[go: up one dir, main page]

JP3592512B2 - High frequency signal detector - Google Patents

High frequency signal detector Download PDF

Info

Publication number
JP3592512B2
JP3592512B2 JP02746098A JP2746098A JP3592512B2 JP 3592512 B2 JP3592512 B2 JP 3592512B2 JP 02746098 A JP02746098 A JP 02746098A JP 2746098 A JP2746098 A JP 2746098A JP 3592512 B2 JP3592512 B2 JP 3592512B2
Authority
JP
Japan
Prior art keywords
frequency
signal
bandwidth
circuit
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02746098A
Other languages
Japanese (ja)
Other versions
JPH11234220A (en
Inventor
宜孝 大光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02746098A priority Critical patent/JP3592512B2/en
Publication of JPH11234220A publication Critical patent/JPH11234220A/en
Application granted granted Critical
Publication of JP3592512B2 publication Critical patent/JP3592512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Circuits Of Receivers In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、不特定高周波信号を検出するのに好適な高周波信号検出装置に関する。
【0002】
【従来の技術】
一般に、相互間の無線通信では、当然ながら使用周波数帯域や変調方式等のように、いわゆる通信方式や通信時間が予め互いに知得している場合が多い。従って、通常の無線通信では、互いに通信方式の一致した送受信装置を備え、共通した時間帯において交信等が行われる。
【0003】
しかしながら、例えば遭難時の緊急通信等のように、相手が特定されずしかも相手の存在さえ不明確な状態で、緊急通信電波をキャッチしたり、あるいはその送信相手方と通信を交わしたい場合もある。このような場合、受信側にとって、相手方の通信方式はもとより送信時間等は全く未知数である。しかもこのような場合に限って、しばしば相手方の送信電波が微弱であり、また雑音も多く、受信環境が必ずしも良くない場合が多い。
【0004】
最近の無線通信機器は、携帯端末機器にも見られるように、ハードウェア及びソフトウェアの両面で著しい進展がなされている。また衛星通信のように、通信領域も宇宙空間まで広がり、しかも多くの様々な通信方式が錯綜するようになってきた。
【0005】
例えば、衛星通信方式においは、最近はデジタル変調方式が主流とされ、また衛星搭載機器を効率的に使用するために多元接続が採用されている。多元接続は、多数の地球局や端末が空いている無線回線にアクセスして通信を行うものであり、周波数分割多元接続(FDMA)や、時分割多元接続(TDMA)、更には符号分割多元接続(CDMA)がある。
【0006】
TDMA方式では、同じ周波数帯域の信号を時間軸上で分割して複数のチャネルを構成し、送信側はバースト信号を空きチャネルの時間帯で伝送するものであるが、そのTDMA方式の中には、スロット式アロハ方式のように、信号の出現のタイミングが定められていない、いわゆる時間ランダム多元接続(TRMA)方式もある。
【0007】
TRMA方式は、デジタル信号を短い時間に圧縮したバースト信号を送信するものであるが、受信側にとって送信タイミングそのものが未知であるから、バースト信号を精度良く受信し検出するには、送信側における送信搬送周波数の周波数安定度が良いこと等が条件となる。
【0008】
図5は、受信機の一部に構成された従来の高周波信号検出装置を示す構成図であり、例えば送信搬送周波数が未知の振幅変調(AM)波を受信しようとした場合、アンテナ1で受信された送信電波すなわち高周波信号は、高周波増幅器2で増幅された後、周波数変換器(MIX)3に供給され、ここで可変局部発振器 (LO)4からの局発信号と混合され、中間周波数(IF)信号に変換される。IF信号は、帯域通過フィルタ(BPF)5で雑音が抑制された後、復調回路6においてAM検波され、音声信号がスピーカ7から出力される。ここで、もしも相手方の送信搬送周波数が未知である場合は、可変局部発振器3における局発周波数を調節し、いわゆるチャネル選択によって、特定の相手方からの送信電波をキャッチすることができる。
【0009】
【発明が解決しようとする課題】
上記のように、仮に不特定な送信相手方でも、予め相手側からの送信時間や送信周波数及び変調方式等が受信側で分かっていることが多く、受信環境が必ずしも良好でない環境下でも、比較的容易に、相手方からの信号を選択受信することができる。しかしながら遭難時における緊急通信のように、送信時間帯はもとより通信方式も不明とされる送信電波では、これを効率良く速やかにキャッチすることは容易でなかった。
【0010】
また、送信相手側が不特定の場合は、その通信方式等が未知であるばかりでなく、往々にして送信電力が極めて微弱であるから、受信環境が必ずしも良くなく多くの雑音にまぎれることが多い。しかも送信周波数も未知の状態では、広い周波数範囲をサーチして瞬時に捕らえるのは容易ではなく、何らかの解決手段が要望されていた。
【0011】
【課題を解決するための手段】
この発明は、高周波信号検出装置において、受信高周波領域を時間軸上でのサンプリングによりA/D変換を行い、受信高周波信号の離散デジタル信号を得るA/D変換手段と、このA/D変換手段による離散デジタル信号の周波数帯域幅を複数に分割する高速フーリエ変換手段と、この高速フーリエ変換手段により複数に分割された周波数帯域幅の各分割領域内に出現する前記離散デジタル信号の時間軸上での振幅レベルの相関関係を演算処理する信号処理手段とを具備し、前記受信高周波信号の変調方式を推定し得るよう構成されたことを特徴とする。
【0012】
上記のようにこの発明は、時間軸上でのA/D変換によって、受信高周波領域が離散デジタル信号化され、その離散デジタル信号の高速フーリエ変換により受信高周波領域での帯域幅の細分化が行われる。
【0013】
また、受信時の雑音電力は受信帯域幅に比例するが、発明では、高速フーリエ変換により受信高周波領域の細分化を行ない、その細分化により、個々の分割領域での低雑音化が実現する。しかも分割数の設定によっては受信領域のより広帯域化も同時に可能である。またA/D変換による受信高周波信号のデジタル化は、信号処理手段での高速演算化を可能とするとともに、信号処理手段は、前記離散デジタル信号間の時間軸上での振幅レベルの相関関係を演算処理するので、受信高周波信号の帯域幅を推定することができる。
【0014】
【発明の実施の形態】
以下、この発明による高周波信号検出装置の一実施の形態を図1ないし図4を参照して詳細に説明する。なお、図5に示した従来の構成と同一構成には同一符号を付して、詳細な説明は省略する。
【0015】
図1は、この発明による高周波信号検出装置の第1の実施の形態を示す回路構成図で、第5図におけると同様に、高周波信号検出装置を受信機に適用したものとして説明する。
【0016】
すなわち、周波数や変調方式等が未知の送信電波はアンテナ1で受信されるとし、その送信電波(受信高周波信号)は、高周波増幅器2で増幅された後、周波数変換器3に供給される。周波数変換器3に供給された受信高周波信号は、可変局部発振器4からの局発信号と混合され、この実施の形態では10KHzの帯域幅を有する中間周波数(IF)信号に変換される。
【0017】
帯域幅10KHzのIF信号に変換された受信高周波信号は、帯域通過フィルタ5を介して雑音が除去された後、アナログ/デジタル(A/D)変換器8に供給され、ここで12.8KHzのサンプリング(標本化)周波数fsにより時間軸上でサンプリングされたデジタル信号、すなわち離散(discrete time)デジタル信号が生成される。
【0018】
つまり、帯域幅10KHzのIF信号は、A/D変換によって、離散デジタル信号からなるデジタルデータ列に変換され、高速フーリエ変換(FFT)回路9に供給される。
【0019】
FFT回路9は時間軸上で128ポイントのFFT処理を行い、10KHzのIF帯域が、図2(a)及び(b)に示すように100個の分割領域(bin)に細分化されるように構成した。すなわち、高周波であるIF信号は、FFT回路9における細分化により、各帯域幅が100Hzである100個の分割領域となり、分割領域における各デジタルデータ(91,92,…9100)出力は、次段の信号処理回路10に並列供給される。
【0020】
信号処理回路10は、図3に示すように、入力されるデジタルデータを時系列的に保存するメモリ(10a1,10a2,…10a100)、その各メモリにおけるデータを時系列上で比較するために設けた各第1及び第2の合成回路(10b11,10b12、10b21,10b22、……10b1001,10b1002)、及び各第1及び第2の合成回路(10b11,10b12、10b21,10b22、……10b1001,10b1002)の出力信号を処理演算する中央処理装置(CPU)10cとにより構成される。
【0021】
そこで、FFT回路9からのそれぞれ対応するメモリ10a1,10a2,…10a100に供給された各分割領域におけるデジタルデータは、それぞれ第1及び第2の合成回路(10b11,10b12、10b21,10b22、……10b1001,10b1002)において、それぞれ時系列上つらなる2つのフレームにおける合成信号が生成される。なお、この実施の形態におけるメモリ(10a1,10a2,…10a100)は、図3に示すように、5桁で1フレームを形成するように構成し、この2フレームの各合成出力が、各対応する電力比較器10ca1,10ca2……10ca100に供給されるように構成した。
【0022】
そこで、これら各合成信号は、それぞれCPU10cの各対応する電力比較器10ca1,10ca2……10ca100に供給されるので、各電力比較器10ca1,10ca2……10ca100からは、時間軸上での信号電力値の差すなわち変化分が出力される。
【0023】
すなわち、FFT回路9による周波数分割領域のうち、ある分割領域について、その対応する電力比較器(10ca1,10ca2……10ca100)に変化分が出力された場合、その分割領域に対応する受信周波数信号の存在を検知することができる。
【0024】
さらに、各電力比較器10ca1,10ca2……10ca100の出力は、演算回路10cbに供給され、ここで各受信周波数帯域における周波数軸上での相関関係の演算により、存在する受信信号の周波数領域、すなわち周波数帯域上での連続性の有無や占有周波数帯域幅、及び中心周波数等が検出され、その検出信号101は、図1にも示したように、信号処理回路10からデジタルフィルタ11及び復調回路6を経てスピーカ7に供給出力される。
【0025】
このようにして、信号処理回路10は、受信高周波信号の帯域幅の中心位置等を算出するので、受信IF信号の中心周波数、すなわち送信電波の送信搬送周波数を推定することができる。
【0026】
もっとも、未知の受信電波にあっては、中心周波数(送信搬送周波数)値や帯域幅の変動も予想されるから、信号処理回路10の演算回路10cbは、データの平均化処理あるいは閾値処理による雑音信号の除去を行うことにより、送信電波の中心周波数及び占有周波数帯域幅の推定確率を高め、高感度でしかも信頼性の高い検出を行うことができる。なお、信号処理回路10cにおける上記のような処理演算は、ソフトウエアによるアルゴリズムによっても容易に実施することができる。
【0027】
また、この実施の形態によれば、受信時の雑音電力(N)は受信帯域幅に比例するという性質から、対雑音特性がより一層向上するものである。つまり、上述のように、FFT回路9により、受信高周波(IF)領域が複数の帯域幅に細分化されるので、その個々の分割領域での低雑音化が実現し、信号(S)対雑音 (N)比(S/N)の良好な高周波信号検出装置を得ることができる。
【0028】
すなわち、一般に受信側において、信号電力(C)対雑音電力(N)比、すなわちC/Nの値が小さい場合には、送信高周波信号の検出確率が低下し、誤検出確率が高くなるが、雑音電力(N)は受信帯域幅の大きさに比例するから、この実施の形態のように、FFT回路9による受信帯域幅の狭小化により、十分なC/Nが確保され、送信電波を高い確率で正確に検出することができる。
【0029】
具体的数値を示して上記対雑音特性向上の原理を説明すると、例えば、送信電波の占有周波数帯域幅が1KHzであって、その送信搬送周波数が不安定であり変化するものと仮定する。そこで帯域幅1KHzの送信搬送周波数(IF)が±5KHzまで変化するものとすれば、受信側では約10KHzの受信帯域幅が要求される。
【0030】
送信電波を正確に検出するために必要なC/Nを、仮に10dBであるとし、帯域幅10KHzにおける信号電力(C)対1Hz当たりの雑音電力(雑音電力密度N)比を求める。
【0031】
上述のように雑音電力は受信帯域幅に比例するから、図6に示した従来の構成における帯域幅10KHzのIF信号を復調する場合は、10KHzは40dBHzであるから、10KHzにおけるC/Nは、50dBHz(=40dBHz+10dB)必要となる。
【0032】
それに対し、この実施の形態のように、FFT回路9により受信帯域幅は細分化され、それぞれ各出力帯域幅は上述のように100Hzである。従って、この受信帯域幅において送信電波を正確に検出し復調するのに必要とするC/Nの条件を同じ10dBであるとすれば、FFT回路9の各受信帯域幅(100Hz)におけるC/Nを求めると、図2(b)及び(c)に示すように、100Hzは20dBHzであるから、C/Nは30dBHz(=20dBHz+10dB)で良いことになる。
【0033】
つまり、この実施の形態では、FFT回路9によるIF信号の周波数分割により、C/Nが10dBという従来と同一条件で20dB(=50dBHz−30dBHz)の改善が図られ、送信電波を高い確率でより正確に検出できる。
【0034】
換言すれば、この実施の形態のように、IF信号をA/D変換し、離散デジタル信号をFFT回路9で帯域分割し、10KHzを100Hzの分割領域からなる100個の並列出力とした結果、従来のIF信号におけるC/Nよりも20dBの改善によって、仮に同一の検出確率のもとでは、従来と比較し受信電波の復調に20dBも小さい受信電力で済むという効果が得られる。
【0035】
以上のように、この実施の形態における高周波信号検出装置は、受信電力が微弱な場合でも、送信電波は高い確率で瞬時に正確に検出され、検出信号101は図1に示したように信号処理回路10からデジタルフィルタ11及び復調回路6を経てスピーカ7に供給出力することができる。
【0036】
また、上記実施の形態では、受信電波の周波数が全く未知であるものとして説明したが、送信電波の周波数が既知であり、予めその変調方式や搬送周波数(チャンネル)び占有周波数帯域幅等がこの受信側で予め知られている場合は、上記構成において、可変局部発振器4を制御調整し、所定のチャンネルで待ち受け、受信周波数帯域幅の適正化により、良好な対雑音特性のもとで、送信電波の有無を効率良く判定することができることは言うまでもない。
【0037】
従ってまた、上述のように、信号処理回路10の演算回路10cbは各電力比較器10ca1,10ca2……10ca100の出力から、送信電波の送信搬送周波数及び帯域幅を検出できるので、その検出による受信帯域信号102を、次段のデジタルフィルタ11に供給し、そのフィルタ特性を受信IF帯域に整合するように調整制御することにより、対雑音特性をより改善し、高感度で復調することができる。
【0038】
次に、上記第1の実施の形態では、周波数混合器3においてIF信号の帯域幅が10KHzとなるように構成したが、高い確率で未知電波を検出するという条件を確保しつつ、より広帯域で未知信号を受信することができる。
【0039】
すなわち、図4はこの発明による高周波信号検知装置の第2の実施の形態の要部のみを示した回路、すなわち図1に示した装置との相違点であるFFT回路9の構成を示したもので、FFT回路9を第1及び第2のFFT回路91,92からなる2段の縦続接続で構成した。
【0040】
この図4に示した実施の形態では、IF信号の帯域幅を1MHzの広帯域とし、第1のFFT回路91で100分の1(=10KHz)に分割のち、さらに第2のFFT回路92において、その各10KHz帯域をさらに100分の1(=100Hz)の帯域に分割するよう構成した。この結果、FFT回路9の分割出力は結局は、第1の実施の形態と同様に、それぞれ100Hzの帯域幅という条件で出力デジタル信号での信号処理が信号処理回路10で可能としたものであり、第1の実施の形態との相違点は、信号処理回路10での並列入力デジタルデータが100個から10000個に増加したが、より高速な信号処理演算により、未知の高周波信号をより高感度でより正確に検出することができる。
【0041】
このようにして、FFT回路の縦続接続により、受信IF信号、すなわち受信高周波信号の周波数領域を大幅に拡大した状態においても、FFT回路9出力において、帯域幅の十分狭い領域に細分化され、雑音特性の改善された高周波信号検知装置を得ることができる。
【0042】
なお、図1ないし図4に示した上記各実施の形態においては、いずれも信号処理回路10の演算回路10cbでは、演算により受信電波の中心搬送周波数及びその占有周波数帯域幅を検出するように説明したが、演算回路10cbにおいて、スライディングウィンドウを構成し、各電力比較器10ca1,10ca2,……10ca100の各出力信号に関し、時間軸上での例えば周波数スペクトラムの連続性、あるいは対称性を検出し、例えば信号検出が連続した場合には、周波数変調(FM)波と推定でき、また信号検出レベルが時間軸上で変化すれば、AM波である等と推定することができる。
【0043】
また、演算回路10cbにおいて、時間軸上での周波数スペクトルの解析を行うことによって、単一変調波に対し新たな変調波の混信の有無をも推定することができる。
【0044】
以上説明のように、この発明による高周波信号検出装置は、周波数帯域をA/D変換によりデジタル信号化された受信IF信号の帯域をFFT回路により分割することによりC/Nは向上するので検出確率が高められ、未知の高周波信号を高感度で検出することができる。
【0045】
【発明の効果】
この発明による高周波信号検出装置は、A/D変換手段と、1個あるいは複数段の高速フーリエ変換回路からなる高速フーリエ変換手段との縦続接続という簡単な構成により、通信方式等が未知の送信電波を高感度で的確に検出して、受信高周波信号の変調方式を推定し得るものであり、実用上の効果大である。
【図面の簡単な説明】
【図1】この発明による高周波信号検出装置の第1の実施の形態を示す構成図である。
【図2】図2(a)は図1に示す装置におけるIF信号の帯域特性図、図2(b)は図1に示す装置のFFT回路出力の帯域特性図、図2(c)は図2(b)に示す帯域における信号電力対1Hz当たりの雑音電力密度比(C/N)説明図である。
【図3】図1に示す装置の信号処理回路の詳細回路図である。
【図4】この発明による高周波信号検出装置の第2の実施の形態の要部(FFT回路)を示す構成図である。
【図5】従来の高周波信号検出装置を示す構成図である。
【図6】図5に示す装置のIF信号の帯域特性図である。
【符号の説明】
1 アンテナ
2 高周波増幅回路
3 周波数変換器
4 可変局部発振器
5 帯域通過フィルタ(BPF)
6 復調回路
7 スピーカ
8 A/D変換器
9 高速フーリエ変換器(FFT回路)
10 信号処理回路
10a メモリ
10b 合成回路
10c CPU
10ca 電力比較器
10cb 演算回路
11 デジタルフィルタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency signal detection device suitable for detecting an unspecified high-frequency signal.
[0002]
[Prior art]
In general, in wireless communication between devices, it is often the case that a so-called communication system and a communication time are known in advance, such as a frequency band used and a modulation system. Therefore, in a normal wireless communication, a transmission / reception device having a communication method which is the same as that of the transmission / reception device is provided, and communication is performed in a common time zone.
[0003]
However, there is a case where it is desired to catch an emergency communication radio wave or to communicate with the transmission partner in a state where the partner is not specified and the presence of the partner is not clear, such as emergency communication in the case of distress. In such a case, for the receiving side, the transmission time as well as the communication method of the other party are completely unknown. Further, only in such a case, the transmission radio wave of the other party is often weak, and there is much noise, and the reception environment is not always good.
[0004]
Recent wireless communication devices have made remarkable progress in both hardware and software as seen in mobile terminal devices. Also, like satellite communication, the communication area has expanded to outer space, and many various communication systems have become complicated.
[0005]
For example, in the satellite communication system, a digital modulation system has recently become mainstream, and a multiple access has been adopted in order to efficiently use the on-board equipment. The multiple access is a communication in which a large number of earth stations and terminals access and communicate with a vacant radio line. The multiple access includes frequency division multiple access (FDMA), time division multiple access (TDMA), and code division multiple access. (CDMA).
[0006]
In the TDMA system, a signal in the same frequency band is divided on the time axis to form a plurality of channels, and the transmitting side transmits a burst signal in a time band of an empty channel. There is also a so-called time random multiple access (TRMA) system in which the timing of signal appearance is not defined, such as a slot-type Aloha system.
[0007]
The TRMA system transmits a burst signal obtained by compressing a digital signal in a short time. However, since the transmission timing itself is unknown to the receiving side, the transmitting side needs to transmit and detect the burst signal with high accuracy. The condition is that the frequency stability of the carrier frequency is good.
[0008]
FIG. 5 is a configuration diagram showing a conventional high-frequency signal detection device configured as a part of a receiver. For example, when an amplitude modulation (AM) wave whose transmission carrier frequency is unknown is to be received, the signal is received by an antenna 1. The transmitted radio wave, that is, the high-frequency signal is amplified by the high-frequency amplifier 2 and then supplied to the frequency converter (MIX) 3 where it is mixed with the local oscillation signal from the variable local oscillator (LO) 4 to generate the intermediate frequency ( IF) signal. The IF signal is subjected to AM detection in a demodulation circuit 6 after noise is suppressed by a band-pass filter (BPF) 5, and an audio signal is output from a speaker 7. Here, if the transmission carrier frequency of the other party is unknown, the local oscillation frequency of the variable local oscillator 3 is adjusted, and transmission radio waves from a specific other party can be caught by so-called channel selection.
[0009]
[Problems to be solved by the invention]
As described above, even in an unspecified transmission partner, the transmission time, transmission frequency, modulation method, and the like from the partner are often known on the reception side in many cases. Signals from the other party can be selected and received easily. However, it is not easy to efficiently and promptly catch a transmission radio wave whose communication method is unknown as well as a transmission time zone, such as emergency communication in the case of distress.
[0010]
Also, if the transmission destination side unspecified is not only the communication system or the like is unknown, the then since the transmission power is very weak and often, often a child distracted to many noise reception environment is not always good . Moreover, in a state where the transmission frequency is also unknown, it is not easy to search a wide frequency range and catch it instantaneously, and some solution has been demanded.
[0011]
[Means for Solving the Problems]
According to the present invention, in a high-frequency signal detection device, A / D conversion means for performing A / D conversion by sampling a reception high-frequency region on a time axis to obtain a discrete digital signal of the reception high-frequency signal, and this A / D conversion means Fast Fourier transform means for dividing the frequency bandwidth of the discrete digital signal into a plurality of discrete digital signals, and the time axis of the discrete digital signal appearing in each divided region of the frequency bandwidth divided into a plurality by the fast Fourier transform means Signal processing means for calculating the correlation between the amplitude levels of the received high-frequency signal and the modulation method of the received high-frequency signal .
[0012]
As described above, according to the present invention, the received high-frequency region is converted into a discrete digital signal by A / D conversion on the time axis, and the bandwidth is divided in the received high-frequency region by the fast Fourier transform of the discrete digital signal. Is
[0013]
Although the noise power at the time of reception is proportional to the reception bandwidth, in the present invention, the reception high-frequency region is subdivided by the fast Fourier transform, and the subdivision realizes low noise in each divided region. . In addition, depending on the setting of the number of divisions, it is possible to simultaneously increase the bandwidth of the reception area. Further, digitization of the received high-frequency signal by A / D conversion enables high-speed operation in the signal processing means, and the signal processing means determines the correlation of the amplitude level on the time axis between the discrete digital signals. Since the arithmetic processing is performed, the bandwidth of the received high-frequency signal can be estimated.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a high-frequency signal detecting device according to the present invention will be described in detail with reference to FIGS. Note that the same components as those of the conventional configuration shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0015]
FIG. 1 is a circuit diagram showing a first embodiment of a high-frequency signal detection device according to the present invention. As in FIG. 5, the description will be made assuming that the high-frequency signal detection device is applied to a receiver.
[0016]
That is, it is assumed that a transmission radio wave whose frequency and modulation method are unknown is received by the antenna 1, and the transmission radio wave (received high-frequency signal) is amplified by the high-frequency amplifier 2 and then supplied to the frequency converter 3. The received high-frequency signal supplied to the frequency converter 3 is mixed with a local oscillation signal from the variable local oscillator 4 and converted into an intermediate frequency (IF) signal having a bandwidth of 10 KHz in this embodiment.
[0017]
The received high-frequency signal converted into an IF signal having a bandwidth of 10 KHz is supplied to an analog / digital (A / D) converter 8 after noise is removed through a band-pass filter 5, where the 12.8 KHz signal is transmitted. A digital signal sampled on the time axis by the sampling (sampling) frequency fs, that is, a discrete time digital signal is generated.
[0018]
That is, the IF signal having a bandwidth of 10 KHz is converted into a digital data string composed of discrete digital signals by A / D conversion, and is supplied to the fast Fourier transform (FFT) circuit 9.
[0019]
The FFT circuit 9 performs a 128-point FFT process on the time axis so that the IF band of 10 KHz is subdivided into 100 divided regions (bins) as shown in FIGS. 2A and 2B. Configured. That is, the IF signal of a high frequency is divided into 100 divided regions each having a bandwidth of 100 Hz by the subdivision in the FFT circuit 9, and the output of each digital data (91, 92,... 9100) in the divided region is output to the next stage. Are supplied in parallel to the signal processing circuit 10.
[0020]
As shown in FIG. 3, the signal processing circuit 10 is provided with memories (10a1, 10a2,... 10a100) for storing input digital data in time series, and provided for comparing data in each memory in time series. Each of the first and second combining circuits (10b11, 10b12, 10b21, 10b22,..., 10b1001, 10b1002) and each of the first and second combining circuits (10b11, 10b12, 10b21, 10b22,..., 10b1001, 10b1002) And a central processing unit (CPU) 10c that processes and computes the output signal of FIG.
[0021]
Therefore, the digital data in each of the divided areas supplied from the FFT circuit 9 to the corresponding memories 10a1, 10a2,... 10a100 respectively correspond to the first and second combining circuits (10b11, 10b12, 10b21, 10b22,. , 10b1002), a composite signal is generated in two frames each of which is time-series. The memory (10a1, 10a2,..., 10a100) in this embodiment is configured to form one frame with five digits, as shown in FIG. The power comparators 10ca1, 10ca2,..., 10ca100 are configured to be supplied.
[0022]
Each of these combined signals is supplied to a corresponding one of the power comparators 10ca1, 10ca2,..., 10ca100 of the CPU 10c, so that each of the power comparators 10ca1, 10ca2,. Is output.
[0023]
That is, when a change is output to a corresponding power comparator (10ca1, 10ca2,..., 10ca100) for a certain divided region among the frequency divided regions by the FFT circuit 9, the reception frequency signal corresponding to the divided region is output. Presence can be detected.
[0024]
The output of each of the power comparators 10ca1, 10ca2,..., 10ca100 is supplied to an arithmetic circuit 10cb, where the calculation of the correlation on the frequency axis in each reception frequency band, the frequency domain of the existing reception signal, that is, The presence or absence of continuity in the frequency band, the occupied frequency bandwidth, the center frequency, and the like are detected, and the detection signal 101 is sent from the signal processing circuit 10 to the digital filter 11 and the demodulation circuit 6 as shown in FIG. Is supplied to the speaker 7 and output.
[0025]
In this manner, the signal processing circuit 10 calculates the center position of the bandwidth of the received high-frequency signal and the like, so that the center frequency of the received IF signal, that is, the transmission carrier frequency of the transmission radio wave can be estimated.
[0026]
However, in the case of an unknown received radio wave, a change in the center frequency (transmission carrier frequency) value and the bandwidth is also expected, so that the arithmetic circuit 10cb of the signal processing circuit 10 performs noise averaging or noise processing by the threshold processing. By removing the signal, the estimation probability of the center frequency and the occupied frequency bandwidth of the transmission radio wave can be increased, and highly sensitive and highly reliable detection can be performed. The above-described processing operation in the signal processing circuit 10c can be easily performed by an algorithm using software.
[0027]
Further, according to this embodiment, the noise power (N) at the time of reception is proportional to the reception bandwidth, so that the noise immunity is further improved. That is, as described above, the reception high-frequency (IF) region is subdivided into a plurality of bandwidths by the FFT circuit 9, so that noise reduction in each of the divided regions is realized, and the signal (S) -to-noise ratio is reduced. (N) It is possible to obtain a high-frequency signal detection device having a good ratio (S / N).
[0028]
That is, in general, when the signal power (C) to noise power (N) ratio, that is, the value of C / N is small on the receiving side, the detection probability of the transmission high-frequency signal decreases and the erroneous detection probability increases. Since the noise power (N) is proportional to the size of the reception bandwidth, a sufficient C / N is secured and the transmission radio wave is increased by narrowing the reception bandwidth by the FFT circuit 9 as in this embodiment. It can be accurately detected with probability.
[0029]
Explaining the principle of the improvement of the anti-noise characteristic by showing specific numerical values, for example, it is assumed that the occupied frequency bandwidth of the transmission radio wave is 1 KHz, and the transmission carrier frequency is unstable and changes. Therefore, assuming that the transmission carrier frequency (IF) having a bandwidth of 1 KHz changes to ± 5 KHz, the reception side requires a reception bandwidth of about 10 KHz.
[0030]
The C / N needed to accurately detect the transmission radio wave, if assumed to be 10 dB, obtains the noise power (noise power density N O) ratio of per signal power (C) versus 1Hz in bandwidth 10 KHz.
[0031]
Since the noise power is proportional to the reception bandwidth as described above, when demodulating an IF signal having a bandwidth of 10 KHz in the conventional configuration shown in FIG. 6, C / N O at 10 KHz is 40 dBHz because 10 KHz is 40 dBHz. , 50 dBHz (= 40 dBHz + 10 dB).
[0032]
On the other hand, as in this embodiment, the reception bandwidth is subdivided by the FFT circuit 9, and each output bandwidth is 100 Hz as described above. Therefore, if the condition of C / N required for accurately detecting and demodulating a transmission radio wave in this reception bandwidth is the same 10 dB, the C / N in each reception bandwidth (100 Hz) of the FFT circuit 9 is assumed. When seeking O, as shown in FIG. 2 (b) and (c), 100 Hz is because it is 20dBHz, C / N O would be a 30dBHz (= 20dBHz + 10dB).
[0033]
That is, in this embodiment, the frequency division of the IF signal by the FFT circuit 9 improves the C / N by 20 dB (= 50 dB−30 dBHz) under the same condition as that of the related art, that is, 10 dB. Can be detected accurately.
[0034]
In other words, as in this embodiment, the IF signal is A / D-converted, the discrete digital signal is band-divided by the FFT circuit 9, and 10 KHz is divided into 100 parallel outputs of 100 Hz. by 20dB improvement than C / N O in the conventional IF signal, if the original of the same detection probability, an effect that the demodulation of the comparison with the conventional receiving radio waves 20dB also requires only a small received power is obtained.
[0035]
As described above, in the high-frequency signal detection device according to this embodiment, even if the received power is weak, the transmitted radio wave is instantaneously and accurately detected with a high probability, and the detection signal 101 is subjected to signal processing as shown in FIG. The signal can be supplied from the circuit 10 to the speaker 7 via the digital filter 11 and the demodulation circuit 6.
[0036]
In the above embodiment, although the frequency of the received radio wave is completely described as an unknown, the frequency of the transmission radio wave is known in advance that the modulation scheme and carrier frequency (channel) beauty occupied bandwidth and the like If the receiving side is known in advance, in the above-described configuration, the variable local oscillator 4 is controlled and adjusted, a standby state is set on a predetermined channel, and the reception frequency bandwidth is optimized, so that a good anti-noise characteristic is obtained. It goes without saying that the presence or absence of the transmission radio wave can be efficiently determined.
[0037]
Therefore, as described above, the arithmetic circuit 10cb of the signal processing circuit 10 can detect the transmission carrier frequency and the bandwidth of the transmission radio wave from the output of each of the power comparators 10ca1, 10ca2,. The signal 102 is supplied to the digital filter 11 at the next stage, and the filter characteristic is adjusted and controlled so as to match the reception IF band, so that the noise characteristic can be further improved and demodulation can be performed with high sensitivity.
[0038]
Next, in the first embodiment, the frequency mixer 3 is configured so that the bandwidth of the IF signal is 10 KHz. However, while ensuring the condition that unknown radio waves are detected with a high probability, a wider band is used. An unknown signal can be received.
[0039]
That is, FIG. 4 is a circuit showing only a main part of the high-frequency signal detecting device according to the second embodiment of the present invention, that is, a configuration of the FFT circuit 9 which is different from the device shown in FIG. Thus, the FFT circuit 9 is configured by a two-stage cascade connection including the first and second FFT circuits 91 and 92.
[0040]
In the embodiment shown in FIG. 4, the bandwidth of the IF signal is set to a wide band of 1 MHz, divided into 1/100 (= 10 KHz) by the first FFT circuit 91, and further divided by the second FFT circuit 92. Each 10 KHz band was configured to be further divided into 1/100 (= 100 Hz) bands. As a result, the divided output of the FFT circuit 9 is such that, similarly to the first embodiment, the signal processing circuit 10 can perform signal processing on the output digital signal under the condition that the bandwidth is 100 Hz. The difference from the first embodiment is that, although the number of parallel input digital data in the signal processing circuit 10 has increased from 100 to 10,000, the unknown high-frequency signal can be more sensitively processed by a faster signal processing operation. Can be detected more accurately.
[0041]
In this way, the cascade connection of the FFT circuits allows the output of the FFT circuit 9 to be subdivided into a sufficiently narrow band at the output of the FFT circuit 9 even when the frequency region of the received IF signal, that is, the received high-frequency signal is greatly expanded, and noise is reduced. A high-frequency signal detection device with improved characteristics can be obtained.
[0042]
In each of the above-described embodiments shown in FIGS. 1 to 4, it has been described that the arithmetic circuit 10cb of the signal processing circuit 10 detects the center carrier frequency of the received radio wave and its occupied frequency bandwidth by calculation. However, in the arithmetic circuit 10cb, a sliding window is formed, and for each output signal of each of the power comparators 10ca1, 10ca2,. For example, when signal detection is continuous, it can be estimated that the signal is a frequency modulation (FM) wave, and when the signal detection level changes on the time axis, it can be estimated that the signal is an AM wave.
[0043]
In addition, the arithmetic circuit 10cb analyzes the frequency spectrum on the time axis, so that it is possible to estimate the presence / absence of interference of a single modulated wave with a new modulated wave.
[0044]
Or as in the description, the high-frequency signal detector according to the invention, detection since C / N O is improved by splitting the band of the received IF signal in which a frequency band is a digital signal by A / D converted by the FFT circuit The probability is increased, and unknown high-frequency signals can be detected with high sensitivity.
[0045]
【The invention's effect】
The high-frequency signal detection device according to the present invention has a simple configuration in which the A / D conversion means and the high-speed Fourier conversion means including one or more stages of high-speed Fourier conversion circuits are connected in cascade. Can be accurately detected with high sensitivity, and the modulation method of the received high-frequency signal can be estimated , which is a large practical effect.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of a high-frequency signal detection device according to the present invention.
2 (a) is a band characteristic diagram of an IF signal in the device shown in FIG. 1, FIG. 2 (b) is a band characteristic diagram of an FFT circuit output of the device shown in FIG. 1, and FIG. 2 (c) is a diagram. FIG. 3 is an explanatory diagram of a signal power to noise power density ratio per 1 Hz (C / N O ) in the band shown in FIG.
FIG. 3 is a detailed circuit diagram of a signal processing circuit of the device shown in FIG.
FIG. 4 is a configuration diagram showing a main part (FFT circuit) of a high-frequency signal detection device according to a second embodiment of the present invention.
FIG. 5 is a configuration diagram showing a conventional high-frequency signal detection device.
6 is a band characteristic diagram of an IF signal of the device shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Antenna 2 High frequency amplifier circuit 3 Frequency converter 4 Variable local oscillator 5 Bandpass filter (BPF)
6 Demodulation circuit 7 Speaker 8 A / D converter 9 Fast Fourier transformer (FFT circuit)
10 signal processing circuit 10a memory 10b combining circuit 10c CPU
10ca Power comparator 10cb Operation circuit 11 Digital filter

Claims (2)

受信高周波領域を時間軸上でのサンプリングによりA/D変換を行い、受信高周波信号の離散デジタル信号を得るA/D変換手段と、
このA/D変換手段による離散デジタル信号の周波数帯域幅を複数に分割する高速フーリエ変換手段と、
この高速フーリエ変換手段により複数に分割された周波数帯域幅の各分割領域内に出現する前記離散デジタル信号の時間軸上での振幅レベルの相関関係を演算処理する信号処理手段と
を具備し、前記受信高周波信号の変調方式を推定し得るよう構成されたことを特徴とする高周波信号検出装置。
A / D conversion means for performing A / D conversion on the reception high-frequency region by sampling on a time axis to obtain a discrete digital signal of the reception high-frequency signal;
Fast Fourier transforming means for dividing the frequency bandwidth of the discrete digital signal by the A / D converting means into a plurality of parts,
Signal processing means for calculating the correlation of the amplitude level on the time axis of the discrete digital signal appearing in each divided region of the frequency bandwidth divided into a plurality by the fast Fourier transform means , A high-frequency signal detection device configured to estimate a modulation method of a received high-frequency signal .
前記高速フーリエ変換手段は、縦続接続された複数の高速フーリエ変換器で構成され、前記周波数帯域幅を段階的に細分化するよう構成されたことを特徴とする請求項1に記載の高周波信号検出装置。2. The high-frequency signal detection device according to claim 1 , wherein the fast Fourier transform unit is constituted by a plurality of cascade-connected fast Fourier transform units, and is configured to subdivide the frequency bandwidth stepwise. apparatus.
JP02746098A 1998-02-09 1998-02-09 High frequency signal detector Expired - Fee Related JP3592512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02746098A JP3592512B2 (en) 1998-02-09 1998-02-09 High frequency signal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02746098A JP3592512B2 (en) 1998-02-09 1998-02-09 High frequency signal detector

Publications (2)

Publication Number Publication Date
JPH11234220A JPH11234220A (en) 1999-08-27
JP3592512B2 true JP3592512B2 (en) 2004-11-24

Family

ID=12221738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02746098A Expired - Fee Related JP3592512B2 (en) 1998-02-09 1998-02-09 High frequency signal detector

Country Status (1)

Country Link
JP (1) JP3592512B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339642B1 (en) * 2000-06-20 2002-06-15 김선구 System for RF observation using swept heterodyne analysis

Also Published As

Publication number Publication date
JPH11234220A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
US5428824A (en) Radio transceiver capable of avoiding intermodulation distortion
JP2000505628A (en) Dual-mode wireless receiver for receiving narrowband and wideband signals
KR100685526B1 (en) How to determine your wireless device, received signal strength indicators, and received signal strength indicators
JPS61240725A (en) Method and apparatus for measuring quality of wireless transmission channel
JPH05327378A (en) Automatic gain control circuit for radio communication equipment
KR20050025231A (en) Spread spectrum communication system receiving device
US9602153B2 (en) Radio receiving apparatus for receiving frequency-modulated radio signal
US20060291540A1 (en) Apparatus for processing digital if signals capable of detecting jamming signals
JP4249711B2 (en) Interference detection in wireless communication systems
JP2003134059A (en) Radio wave monitoring device and radio wave monitoring system using the same
JP3592512B2 (en) High frequency signal detector
JPH07240702A (en) Spread spectrum communication equipment
US5610950A (en) Communication device with reduced sensitivity to in-channel interference
JP3433724B2 (en) Signal analyzer
JPH0964924A (en) FSK demodulator
US6567646B1 (en) Method and apparatus in a radio communication system
JPS61169030A (en) Reception circuit
JP2781947B2 (en) Direct spread spectrum spread communication equipment
JP2596274B2 (en) Received signal power alarm circuit
US20060061685A1 (en) Receiver comprising multiple parallel reception means
RU2231218C1 (en) Signal receiver of satellite radio navigation systems "navstar" and "glonass"
JP3422484B2 (en) Demodulation circuit and receiving device having the same
JP3652821B2 (en) Band edge frequency detection device of predetermined bandwidth of filter, and SSB transmitter and SSB receiver using the device
JPS63138824A (en) Receiver
JPS6331318A (en) Decoding device for identifying signal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees