start synchronization tracking.
[0015]
In addition, if it exceeds the range in which the synchronization can be followed, the error range indicated by the error counter 105 plus the received signal for the correlation value detection necessary is written into the memory 102 again, and at the same time, the clock counter 106 and the error counter 105 are reset and again. Similarly, the operation of synchronization acquisition is performed. At this time, the first synchronization acquisition has to search all timings of one cycle of the spreading code at the maximum, whereas the second synchronization acquisition has the error range within the first synchronization acquisition. Since only the limited timing needs to be searched, synchronization acquisition can be completed in a much shorter time than the first time, and the probability that synchronization acquisition can be completed before the error counter 105 exceeds the synchronization tracking range is greatly increased. Will be higher.
[0016]
If the synchronization cannot be followed even in the second synchronization acquisition, the synchronization acquisition can be completed in a shorter time by repeating the writing from the memory 102 in the same manner. Becomes sufficiently small, and can be captured within the synchronous followable range.
[0017]
As a specific example, FIG. 2 shows an operation flow when the accuracy of the receiving clock relative to the transmitting clock is 1 ppm and sampling is performed at 10 samples / chip.
[0018]
In FIG. 2, since the clock precision is 1 ppm, when the clock counter 106 counts 1 million clocks, the error counter 105 is counted by one and the clock counter 106 is reset. Furthermore, if the error range in which the DLL 110 can follow the synchronization is within ± 1 / chip, the deviation within 5 samples from 10 samples / chip can be corrected. That is, the error counter 105 can be corrected when the correlator 103 completes the synchronization acquisition. Is less than 5, the demodulation is started by assuming that the error is in a range where synchronization can be followed. If the value is 5 or more, it is determined that the error may be in a range where synchronization cannot be followed, and the correlator 103 and the Synchronous acquisition is performed again using the value of the counter 105 as a parameter.
[0019]
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram showing a configuration of a synchronization acquisition system in a receiver using the DS / SS scheme according to the second embodiment of the present invention. 3, reference numeral 301 denotes a frequency conversion circuit, 302 denotes a memory, 303 denotes a correlator, 304 denotes a loop counter, 305 denotes a spreading code generator, 306 denotes a multiplier, 307 denotes an LPF, and 308 denotes a DLL.
[0020]
In the configuration shown in FIG. 3, first, similarly to the first embodiment, the received signal converted into the baseband signal by the frequency conversion circuit 301 is written into the memory 302, and then read out as needed to find a correlation peak. At this time, the correlator 303 obtains a correlation with respect to all timings of one cycle of the spread code, and selects a maximum value from the correlations to find a correlation peak. It becomes. If the time required for synchronization acquisition is constant, the range of the error included in the obtained despread timing is also constant, so that the range can be known in advance from the accuracy of the clock and the time required for synchronization acquisition. Further, a correlation is obtained again for all the timings of the error range, and a correlation peak is found by selecting the maximum value as in the first time. Also at this time, the time required for the synchronization acquisition and the range of the error included in the despreading timing are known and constant, and are much smaller than the first time. It is possible to know how many iterations in advance will provide sufficient accuracy.
[0021]
Therefore, in order to obtain sufficient accuracy, the number of repetitions of synchronization acquisition is determined in advance from the accuracy of the clock, the length of the spreading code, the number of samples per chip, and the like, and the number of times is counted by the loop counter 304. The despreading timing is output to the spreading code generator 305 after the specified number of synchronization acquisitions are completed.
[0022]
After outputting the despreading timing to the spreading code generator 305, despreading and synchronization tracking are performed as in the first embodiment.
[0023]
【The invention's effect】
As described above, according to the first aspect of the present invention, the timing error can be corrected by using the same circuit as that of the synchronization acquisition section without increasing the speed more than necessary. This makes it possible to perform memory storage type synchronous capture without increasing the load or increasing the load. In addition, if the permissible time until the completion of the synchronization acquisition can be extended, the circuit scale can be reduced to some extent.
[0024]
Further, according to the second aspect of the present invention, it is possible to determine the timing error range with only a simple counter, and the algorithm for determining the error range in the first aspect can be easily realized.
[0025]
Further, according to the third aspect of the present invention, by using a correlator whose time required for detecting a correlation peak is substantially constant and known, the range of an error included in the obtained despread timing can be set in advance. Since it can be known, there is no need for a means for predicting the error range, and a simple algorithm that simply counts the number of times to repeat synchronization acquisition for error correction and counts Good synchronization acquisition can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a synchronization acquisition system in a receiver using a DS / SS system according to a first embodiment of the present invention.
FIG. 2 is a flowchart illustrating a specific synchronization acquisition algorithm according to the first embodiment of the present invention.
FIG. 3 is a block diagram showing a configuration of a synchronization acquisition system in a receiver using the DS / SS system according to a second embodiment of the present invention.
FIG. 4 is a block diagram illustrating a configuration of a synchronization acquisition system in a receiver using the DS / SS method according to the related art.
[Explanation of symbols]
101, 301 Frequency conversion circuit 102, 302 Memory 103, 303 Correlator 104 Switch 105 Error counter 106 Clock counter 107, 305 Spread code generator 108, 306 Multiplier 109, 307 LPF
110, 308 DLL

Claims (3)

受信したIF信号をベースバンド信号に変換する周波数変換回路と、ベースバンド信号を一時記憶させておくメモリと、メモリから読み出した信号と目的の拡散符号との相関を計算して相関ピークを見つけることにより逆拡散のタイミングを検出する相関器と、検出された逆拡散のタイミングに合わせて拡散符号を発生させる拡散符号発生器と、この拡散符号とリアルタイムのベースバンド信号とを掛け合わせる乗算器と、その乗算器の出力信号から希望信号成分を取り出すLPFと、同期捕捉後に再び同期が外れないように細かい補正を行なう同期追従回路とを有する、スペクトラム拡散方式を用いる受信機の同期捕捉システムにおいて、
送受のクロック誤差等の影響で発生するメモリに書き込んだ時点での受信信号の逆拡散タイミングと同期捕捉完了後のリアルタイムの受信信号の逆拡散タイミングとのずれの範囲を判断する手段と、
このずれの範囲が同期追従可能な範囲内に十分収まっているかどうかを判定して、相関器の逆拡散タイミングを拡散符号発生器側に出力するかメモリ側に出力するかを切り替える手段とを有し、
前記逆拡散タイミングのずれの範囲が同期追従可能な範囲内に収まらなかった場合に、ずれの範囲に対して同期捕捉を行なうのに十分な長さの受信信号をメモリに書き込み、再び同じ回路およびアルゴリズムを用いて誤差範囲内の同期捕捉を行なうことによって誤差の補正を行なうことができ、設定した精度での同期捕捉を実現することを特徴とする同期捕捉システム。
A frequency conversion circuit for converting a received IF signal into a baseband signal, a memory for temporarily storing the baseband signal, and calculating a correlation between a signal read from the memory and a target spreading code to find a correlation peak A correlator that detects the timing of despreading, a spreading code generator that generates a spreading code in accordance with the detected despreading timing, a multiplier that multiplies the spreading code by a real-time baseband signal, An LPF for extracting a desired signal component from the output signal of the multiplier, and a synchronization tracking circuit that performs a fine correction so that synchronization is not lost again after synchronization acquisition, a synchronization acquisition system for a receiver using a spread spectrum method,
Means for determining the range of deviation between the despread timing of the received signal at the time of writing to the memory generated due to the influence of the clock error of transmission and reception and the despread timing of the real-time received signal after the completion of synchronization acquisition,
Means for judging whether or not the range of this deviation is sufficiently within the range in which synchronization can be followed, and switching between outputting the despreading timing of the correlator to the spreading code generator side or the memory side. And
If the range of the deviation of the despreading timing does not fall within the range in which synchronization can be followed, a received signal having a length long enough to perform synchronization acquisition with respect to the deviation range is written into the memory, and the same circuit and A synchronization acquisition system characterized in that an error can be corrected by performing synchronization acquisition within an error range using an algorithm, and synchronization acquisition with set accuracy is realized.
請求項1記載において、
相関器の逆拡散タイミングを拡散符号発生器側に出力するかメモリ側に出力するかを判定するアルゴリズムとして、
メモリに受信信号を書き込むと同時にクロックをカウントするクロックカウンタを動作させ、送受のクロックの精度を考慮して送信側と最大1クロックの誤差が生じる程度のカウントを行なったときにクロックカウンタの値をリセットすると同時に誤差カウンタの値を1つカウントし、これを繰り返しながら同期捕捉が完了するのを待ち、同期捕捉が完了した時点の誤差カウンタの値が同期追従可能な範囲なら復調および同期追従を開始し、同期追従可能範囲外なら誤差カウンタの値に示される誤差の範囲内のタイミングに対してもう一度メモリへの書き込みおよび同期捕捉を行なうという、アルゴリズムをとることを特徴とする同期捕捉システム。
In claim 1,
As an algorithm for determining whether to output the despreading timing of the correlator to the spreading code generator side or the memory side,
A clock counter that counts clocks is operated at the same time as writing a received signal to the memory. At the same time as the reset, the value of the error counter is counted by one, and the process is repeated until the acquisition of the synchronization is completed. If the value of the error counter at the time of completion of the acquisition is within the range in which the synchronization can be followed, the demodulation and the tracking of the synchronization are started. And a synchronization acquisition system for writing to the memory and synchronizing once again at a timing within the error range indicated by the value of the error counter if the synchronization is out of the synchronization followable range.
請求項1記載において、
相関ピークの検出に費やす時間が既知である相関器と、逆拡散タイミングの誤差補正のために繰り返す同期捕捉の回数をカウントする手段とを有し、
送受のクロック誤差および相関ピークの検出時間より得られた逆拡散タイミングに含まれる誤差の範囲をあらかじめ知ることによって、十分な精度を得るために必要な同期捕捉の繰り返し回数を決定し、この決められた回数分同期捕捉を繰り返した後で相関器で得られた逆拡散タイミングを拡散符号発生器側に出力することにより、タイミング誤差補正を単純なアルゴリズムおよび回路で実現できることを特徴とする同期捕捉システム。
In claim 1,
Correlator having a known time spent for detection of a correlation peak, and means for counting the number of times of synchronization acquisition repeated for error correction of despreading timing,
By knowing in advance the transmission and reception clock errors and the range of errors included in the despread timing obtained from the correlation peak detection time, the number of repetitions of synchronization acquisition necessary to obtain sufficient accuracy is determined. A synchronization acquisition system characterized in that timing error correction can be realized with a simple algorithm and circuit by outputting the despread timing obtained by the correlator to the spreading code generator side after repeating synchronization acquisition for the number of times. .
JP2000309710A 2000-10-10 2000-10-10 Synchronous acquisition system Expired - Fee Related JP3593021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309710A JP3593021B2 (en) 2000-10-10 2000-10-10 Synchronous acquisition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309710A JP3593021B2 (en) 2000-10-10 2000-10-10 Synchronous acquisition system

Publications (2)

Publication Number Publication Date
JP2002118499A JP2002118499A (en) 2002-04-19
JP3593021B2 true JP3593021B2 (en) 2004-11-24

Family

ID=18789819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309710A Expired - Fee Related JP3593021B2 (en) 2000-10-10 2000-10-10 Synchronous acquisition system

Country Status (1)

Country Link
JP (1) JP3593021B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205759A (en) * 2007-02-20 2008-09-04 Japan Radio Co Ltd Distortion compensation device

Also Published As

Publication number Publication date
JP2002118499A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP2780697B2 (en) Method and apparatus for acquiring synchronization in correlation demodulation
JP2800796B2 (en) CDMA synchronization acquisition circuit
US8351486B2 (en) Parallel correlator implementation using hybrid correlation in spread-spectrum communication
KR0143825B1 (en) Sliding correlation detector
US5917850A (en) Spread spectrum receiving apparatus
WO2003001698A1 (en) Spectrum spreading signal demodulation method and apparatus
KR100359544B1 (en) Receiver and synchronous acquisition method
JP4828308B2 (en) Phase modulation sequence playback device
JP2003188769A (en) Synchronism capturing method and device
JP3593021B2 (en) Synchronous acquisition system
JPH1141206A (en) Initial synchronization method for code division multiple access receiving system.
JP2005265476A (en) Satellite navigation system
JP4335913B2 (en) Method and system for capturing a received impulse radio signal
US20070002933A1 (en) Parallel correlator implementation using block integration for spread-spectrum communication
JP2003084055A (en) Transmission source acquisition method and receiver
JP2003032144A (en) Spread spectrum signal acquisition device and method
US8036312B2 (en) System and method for determining signal phase
KR19980045949A (en) Method and device for acquiring PN code synchronization in data demodulation of CDMA system
JPH10112672A (en) Spread spectrum communication receiver
JP2917990B2 (en) Pseudo-noise code generator
JP2859604B2 (en) Sliding correlator
JP3660516B2 (en) Code synchronization acquisition apparatus and radio
JP2000115025A (en) Spreading code and timing detecting apparatus and method
JP2726178B2 (en) Synchronous decision circuit for spread spectrum demodulator
JPH05175936A (en) Sliding correlator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees