JP3591046B2 - 内燃機関の燃料噴射量制御装置 - Google Patents
内燃機関の燃料噴射量制御装置 Download PDFInfo
- Publication number
- JP3591046B2 JP3591046B2 JP11195295A JP11195295A JP3591046B2 JP 3591046 B2 JP3591046 B2 JP 3591046B2 JP 11195295 A JP11195295 A JP 11195295A JP 11195295 A JP11195295 A JP 11195295A JP 3591046 B2 JP3591046 B2 JP 3591046B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- internal combustion
- injection amount
- combustion engine
- learning value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【産業上の利用分野】
本発明は、内燃機関の燃料噴射量制御装置に係り、特に、空燃比フィードバック制御の実行下で目標空燃比を実現するための学習値を演算し、その学習値を用いて燃料噴射量制御を行う内燃機関の燃料噴射量制御装置に関する。
【0002】
【従来の技術】
従来より、車載用内燃機関の分野においては、空燃比フィードバック制御の実行下で、理論空燃比を実現するための学習値を求め、内燃機関の運転状態等に基づいて演算した基本の燃料噴射量を、その学習値で補正することにより、最終的な燃料噴射量を求める手法が用いられている。
【0003】
かかる手法を用いる燃料噴射量制御装置として、例えば、特開平3−64643号公報には、暖機が終了した後、フィードバック制御の実行下で、内燃機関の運転状態に応じた複数の学習値を求め、それらの学習値を適宜選択使用して、より精度の高い燃料噴射量制御の実現を図った装置が開示されている。
【0004】
また、上記従来の装置において空燃比フィードバック制御の実行中に求められた学習値は、空燃比フィードバック制御が実行できない冷間時等にも燃料噴射量の演算に用いられる。このため、上記従来の装置によれば、空燃比フィードバック制御が実行できない状況下でも、燃料噴射量の演算値に、内燃機関の経時変化を反映させることができる。
【0005】
ところで、内燃機関の状態は、冷間時と暖機終了後とで同一ではない。このため、内燃機関が十分に暖機された状況下で演算された学習値は、必ずしも冷間時の燃料噴射量を演算するための補正値として最適な値にはならない。特に、冷間時のアイドル運転中では、暖機状態で求めた学習値をそのまま燃料噴射量に反映させると、空燃比がリーンとなってラフアイドルやエンジンストールが生ずる場合がある。
【0006】
このため、上記従来の装置は、アイドル時に用いる学習値(以下、アイドル学習値と称す)に対してガードを設定し、アイドル学習値がそのガード値以上である場合にのみ、燃料噴射量の演算にアイドル学習値を反映させることとしている。かかる構成によれば、冷間時のアイドル運転中に不適切なアイドル学習値が用いられることにより、空燃比がリーンとなることはなく、広い運転領域において内燃機関を安定に維持することが可能となる。
【0007】
【発明が解決しようとする課題】
ところで、内燃機関においては、インジェクタ等の燃料系に異常が生じた場合に、予定量を超える燃料が噴射されることがある(以下、かかる異常を燃料系リッチ異常と称す)。上記従来の装置を搭載する内燃機関において、暖機の終了後に燃料系リッチ異常が生じていれば、全ての運転領域に対する学習値にその異常状態が反映される。従って、その学習値に基づいた燃料噴射量補正が実行される状況下では、燃料系リッチ異常が発生している間も、現実の空燃比が大きくリッチ側に偏ることはない。
【0008】
しかしながら、上記従来の装置によれば、冷間時のアイドル運転中には、アイドル学習値がガード値以上である場合にのみ、その値が燃料噴射量に反映される。言い換えれば、燃料系リッチ異常が生じて、大幅な減量補正を実現するためのアイドル学習値が設定される状況下では、その値が冷間時のアイドル時に学習値として用いられることはない。
【0009】
このため、上記従来の燃料噴射量制御装置によれば、内燃機関に燃料系リッチ異常が生じた場合、冷間時のアイドル運転中の空燃比が燃料リッチ側に偏り、良好な排気エミッションを確保することが困難となる。このように、上記従来の燃料噴射量制御装置は、燃料系リッチ異常の発生時における排気エミッションの悪化を避けることができないという問題を有していた。
【0010】
本発明は、上述の点に鑑みてなされたものであり、冷間時のアイドル運転中はアイドル学習値にガードを設定して内燃機関の運転状態の安定化を図ると共に、燃料系リッチ異常の発生時には、アイドル学習値にガードを設定するのを禁止して、上記の課題を解決する内燃機関の燃料噴射量制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的は、内燃機関の暖機後に、空燃比フィードバック制御の実行下で目標空燃比を実現するための学習値を求め、該学習値を、空燃比フィードバック制御の実行されない冷間時の燃料噴射量の演算にも反映させる内燃機関の燃料噴射量制御装置において、
内燃機関の燃料系が予定量を超える燃料を噴射する燃料系リッチ異常を検出するリッチ異常検出手段と、
前記冷間時には、アイドル運転時に用いる学習値にガードを設定するアイドル学習値ガード設定手段と、
燃料系リッチ異常の発生時には、該アイドル学習値ガード設定手段によるガードの設定を禁止するアイドル学習値ガード禁止手段と、
を備える内燃機関の燃料噴射量制御装置により達成される。
【0012】
【作用】
本発明において、燃料噴射量は、内燃機関の運転状態に応じて演算される基本燃料噴射量に、学習値に基づく補正を施すことにより求められる。内燃機関の暖機が終了した状態では、学習値によって補正された燃料噴射量により、高精度な空燃比制御が実現される。
【0013】
学習値に基づく補正は、空燃比フィードバック制御の実行されない冷間時においても実行される。その結果、冷間時の燃料噴射量にも内燃機関の経時変化が反映され、冷間時の内燃機関において、優れた出力特性、排気特性等が実現される。
【0014】
内燃機関の状態は、冷間時と暖機終了後とで異なるため、暖機終了後に求めた学習値を用いて燃料噴射量の制御が行われる冷間時には、現実の空燃比と目標空燃比との間にずれが生じ易い。冷間時のアイドル運転中に、空燃比がリーン側にずれると、ラフアイドル、エンジンストール等が生ずる。このため、冷間時のアイドル運転中は、学習値に基づいて空燃比がリーンとなるような補正を施すべきではない。
【0015】
本発明において、アイドル学習値ガード設定手段は、冷間時にはアイドル運転時に用いる学習値(以下、アイドル学習値と称す)にガードを設定し、アイドル学習値に基づく補正に起因して、空燃比が不当にリーン化するのを防止する。この結果、冷間時における内燃機関のラフアイドル、エンジンストール等が効果的に防止される。
【0016】
内燃機関に燃料系リッチ異常が発生すると、その異常はリッチ異常検出手段によって検出される。燃料系リッチ異常が発生すると、学習値は燃料噴射量の減量補正を達成すべく変更される。かかる状況下でアイドル学習値にガードが設定されると、燃料の減量補正量が不足し、空燃比が燃料リッチとなる。
【0017】
本発明においては、燃料系リッチ異常が検出されると、アイドル学習値ガード禁止手段によってアイドル学習値に対するガードの設定が禁止される。このため、燃料系リッチ異常の発生時には、冷間時のアイドル運転中においても、十分な燃料減量補正が達成され、適切な空燃比制御が実現される。
【0018】
【実施例】
図1は、本発明の一実施例である燃料噴射量制御装置を搭載する内燃機関10の全体構成図を示す。内燃機関10の吸気通路12には、その内部を流通する空気圧を検出する吸気圧センサ14、流通する空気の温度を検出する吸気温センサ16、流通する空気量を制御するスロットルバルブ18、及び吸気通路12内に燃料を供給するインジェクタ20が設けられている。
【0019】
スロットルバルブ18は、図示しないアクセルペダルに連動して動作する弁体であり、その近傍にはスロットルバルブ18の全閉状態を検出するアイドルスイッチ22が設けられている。また、吸気通路12には、スロットルバルブ18をバイパスするバイパス通路24が設けられている。このバイパス通路24は、スロットルバルブ18が全閉状態となった場合に、内燃機関10をアイドル状態に維持し得る空気を流通させるべく設けられたものであり、例えばステップモータ等を駆動源とするアイドルスピードコントロールバルブ(ISCV)26によりその導通状態が制御される。
【0020】
インジェクタ20は、その先端部に、駆動信号に応じて開閉する電磁駆動式バルブを備えている。また、インジェクタ20には、図示しない燃料ポンプから適当な圧力の燃料が供給されている。かかる構成によれば、電磁駆動式バルブが開弁している場合に燃料噴射が実行されることになる。従って、インジェクタ20から噴射される燃料の量は、インジェクタに供給する駆動信号の時間により制御することができる。
【0021】
内燃機関10のシリンダブロック28には、冷却水を流通させることにより機関の冷却を図るべくウォータジャケット30が設けられている。そして、ウォータジャケット30の側壁には、その内部を流通する冷却水の温度を検出すべく水温センサ32が設けられている。
【0022】
シリンダブロック28内を上下に摺動するピストン34の上部には、点火プラグ36が突出して設けられた燃焼室38が形成されている。この燃焼室38は、吸気バルブを備える吸気ポート40を介して上記した吸気通路12に連通し、また排気バルブを備える排気ポート42を介して排気通路44に連通する。
【0023】
排気通路44には、その内部を流通する排気ガス中に含有される酸素濃度に応じて、空燃比が理論空燃比に比してリッチである(以下、単にリッチと称す)場合はハイ出力を、理論空燃比に比してリーンである(以下、単位リーンと称す)場合はロー出力を発する酸素濃度センサ46が設けられている。また、排気通路44の更に下流には、排気ガス中の未燃成分を浄化する触媒装置48が設けられている。そして、触媒装置48には、その内部温度を検出する触媒床温センサ50が設けられている。
【0024】
イグナイタ52は、電子制御装置(ECU)54から供給される駆動信号に基づいて、その上部に設置される点火コイル56の一次捲線に、断続的に電流を流通させる。上記の如く点火コイル56の一次捲線を流通する電流が断続制御されると、点火コイル56の2次捲線には、ECU54が駆動信号を発する時期と同期して高圧の逆起電力が発生する。
【0025】
このようにして点火コイル56で発生した高圧信号は、点火信号としてディストリビュータ58に供給される。ディストリビュータ58は、図示しないクランクシャフトに同期して作動し、点火コイル56から供給された点火信号を、それぞれの気筒の点火時期に、各気筒の点火プラグ36に順次分配する。各気筒の点火プラグ36は、上記の如く供給される高圧の点火信号を受けて燃焼室38内でスパークを発生する。
【0026】
また、ディストリビュータ58には、クランクシャフトの基準位置検出信号を発生する気筒判別センサ60と、内燃機関の回転角信号を例えば30℃A毎に発生する回転角センサ62とが組み込まれている。ECU54は、これら気筒判別センサ60および回転角センサ62から供給される気筒判別信号および回転角信号に基づいて、インジェクタ20およびイグナイタ52に駆動信号を発する時期を制御する。
【0027】
ECU54には、上述した各種センサに加え、車速センサ64が接続されている。車速センサ64は、内燃機関10が搭載される車両の走行速度に応じた周期でパルス信号を発生するセンサである。このため、ECU54は、車速センサ64から供給されるパルス信号の周期に基づいて車両の速度を検出することができる。
【0028】
ECU54は、本実施例の燃料噴射量制御装置の要部であり、マイクロコンピュータを主体に構成される。ECU54は、上述した各種センサのセンサ出力に基づいて所望の空燃比を実現するための燃料噴射量TAUを演算し、そのTAUに相当する駆動信号をインジェクタ20に供給する。
【0029】
ECU54は、燃料噴射量TAUを演算するにあたり、吸気圧PMおよび機関回転数NEに基づいて基準の燃料噴射量TPを演算する。また、ECU54は、酸素濃度センサ46の出力値に基づいて、後述の如くフィードバック補正係数FAFを演算する。そして、基準の燃料噴射量TPに、フィードバック補正係数FAF、空燃比フィードバック制御の実行下で求めた学習値KGi、及び始動後増量等の各種制御を反映させるための補正係数αを乗算して燃料噴射量TAUを求める。
【0030】
上述した学習値KGiは、酸素濃度センサ46の出力に基づいて燃料噴射量の空燃比フィードバック制御を実行しつつ、現実の空燃比を理論空燃比とするために、基本の燃料噴射量FEFiに乗算すべき補正値として学習される値である。このように燃料噴射量TAUを、TAU=TP・FAF・KGi・αとして演算した場合、内燃機関10に供給される空燃比を、精度良く理論空燃比近傍に制御することができる。
【0031】
しかし、後述の如く、内燃機関10がアイドル運転中である場合には、学習値KGiをそのまま燃料噴射量TAUの演算に反映させるべきでない場合がある。一方、内燃機関10が同様にアイドル運転中であっても、インジェクタ20が予定量を超える燃料を噴射する場合、すなわち燃料系リッチ異常が生じている場合等には、KGiをそのままTAUの演算に反映させることが適切である場合もある。
【0032】
本実施例の燃料噴射量制御装置は、これらの要求を共に満たすべく構成されたものであり、学習値KGiをTAUに反映させる手法に特徴を有している。以下、図2乃至図5を参照して、本実施例の燃料噴射量制御装置の特徴的動作について説明する。
【0033】
図2は、上記の機能を実現する前提として、学習値KGiを求めるためにECU54が実行する学習ルーチンの一例のフローチャートを示す。
図2に示すルーチンが起動すると、先ずステップ100において、学習条件が成立しているかが判別される。本実施例においては、空燃比フィードバック制御が開始されており、かつ、80℃≦冷却水温THW≦95℃である場合に条件が成立すると判断される。その結果、学習条件が不成立であると判別された場合は、以後、何ら処理を行うことなく今回のルーチンを終了し、一方、学習条件が成立すると判別された場合は、ステップ102へ進む。
【0034】
ステップ102では、空燃比フィードバック補正係数FAFがスキップしたかが判別される。その結果、FAFに反転が生じていないと判別された場合は、以後、何ら処理を進めることなく今回のルーチンを終了し、一方、FAFに反転が生じていると判別された場合は、ステップ104へ進む。
【0035】
空燃比フィードバック補正係数FAFは、空燃比フィードバック制御の実行に際して、基準の燃料噴射量TPを演算する過程で用いられる係数である。このFAFは、以下に説明する如く、酸素濃度センサ46から発せられる空燃比信号に基づいて、ほぼ1.0を中心値として変動するように更新される。
【0036】
図3は、空燃比信号(図3(A))の変化に対するFAF(図3(B))の変化を表すタイムチャートを示す。これら各図に示す如く、FAFは空燃比信号がリーンからリッチへ反転してから所定時間が経過する毎に、その値を小さくする方向にスキップし、その後緩やかに減少を続ける。また、空燃比信号がリッチからリーンへ反転してから所定時間が経過する毎に、その値を大きくする方向にスキップし、その後緩やかに増加を続ける。
【0037】
基準の燃料噴射量TPは、内燃機関10の運転状態に応じて演算された基本量にFAFを乗算することにより求められる。このため、空燃比信号がリーンからリッチに切り替わると、その後、所定時間の経過を待ってTPが増加傾向から減少傾向に転ずる。従って、その後、空燃比は徐々にリーン側に修正される。また、空燃比信号がリッチからリーンに切り替わると、その後、所定時間の経過を待ってTPが減少傾向から増加傾向に転ずる。従って、その後、空燃比は徐々にリッチ側に修正される。
【0038】
このようにFAFを用いて空燃比フィードバック制御が実行されると、基準の燃料噴射量TPは、常に空燃比を理論空燃比に近づける方向に修正される。このため、本実施例の燃料噴射量制御装置において、空燃比フィードバック制御が実行される場合、空燃比は、常に理論空燃比の近傍に維持されることになる。 ところで、上記ステップ102においてFAFがスキップしたと判別された場合は、ステップ104において、スキップ時のFAFの値、すなわち、図3(B)中にA〜Fで示す点の値FAFA 〜FAFF を読み込む処理を行う。空燃比がリッチ側に偏っている場合は、リーン信号が出力される期間に比してリッチ信号が出力される期間が長くなりFAFA 〜FAFF は通常時に比して小さくなる。一方、空燃比がリーン側に偏っている場合は、リッチ信号が出力される期間に比してリーン信号が出力される期間が長くなり、FAFA 〜FAFF は通常時に比して大きくなる。このため、スキップ時のFAFの値は、空燃比の偏向度合いを表していることになる。
【0039】
上記の如くスキップ時のFAFを読み込んだら、次にステップ106において、過去検出したスキップ時のFAFのうち、最新の2つのFAFの平均値FAFAVを計算する。今回のルーチンで、図3(B)中にBで示す点のFAFが検出されたとすれば、FAFAVは、A点で示す点のFAFA とB点で示す点のFAFB の平均値(FAFA +FAFB )/2となる。
【0040】
上記の処理を終えたら、ステップ108へ進み、FAFAV>1.02が成立するかを判別する。上記の如くFAFA 〜FAFF は空燃比の偏向度合いを表しているため、FAFAV>1.02の条件は、空燃比が顕著にリーン側に偏っている場合、すなわち、燃料噴射量TAUが不足傾向となる場合に成立する。
【0041】
このため上記ステップ108において、FAFAV>1.02が成立すると判別された場合は、以後、ステップ110へ進み、燃料噴射量TAUを増量することを目的として学習値KGiの更新を行う。
本実施例においては、高精度な燃料噴射量制御を実現するため、アイドル状態から全負荷状態までを八段階に区分し、それぞれの運転状態に対して学習値KGi(i=0〜7)を設定すると共に、アイドル時の学習値(以下、アイドル学習値と称す)KG0と、他の学習値KGi(i=1〜7)を独立に更新することとしている。
【0042】
このため、ステップ110では、アイドルスイッチ22がオンであるか否かに基づいて、内燃機関10がアイドル運転中であるかを判別する。その結果、アイドルスイッチ22がオンであると判別された場合は、ステップ112へ進み、アイドル学習値KG0に所定値、例えば0.005を加算して今回のルーチンを終了する。一方、アイドルスイッチ22がオンではないと判別された場合は、ステップ114へ進み、運転状態に対応する他の学習値KGi(i=1〜7)に所定値、例えば0.005を加算して今回のルーチンを終了する。
【0043】
学習値KGiがこのように増加されると、以後、燃料噴射量TAU(=TP・FAF・KGi・α)が増量されることから、空燃比がリッチ側、すなわち、理論空燃比に近づく側に補正されることになる。
上記ステップ108においてFAFAV>1.02が不成立であると判別された場合は、以後、ステップ116へ進み、FAFAV<0.98が成立するか否かが判別される。FAFAV<0.98の条件は、空燃比が顕著にリッチ側に偏っている場合、すなわち、燃料噴射量TAUが過剰傾向である場合に成立する。
【0044】
このため上記ステップ116において、FAFAV<0.98が成立すると判別された場合は、以後、ステップ118へ進み、燃料噴射量TAUを減量することを目的として学習値KGiの更新を行う。一方、上記条件が不成立であれば、空燃比が偏りなく理論空燃比近傍に制御できていると判断することができる。このため、かかる場合には、学習値KGiを更新することなく今回のルーチンを終了する。
【0045】
ステップ118では、アイドルスイッチ22がオンであるか否かに基づいて、内燃機関10がアイドル運転中であるかを判別する。その結果、アイドルスイッチ22がオンであると判別された場合は、ステップ120へ進み、アイドル学習値KG0から所定値0.005を減算して今回のルーチンを終了する。一方、アイドルスイッチ22がオンではないと判別された場合は、ステップ122へ進み、他の学習値KGi(i=1〜7)から所定値0.005を減算して今回のルーチンを終了する。
【0046】
学習値KGiがこのように減少されると、以後、燃料噴射量TAU(=TP・FAF・KGi・α)が減量されることから、空燃比がリーン側、すなわち、理論空燃比に近づく側に補正されることになる。
図4は、上記の如く演算された学習値KGi(i=1〜7)を燃料噴射量TAUの演算に反映させるためにECU54が実行する学習反映ルーチンの一例のフローチャートを示す。
【0047】
同図に示すルーチンにおいては、先ずステップ200で、学習ルーチンで求めた学習値KGi(i=0〜7)が読み込まれる。次いで、ステップ202において、冷却水温THW≧80℃の条件が成立するか否かが判別される。学習値KGiは、上述の如くTHW≧80℃なる条件下で更新されるため(上記ステップ100参照)、かかる条件が成立する状況下では、内燃機関10の状態と学習値KGiの値とが精度良く整合する。このため、上記ステップ202においてTHW≧80℃が成立すると判別された場合は、学習値KGiに何ら処理を施すことなくステップ210へ進み、基準の燃料噴射量TPに、FAF、αと共に内燃機関10の運転状態に応じた適当な学習値KGiを乗算して燃料噴射量TAUを求めて今回のルーチンを終了する。
【0048】
一方、THWが80℃に到達しない領域では、THW≧80℃が成立する場合に比して学習値KGiの値と内燃機関10の状態との整合性が悪化する。特に、THWが80℃に到達するまでは、暖機を促進するためにアイドルアップ等の補正がなされるため、アイドル学習値KG0の値と、冷間時に内燃機関10を所望のアイドル状態に維持するために必要な補正値との間には偏差が生じ易い。
【0049】
アイドル学習値KG0と本来必要とされる補正値との間に偏差が生じても、空燃比フィードバック制御が実行されていれば、結果的に空燃比は理論空燃比の近傍に維持することができ、内燃機関10においてラフアイドルやエンジンストールが生ずることはない。
【0050】
しかし、内燃機関10においては、冷間時の始動直後に、早期暖機を優先して燃料の増量補正がなされる場合がある。かかる状況下では、目標空燃比が燃料リッチに設定されるため、空燃比フィードバック制御を行うことはできない。また、空燃比フィードバック制御を実行するためには、酸素濃度センサ46から高精度な空燃比信号が発生されることが前提となるが、そのためには、酸素濃度センサ46が活性化温度領域に昇温されていることが必要である。
【0051】
尚、本実施例の燃料噴射量制御装置においては、THW≧40℃が成立するまでは、空燃比フィードバック制御を実行せず、FAFを1.0に固定して燃料噴射量TAUの演算を行うこととしている。
従って、本実施例の内燃機関10において、THWが40℃に到達するまでの冷間時に、学習ルーチンで求めたアイドル学習値KG0を用いた燃料噴射量制御を行うと、ラフアイドルやエンジンストールが発生し易くなる。このため、本実施例においては、上記ステップ202においてTHW≧80℃が不成立であると判別された場合、以後、後述の如く、アイドル学習値KG0に下限側のガード値を設定することとしている。
【0052】
かかるガード値を設定した場合、暖機後の内燃機関10の状態に応じてアイドル学習値KG0が、ガード値より小さな値に設定されても、その値が冷間時のアイドル運転中に学習値として採用されることはない。このため、本実施例の燃料噴射量制御装置によれば、空燃比フィードバック制御の実行されない冷間時にアイドル運転がなされ、かつ、アイドル学習値KG0と現実に必要とされる補正値との間に大きな偏差が生ずる状況下において、内燃機関10のラフアイドルやエンジンストールを効果的に抑制することができる。
【0053】
ところで、上記の如くアイドル学習値KG0に下限側のガード値を設定するのは、冷間時のアイドル運転中に、燃料噴射量TAUが不足傾向となるのを防止するためである。従って、内燃機関10の特性から見て、TAUが不足することはないと考えられる場合には、敢えてKG0にガード値を設定する必要はない。
【0054】
また、内燃機関10においては、インジェクタ20等の燃料系の異常に起因して、予定量を超える燃料噴射が成される事態、すなわち燃料系リッチ異常が生ずる場合がある。かかる場合には、冷間時であるか否かを問わず学習値KGiを十分に小さくして、燃料噴射量の減量補正を図ることが適切であり、アイドル学習値KG0に下限側のガード値を設定すべきではない。
【0055】
このため、本ルーチンにおいては、上記ステップ202においてTHW≧80℃が不成立であると判別された場合、アイドル学習値KG0にガード値を設定するに先立って、ステップ204で、燃料系リッチ異常の発生状態を表すフラグXCFKGに“1”がセットされているか否かを判別することとしている。
【0056】
フラグXCFKGは、図5に示す異常判定ルーチンによって設定される。すなわち、ECU54においては、所定時間毎に図5に示すルーチンが実行される。図5に示すルーチンにおいては、先ずステップ300で、学習値KGi(i=0〜7)が読み込まれる。
【0057】
次に、ステップ302で、KGi(i=0〜7)が、それぞれ対応する判定値αi(i=0〜7)より小さいか否かが判別される。これらの判定値αi(i=0〜7)は、燃料系リッチ異常が生じた場合に、各学習値KGi(i=0〜7)が到達すると考えられる値である。
【0058】
上記ステップ302で、全てのKGi(i=0〜7)が判定値αi(i=0〜7)より小さいと判別された場合は、内燃機関10に燃料系リッチ異常が生じていると判断し、ステップ304でフラグXCFKGに“1”をセットして今回のルーチンを終了する。一方、上記の条件が不成立である場合には、ステップ306でフラグXCFKGを“0”にリセットして今回のルーチンを終了する。
【0059】
図4に示す学習反映ルーチンでは、このようにして設定されるフラグXCFKGに基づいて燃料系リッチ異常の発生状態を判断する。すなわち、上記ステップ204でフラグXCFKGに“1”がセットされていないと判別された場合は、内燃機関10に燃料系リッチ異常は生じていないと判断し、以後、ステップ206でKG0がガード値1.0以上であるか否かを判別する。その結果、KG0≧1.0が成立する場合は、KG0を変更することなくステップ210へ進み、一方、KG0≧1.0が不成立である場合は、ステップ208でKG0をガード値1.0に変更した後ステップ210へ進む。
【0060】
これに対して、上記ステップ206においてXCFKGに“1”がセットされていると判別された場合は、内燃機関10に燃料系リッチ異常が生じていると判断し、以後、KG0に何ら処理を施すことなくステップ210へ進む。
かかる処理によれば、冷間時のアイドル運転中に燃料噴射量TAUが不足するおそれのある状況下では、アイドル学習値KG0が1.0以上に規制され、一方、燃料系リッチ異常が生じ、冷間時のアイドル運転中に燃料噴射量TAUが不足することはないと考えられる状況下では、1.0に満たないアイドル学習値KG0が許容される。
【0061】
このため、本実施例の燃料噴射量制御装置によれば、燃料系が正常に機能している場合に、冷間時のアイドル運転中を含む全ての運転領域で、適切な排気特性を実現しつつ優れたドライバビリティを実現することができると共に、燃料系リッチ異常が生じた場合においても、冷間時のアイドル運転中を含む全ての運転領域で、排気特性を良好に維持することができる。
【0062】
ところで、上述した実施例においては、ECU54が図5に示す異常判定ルーチンを実行することにより前記したリッチ異常検出手段が実現される。また、ECU54が、図4に示す学習反映ルーチン中、ステップ202、206、及び208を実行することにより前記したアイドル学習値ガード設定手段が、また、ステップ204を実行することにより前記したアイドル学習値ガード禁止手段がそれぞれ実現される。
【0063】
【発明の効果】
上述の如く、本発明によれば、内燃機関の燃料系が正常に機能している場合には、冷間時におけるアイドル学習値にガードが設定され、また、内燃機関に燃料系リッチ異常が発生している場合には、冷間時におけるアイドル学習値に対するガードの設定が禁止される。このため、本発明に係る内燃機関の燃料噴射量制御装置によれば、空燃比フィードバック制御が実行されない冷間時において、燃料系が正常に機能している場合に、確実にラフアイドルやエンジンストール等を防止することができると共に、燃料系リッチ異常が生じている場合に、適切に空燃比の燃料リッチ化を抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である燃料噴射量制御装置を搭載する内燃機関の全体構成図である。
【図2】本実施例において実行される学習ルーチンの一例のフローチャートである。
【図3】図3(A)は空燃比信号の変動状態を表すタイムチャートである。図3(B)は空燃比フィードバック補正係数FAFの変動状態を表すタイムチャートである。
【図4】本実施例において実行される学習反映ルーチンの一例のフローチャートである。
【図5】本実施例において実行される異常判定ルーチンの一例のフローチャートである。
【符号の説明】
10 内燃機関
14 吸気圧センサ
16 吸気温センサ
20 インジェクタ
22 アイドルスイッチ
32 水温センサ
46 酸素濃度センサ
54 電子制御装置(ECU)
60 気筒判別センサ
62 回転角センサ62
64 車速センサ
FAF 空燃比フィードバック補正係数
KGi(i=0〜7) 学習値
KG0 アイドル学習値
THW 冷却水温
XCFKG 燃料系リッチ異常フラグ
TAU 燃料噴射量
TP 基準の燃料噴射量
Claims (1)
- 内燃機関の暖機後に、空燃比フィードバック制御の実行下で目標空燃比を実現するための学習値を求め、該学習値を、空燃比フィードバック制御の実行されない冷間時の燃料噴射量の演算にも反映させる内燃機関の燃料噴射量制御装置において、
内燃機関の燃料系が予定量を超える燃料を噴射する燃料系リッチ異常を検出するリッチ異常検出手段と、
前記冷間時には、アイドル運転時に用いる学習値にガードを設定するアイドル学習値ガード設定手段と、
燃料系リッチ異常の発生時には、該アイドル学習値ガード設定手段によるガードの設定を禁止するアイドル学習値ガード禁止手段と、
を備えることを特徴とする内燃機関の燃料噴射量制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11195295A JP3591046B2 (ja) | 1995-05-10 | 1995-05-10 | 内燃機関の燃料噴射量制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11195295A JP3591046B2 (ja) | 1995-05-10 | 1995-05-10 | 内燃機関の燃料噴射量制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08303281A JPH08303281A (ja) | 1996-11-19 |
JP3591046B2 true JP3591046B2 (ja) | 2004-11-17 |
Family
ID=14574275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11195295A Expired - Fee Related JP3591046B2 (ja) | 1995-05-10 | 1995-05-10 | 内燃機関の燃料噴射量制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3591046B2 (ja) |
-
1995
- 1995-05-10 JP JP11195295A patent/JP3591046B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08303281A (ja) | 1996-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5586537A (en) | Fuel property detecting apparatus for internal combustion engines | |
EP0889221B1 (en) | Control system for internal combustion engine | |
US5881552A (en) | Control system for internal combustion engines and control system for vehicles | |
JP3541523B2 (ja) | エンジンの制御装置 | |
JP2907001B2 (ja) | 内燃エンジンの希薄燃焼制御および故障判定装置 | |
US6729305B2 (en) | Fuel injection amount control apparatus and method for internal combustion engine | |
US6302091B1 (en) | Air-fuel ratio feedback control for engines having feedback delay time compensation | |
JP3622273B2 (ja) | 内燃機関の制御装置 | |
JP3591046B2 (ja) | 内燃機関の燃料噴射量制御装置 | |
JP2001182602A (ja) | エンジン制御装置 | |
JPH09177580A (ja) | 内燃機関の燃料供給制御装置 | |
JP2775676B2 (ja) | 内燃機関の燃料供給制御装置 | |
KR100187783B1 (ko) | 내연기관의 제어장치 | |
JP3491019B2 (ja) | 電制スロットル式内燃機関のアイドル回転学習制御装置 | |
JP4115162B2 (ja) | 内燃機関の排気ガス浄化制御装置 | |
JP3829568B2 (ja) | 内燃機関の空燃比制御装置 | |
JP3170046B2 (ja) | 内燃機関の空燃比学習方法 | |
JP2870201B2 (ja) | Egr装置 | |
JPH09209818A (ja) | エンジンの燃料性状検出装置及び燃料噴射制御装置 | |
JP3971017B2 (ja) | 内燃機関の制御方法 | |
JP3189730B2 (ja) | 内燃エンジンの制御装置 | |
JP3319167B2 (ja) | 内燃機関の制御装置 | |
JP2002256932A (ja) | エンジンの制御装置 | |
JPH08312410A (ja) | 内燃機関の空燃比制御方法 | |
JP3010625B2 (ja) | 内燃機関の空燃比制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040816 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070903 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |