[go: up one dir, main page]

JP3590567B2 - Manufacturing method of oxide superconducting wire and oxide superconducting wire - Google Patents

Manufacturing method of oxide superconducting wire and oxide superconducting wire Download PDF

Info

Publication number
JP3590567B2
JP3590567B2 JP2000153502A JP2000153502A JP3590567B2 JP 3590567 B2 JP3590567 B2 JP 3590567B2 JP 2000153502 A JP2000153502 A JP 2000153502A JP 2000153502 A JP2000153502 A JP 2000153502A JP 3590567 B2 JP3590567 B2 JP 3590567B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
critical current
oxide superconducting
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000153502A
Other languages
Japanese (ja)
Other versions
JP2001332146A (en
Inventor
正大 小嶋
快成 松井
法史 村上
和也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2000153502A priority Critical patent/JP3590567B2/en
Publication of JP2001332146A publication Critical patent/JP2001332146A/en
Application granted granted Critical
Publication of JP3590567B2 publication Critical patent/JP3590567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、(BiPb)SrCaCu系酸化物超電導体を用いた臨界電流密度の高い線材並びにその製造方法に関する。
【0002】
【従来の技術】
酸化物超電導体を用いて線材を製造する際、主な製造方法として、1)PIT(Powder in Tube)法 2)コーティング法 3)薄膜法がある。
【0003】
1)のPIT法は酸化物超電導体とともに加熱されても、該超電導体と反応を起こさないAg等の金属製チューブの中に該超電導粉末を充填し、伸線、圧延、熱処理を繰り返し、線材に加工する方法である。この方法は(BiPb)SrCaCu系酸化物超電導線材を作成する際に用いられる。該Bi系酸化物超電導体は結晶が板状に成長する性質があり、PIT法における超電導体を引き延ばす工程で板状結晶が長手方向に配向し易い。ここで、超電導電流は板状結晶の長手方向に流れやすい性質を持っているので比較的良好な特性を有する線材を作製することが出来る。
【0004】
2)のコーティング法は酸化物超電導粉末に有機バインダーを添加してペースト化し、銀テープ表面にコーティングしこれを熱処理して線材を得る方法である。この方法は主にBiSrCaCu系酸化物超電導線材を作成する際に用いられる。
【0005】
3)の薄膜法は金属テープの表面上に、酸化物超電導体と格子定数が近い又は反応性が少ない中間層を成膜しさらにその上に超電導薄膜を積層して線材とする方法である。
この方法は主にYBaCu系酸化物超電導線材を作成する際に用いられる。
【0006】
【発明が解決しようとする課題】
以上、代表的な3つの線材の製造法について述べたが、製造工程、コスト、超電導特性等を考慮すると最も実用のレベルに近いと考えられるのは、1)のPIT法である。しかしこの方法で得られる線材にしても、臨界電流密度は20,000〜25,000A/cmに留まっているが、実用に供するためには50,000A/cm以上の特性が望まれている。
本発明の目的は上記PIT法で得られる線材の超電導特性を向上させ、実用レベルに到達させることにある。
【0007】
【課題を解決するための手段】
第1の発明は、(BiPb) 2 Sr 2 Ca 2 Cu 3 x 系酸化物超電導体を主成分とする酸化物超電導線材の製造方法であって、所定の組成比のBiO1.5、PbO、SrCO3、CaCO3及びCuOを混合し、所定の条件で仮焼し、次に所定の条件で加圧成形し成形体を得た後、金属パイプの中に挿入し、所定の条件で伸線、圧延して線材とし、この線材に大気中で840〜845℃の焼成を50〜200時間行い、この焼成工程を終了した後か、または焼成工程の降温時において805〜825℃の温度で4〜30時間の線材アニール処理を行うことを特徴とする酸化物超電導線材の製造方法である。
【0008】
第2の発明は、金属シース材の中に、第1の発明に記載の製造方法により製造された(BiPb)2Sr2Ca2Cu3x系酸化物超電導体を有する線材であって、該酸化物超電導体中における酸化物超電導体結晶粒子の粒界間において、粒径1μm以下のCuO粒子、Cu2O粒子、及びCa2PbO4粒子のうち少なくとも1つを含有することを特徴とする酸化物超電導線材である。
【0009】
【実施の形態】
図1は本発明の実施の形態にかかる金属シース酸化物超電導線材中に有る酸化物超電導体の断面TEM写真の模式図である。図1において超電導結晶11は(BiPb)SrCaCu系酸化物超電導体を主成分とし、線材の長手方向に配向している。結晶粒界における超電導結晶同士の接触は良好に保たれている。一方、結晶粒界には粒径0.1〜1μmのCuO、CuO及びCaPbOの少なくとも1つの析出物12が見られる。
【0010】
図2は線材アニール処理を実施しない他は、本発明と同様に作製した金属シース酸化物超電導線材中に有る酸化物超電導体の断面TEM写真の模式図である。図2において超電導結晶21は(BiPb)SrCaCu系酸化物超電導体を主成分とし、線材の長手方向に配向している。結晶粒界には主にBi、Pb、Sr、Ca、Cu、及びOを主成分とする膜状でアモルファス体の非超電導相22が形成されていて、超電導結晶同士の接触面積が限られている。一方、結晶粒界には粒径0.1〜1μmのCuO、CuO及びCaPbOの少なくとも1つの析出物は見られなかった。
【0011】
図3はPIT法により作製された金属シース酸化物超電導線材の外観と断面である。金属シース材31は酸化物超電導体32への熱的安定性の観点からAg、Au、Ptが好ましい。酸化物超電導体32は(BiPb)SrCaCu系である。
【0012】
以下、これらの図を基に本発明の実施の形態について説明する。
従来のPIT法で作製された図3の(BiPb)SrCaCu系金属シース酸化物超電導線材中の酸化物超電導体32をTEM(透過型電子顕微鏡)で観察してみると、図2に示すように超電導結晶21の粒界に主にBi、Pb、Sr、Ca、Cu、及びOを主成分とする膜状でアモルファス体の非超電導相22が形成されている。この非超電導相22が存在するため、超電導結晶21間の電流の流れうる実質的な面積が減少し、臨界電流値および臨界電流密度が制限されているのではないかと考えられる。従って、(BiPb)SrCaCu系酸化物超電導線材において臨界電流値および臨界電流密度を上げるためには、酸化物超電導結晶21間の電気的な結合状態を改善することが重要と考えられる。
【0013】
そこでこの膜状アモルファス体の非超電導相22が形成されるプロセスを解明し、該非超電導相を消滅させるか、または生成を阻止することができれば実用レベルの臨界電流値および臨界電流密度を有する酸化物超電導線材を作製することができることに想達した。
【0014】
膜状アモルファス体の非超電導相22が形成されるプロセスは次のように考えられる。
酸化物超電導体32の原料物質である酸化物超電導合成粉を充填された金属シース線材を大気中で840〜845℃にて50〜150時間の焼成を行うと、金属シース中では、高いTcを示す超電導相の(BiPb)SrCaCu結晶が最も速い速度で成長し図3に示す金属シース酸化物超電導線材が得られる。しかしこの結晶成長は液相を伴った成長なので成長する結晶粒界間には常に液相が介在する。結晶成長が進めば結晶粒界の液相の量も減少するが、最終的に熱平衡状態の液相が残留し焼成後の冷却工程において膜状アモルファス体の非超電導相22が形成されると考えられる。
【0015】
本発明者は該焼成を完全に終了したかまたは燒結工程の降温時にある金属シース線材に適切な温度の熱を適切な時間与える(以下、線材アニール処理という)ことで、該焼成工程で形成された膜状アモルファス体の非超電導相をゆっくりとした反応速度で酸化物超電導相とCuO、CuO及びCaPbOの少なくとも1つの析出物へと変化させ、膜状アモルファス体22の消滅または発生を阻止し得るのではないかと想達し本発明を完成したものである。
【0016】
すなわちこの反応の結果、輸送電流の障害となっていた膜状アモルファス体の非超電導相22が高いTcを有する超電導結晶11と粒径1μm以下のCuO、CuO及びCaPbOの少なくとも1つの析出物12に変化してしまったのである。
該析出物12は非超電導相ではあるものの粒径が小さいので、粒界中に存在しても輸送電流への障害とはならないばかりか、該析出物の存在は、膜状アモルファス体22が超電導体結晶11へ変化したことの指標として用いることができる。
【0017】
【実施例1】
粒径0.1〜10μm、純度3〜4NのBiO1.5、PbO、SrCO、CaCO及びCuOの各原料粉末を混合してBiO1.5:PbO:SrCO:CaCO:CuO=1.85:0.35:1.90:2.05:3.05の組成比を有する混合粉末試料を調製した後、温度740〜820℃、10〜100時間、大気中にて仮焼し超電導合成粉を得る。次に、この超電導合成粉1.2gを中空部が3.8mmφ×95mmL、肉厚が10mmである円筒形ゴム型に充填し、両端開口部をゴム栓で密封し冷間静水圧プレスにて最大圧力1.5t/cm で加圧成形し、約1.95mmφ×90mmL成形体を得る。この成形体を内径2.0mmφ、外径3.0mmφ×100mmLのAgパイプの中に挿入した。
【0018】
このAgパイプを伸線、圧延し線材化する。この線材を電気炉に入れ大気雰囲気中において焼成を行った。昇温速度2℃/minで840℃まで加熱し150時間保持、その後3℃/minの降温速度で室温まで戻し、幅約5.0mm、厚さ約0.2mmのテープ状のAgシース酸化物超電導線材を得た。該線材中における超電導部分の領域は、幅約4mm、厚さ約0.07mmであった。
この時点での臨界電流値及び臨界電流密度を測定したところ、温度77K、自己磁界下において臨界電流値は29.4A、臨界電流密度では約10,500A/cmであった。
尚、臨界電流値及び臨界電流密度の測定は4端子法を用い、77K、自己磁界下において電圧端子間に1μV/cm発生したときの電流値を臨界電流値として定義し、その断面積を1cmに換算した電流値を臨界電流密度とした。
【0019】
次に、焼結が終了した後のAgシース酸化物超電導線材を図4、図5に示す線材アニール温度、アニール時間で処理した結果の臨界電流値を図4に、臨界電流密度換算値を図5に示す。但し、アニールの際の昇温速度は2.67℃/min、降温速度は1.33℃/minとした。
これより、アニール処理温度805〜820℃、処理時間4〜30時間の範囲において臨界電流値(Ic)および臨界電流密度(Jc)の高い線材が得られることが判明した。
さらに、アニール処理温度810〜815℃、処理時間12〜16時間の範囲において臨界電流密度(Jc)は44,000A/cmを超え、ほぼ実用レベルを達成していることも判明した。
【0020】
【実施例2】
粒径0.1〜10μm、純度3〜4NのBiO1.5、PbO、SrCO、CaCO及びCuOの各原料粉末を混合してBiO1.5:PbO:SrCO:CaCO:CuO=a:0.35:1.90:2.05:3.05の組成比を有する混合粉末試料を調製した後、温度740〜820℃、10〜100時間、大気中にて仮焼し超電導合成粉を得る。ただしaは1≦a≦3の間で変化させて複数の混合粉末試料を調製した後、温度740〜820℃、10〜100時間、大気中にて仮焼し複数の超電導合成粉を得る。次に、この超電導合成粉の各々を1.2gを中空部が3.8mmφ×95mmL、肉厚が10mmである円筒形ゴム型に充填し、両端開口部をゴム栓で密封し冷間静水圧プレスにて最大圧力1.5t/cm で加圧成形し、約1.95mmφ×90mmL成形体を得る。この成形体を内径2.0mmφ、外径3.0mmφ×100mmLのAgパイプの中に挿入した。
【0021】
これらのAgパイプを伸線、圧延し線材化する。これらの線材を電気炉に入れ大気雰囲気中において焼成を行った。昇温速度2℃/minで840℃まで加熱し150時間保持、その後3℃/minの降温速度で室温まで戻し、幅約5.0mm、厚さ約0.2mmのテープ状のAgシース酸化物超電導線材を得た。該線材中における超電導部分の領域は、幅約4mm、厚さ約0.07mmであった。
この時点で、これらの線材の臨界電流値及び臨界電流密度を測定した。
尚、臨界電流値の測定は4端子法を用い、77K、自己磁界下において電圧端子間に1μV/cm発生したときの電流値を臨界電流値として定義し、その断面積を1cmに換算した電流値を臨界電流密度とした。
【0022】
次に、焼結が終了した後の各々のAgシース酸化物超電導線材に815℃で12時間のアニール処理を行った。但し、アニールの際の昇温速度は2.67℃/min、降温速度は1.33℃/minとした。アニール処理終了後に再度、これらの線材の臨界電流値及び臨界電流密度を測定した。
以上の結果を図6に示した。これより1.5≦a≦2.1のとき線材アニール処理によりAgシース酸化物超電導線材の臨界電流値及び臨界電流密度が増加することが判明した。
【0023】
上記と同様の試験を今度はbについておこなった。
但し混合粉末試料の組成比はBiO1.5:PbO:SrCO:CaCO:CuO=1.85:b:1.90:2.05:3.05とし
0≦b≦0.6の間でbを変化させた。
その結果、0.14≦b≦0.45のとき線材アニール処理によりAgシース酸化物超電導線材の臨界電流値及び臨界電流密度が増加することが判明した。
【0024】
上記と同様の試験を今度はcについておこなった。
但し混合粉末試料の組成比はBiO1.5:PbO:SrCO:CaCO:CuO=1.85:0.35:c:2.05:3.05とし
1≦c≦3の間でbを変化させた。
その結果、1.6≦c≦2.2のとき線材アニール処理によりAgシース酸化物超電導線材の臨界電流値及び臨界電流密度が増加することが判明した。
【0025】
上記と同様の試験を今度はdについておこなった。
但し混合粉末試料の組成比はBiO1.5:PbO:SrCO:CaCO:CuO=1.85:0.35:1.90:d:3.05とし
1≦d≦3の間でdを変化させた。
その結果、1.7≦d≦2.3のとき線材アニール処理によりAgシース酸化物超電導線材の臨界電流値及び臨界電流密度が増加することが判明した。
【0026】
【発明の効果】
本発明によりPIT法により作製された酸化物超電導線材の臨界電流密度を実用レベルである50,000A/cm以上に上げることが可能になった。この線材および線材作成方法が例えば電力送電ケーブルに応用されれば送電ロスのないケーブルとして、電力利用の効率化、コスト低減に大きく寄与するものである。
【0027】
【図面の簡単な説明】
【図1】本発明における線材アニール処理実施後の線材中に有る酸化物超電導体の断面TEM写真の模式図である。
【図2】アニール処理を行わない他は本発明と同様にして製造した線材中に有る酸化物超電導体の断面TEM写真の模式図である。
【図3】金属シース酸化物超電導線材の外観と断面である。
【図4】本願発明における線材アニール処理条件(温度・時間)と線材の臨界電流値(Ic)との関係を表にして掲げた図である。
【図5】本願発明における線材アニール処理条件(温度・時間)と線材の臨界電流密度(Jc)との関係を表にして掲げた図である。
【図6】本願発明におけるBiO1.5の組成比を変化させて調製した酸化物超電導線材の線材アニール処理(815℃、12時間)前後の臨界電流値(Ic)および臨界電流密度(Jc)の値を表にして掲げた図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wire having a high critical current density using a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor and a method for producing the same.
[0002]
[Prior art]
When a wire is manufactured using an oxide superconductor, the main manufacturing methods include 1) PIT (Powder in Tube) method 2) Coating method 3) Thin film method.
[0003]
In the PIT method of 1), the superconducting powder is filled into a metal tube made of Ag or the like which does not react with the superconductor even when heated together with the oxide superconductor, and wire drawing, rolling and heat treatment are repeated. It is a method of processing into. This method is used when producing a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconducting wire. The Bi-based oxide superconductor has a property that the crystal grows in a plate shape, and the plate-shaped crystal is easily oriented in the longitudinal direction in the step of extending the superconductor in the PIT method. Here, since the superconducting current has the property of easily flowing in the longitudinal direction of the plate-like crystal, a wire having relatively good characteristics can be manufactured.
[0004]
The coating method 2) is a method in which an organic binder is added to the oxide superconducting powder to form a paste, which is coated on the surface of a silver tape and heat-treated to obtain a wire. This method is mainly used when creating a Bi 2 Sr 2 Ca 1 Cu 2 O x based oxide superconducting wire.
[0005]
The thin film method 3) is a method in which an intermediate layer having a lattice constant close to or less reactive with the oxide superconductor is formed on the surface of the metal tape, and a superconducting thin film is laminated thereon to form a wire.
This method is mainly used when preparing a Y 1 Ba 2 Cu 3 O x -based oxide superconducting wire.
[0006]
[Problems to be solved by the invention]
As described above, the three typical methods of manufacturing a wire have been described. However, the PIT method 1) is considered to be closest to the practical level in consideration of the manufacturing process, cost, superconductivity, and the like. However, although the critical current density remains at 20,000 to 25,000 A / cm 2 even in the wire obtained by this method, characteristics of 50,000 A / cm 2 or more are desired for practical use. I have.
An object of the present invention is to improve the superconducting properties of a wire obtained by the above-mentioned PIT method and to reach a practical level.
[0007]
[Means for Solving the Problems]
A first invention is a method for producing an oxide superconducting wire having a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor as a main component, wherein BiO 1.5 , PbO, SrCO having a predetermined composition ratio is used. 3 , CaCO 3 and CuO are mixed, calcined under predetermined conditions, then pressed under predetermined conditions to obtain a molded body, inserted into a metal pipe, drawn under predetermined conditions, Rolled into a wire rod, the wire rod is fired at 840 to 845 ° C. in the air for 50 to 200 hours, and after the firing step is completed, or at a temperature of 805 to 825 ° C. when the temperature of the firing step is lowered, the wire is heated to 4 to 845 ° C. A method for manufacturing an oxide superconducting wire, comprising performing a wire annealing treatment for 30 hours.
[0008]
A second invention is a wire having a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor manufactured by the manufacturing method according to the first invention in a metal sheath material, Between the grain boundaries of the oxide superconductor crystal particles in the oxide superconductor, CuO particles having a particle size of 1 μm or less, Cu 2 O particles, and at least one of Ca 2 PbO 4 particles is contained. Oxide superconducting wire.
[0009]
Embodiment
FIG. 1 is a schematic TEM photograph of a cross section of an oxide superconductor in a metal sheath oxide superconducting wire according to an embodiment of the present invention. In FIG. 1, the superconducting crystal 11 has a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor as a main component and is oriented in the longitudinal direction of the wire. The contact between the superconducting crystals at the crystal grain boundaries is well maintained. On the other hand, at least one precipitate 12 of CuO, Cu 2 O and Ca 2 PbO 4 having a particle size of 0.1 to 1 μm is found at the crystal grain boundary.
[0010]
FIG. 2 is a schematic TEM photograph of a cross section of an oxide superconductor contained in a metal sheath oxide superconducting wire manufactured in the same manner as the present invention except that the wire annealing treatment is not performed. In FIG. 2, the superconducting crystal 21 has a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor as a main component and is oriented in the longitudinal direction of the wire. A non-superconducting phase 22 of a film-like and amorphous body mainly containing Bi, Pb, Sr, Ca, Cu, and O as main components is formed at a crystal grain boundary, and a contact area between superconducting crystals is limited. I have. On the other hand, at least one precipitate of CuO, Cu 2 O and Ca 2 PbO 4 having a particle size of 0.1 to 1 μm was not found at the crystal grain boundary.
[0011]
FIG. 3 is an external view and a cross section of a metal sheath oxide superconducting wire produced by the PIT method. Ag, Au, and Pt are preferable for the metal sheath material 31 from the viewpoint of thermal stability to the oxide superconductor 32. The oxide superconductor 32 is based on (BiPb) 2 Sr 2 Ca 2 Cu 3 O x .
[0012]
Hereinafter, embodiments of the present invention will be described with reference to these drawings.
The oxide superconductor 32 in the (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based metal sheath oxide superconducting wire of FIG. 3 manufactured by the conventional PIT method is observed with a TEM (transmission electron microscope). As shown in FIG. 2, a non-superconducting phase 22 in the form of a film mainly composed of Bi, Pb, Sr, Ca, Cu, and O is formed at the grain boundaries of the superconducting crystal 21. It is considered that the presence of the non-superconducting phase 22 reduces the substantial area through which the current can flow between the superconducting crystals 21 and limits the critical current value and the critical current density. Therefore, in order to increase the critical current value and the critical current density in the (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconducting wire, it is necessary to improve the electrical coupling state between the oxide superconducting crystals 21. Considered important.
[0013]
Therefore, the process of forming the non-superconducting phase 22 of the film-like amorphous body is clarified, and if the non-superconducting phase can be eliminated or its generation can be prevented, an oxide having a critical current value and a critical current density at a practical level can be obtained. We have realized that a superconducting wire can be manufactured.
[0014]
The process of forming the non-superconducting phase 22 of the film-like amorphous body is considered as follows.
When the metal sheath wire filled with the oxide superconducting synthetic powder, which is the raw material of the oxide superconductor 32, is fired in the air at 840 to 845 ° C for 50 to 150 hours, a high Tc is obtained in the metal sheath. The (BiPb) 2 Sr 2 Ca 2 Cu 3 O x crystal of the superconducting phase shown grows at the fastest rate, and the metal-sheath oxide superconducting wire shown in FIG. 3 is obtained. However, since this crystal growth is accompanied by a liquid phase, a liquid phase always intervenes between growing crystal grain boundaries. As the crystal growth progresses, the amount of liquid phase at the crystal grain boundaries also decreases, but it is thought that the liquid phase in the thermal equilibrium state finally remains and the non-superconducting phase 22 of the film-like amorphous body is formed in the cooling step after firing. Can be
[0015]
The present inventor completely terminates the firing or applies heat of an appropriate temperature to a metal sheath wire at an appropriate time when the temperature of the sintering process is lowered (hereinafter, referred to as wire annealing process), thereby forming the metal sheath wire in the firing process. The non-superconducting phase of the formed film-like amorphous body is changed into an oxide superconducting phase and at least one precipitate of CuO, Cu 2 O and Ca 2 PbO 4 at a slow reaction rate, so that the film-like amorphous body 22 disappears or disappears. The inventors of the present invention have conceived that the generation can be prevented and completed the present invention.
[0016]
That is, as a result of this reaction, the non-superconducting phase 22 of the film-like amorphous body, which has become an obstacle to the transport current, has at least one of superconducting crystal 11 having a high Tc and CuO, Cu 2 O and Ca 2 PbO 4 having a particle size of 1 μm or less. That is, it has changed into two precipitates 12.
Although the precipitate 12 is a non-superconducting phase but has a small particle size, even if it exists in the grain boundary, it does not not only hinder the transport current but also the presence of the precipitate It can be used as an index of change to body crystal 11.
[0017]
Embodiment 1
Each raw material powder of BiO 1.5 , PbO, SrCO 3 , CaCO 3 and CuO having a particle size of 0.1 to 10 μm and a purity of 3 to 4 N is mixed to obtain BiO 1.5 : PbO: SrCO 3 : CaCO 3 : CuO = After preparing a mixed powder sample having a composition ratio of 1.85: 0.35: 1.90: 2.05: 3.05, it was calcined in the air at a temperature of 740 to 820 ° C. for 10 to 100 hours. Obtain superconducting synthetic powder. Next, 1.2 g of this superconducting synthetic powder was filled in a cylindrical rubber mold having a hollow portion of 3.8 mmφ × 95 mmL and a wall thickness of 10 mm, the openings at both ends were sealed with rubber stoppers, and a cold isostatic press was used. Pressure molding is performed at a maximum pressure of 1.5 t / cm 2 to obtain a molded body of about 1.95 mmφ × 90 mmL. The molded body was inserted into an Ag pipe having an inner diameter of 2.0 mmφ and an outer diameter of 3.0 mmφ × 100 mmL.
[0018]
The Ag pipe is drawn and rolled to form a wire. This wire was placed in an electric furnace and fired in an air atmosphere. Heat to 840 ° C. at a rate of temperature increase of 2 ° C./min and hold for 150 hours, then return to room temperature at a rate of 3 ° C./min, tape-shaped Ag sheath oxide about 5.0 mm wide and about 0.2 mm thick A superconducting wire was obtained. The region of the superconducting portion in the wire had a width of about 4 mm and a thickness of about 0.07 mm.
When the critical current value and the critical current density at this point were measured, the critical current value was 29.4 A at a temperature of 77 K and a self-magnetic field, and was about 10,500 A / cm 2 at the critical current density.
The critical current value and the critical current density were measured using a four-terminal method. The current value when 1 μV / cm was generated between the voltage terminals under a self-magnetic field at 77 K was defined as the critical current value, and the cross-sectional area was 1 cm. The current value converted into 2 was defined as the critical current density.
[0019]
Next, FIG. 4 shows a critical current value as a result of treating the Ag sheath oxide superconducting wire after completion of sintering at the wire annealing temperature and annealing time shown in FIGS. It is shown in FIG. However, the rate of temperature rise during annealing was 2.67 ° C./min, and the rate of temperature fall was 1.33 ° C./min.
From this, it was found that a wire having a high critical current value (Ic) and a high critical current density (Jc) can be obtained in the range of the annealing temperature of 805 to 820 ° C. and the processing time of 4 to 30 hours.
Further, it has been found that the critical current density (Jc) exceeds 44,000 A / cm 2 in the range of the annealing temperature of 810 to 815 ° C. and the processing time of 12 to 16 hours.
[0020]
Embodiment 2
Each raw material powder of BiO 1.5 , PbO, SrCO 3 , CaCO 3 and CuO having a particle size of 0.1 to 10 μm and a purity of 3 to 4 N is mixed to obtain BiO 1.5 : PbO: SrCO 3 : CaCO 3 : CuO = a: After preparing a mixed powder sample having a composition ratio of 0.35: 1.90: 2.05: 3.05, it was calcined in the air at a temperature of 740 to 820 ° C. for 10 to 100 hours and superconducting synthesis. Get the powder. However, a is varied between 1 ≦ a ≦ 3 to prepare a plurality of mixed powder samples, and then calcined in air at a temperature of 740 to 820 ° C. for 10 to 100 hours to obtain a plurality of superconducting synthetic powders. Next, 1.2 g of each of the superconducting synthetic powders was filled into a cylindrical rubber mold having a hollow part of 3.8 mmφ × 95 mmL and a wall thickness of 10 mm, and the openings at both ends were sealed with rubber stoppers, and cold isostatic pressure was applied. Pressure molding is performed with a press at a maximum pressure of 1.5 t / cm 2 to obtain a molded body of about 1.95 mmφ × 90 mmL. The molded body was inserted into an Ag pipe having an inner diameter of 2.0 mmφ and an outer diameter of 3.0 mmφ × 100 mmL.
[0021]
These Ag pipes are drawn and rolled to form wires. These wires were placed in an electric furnace and fired in an air atmosphere. Heat to 840 ° C. at a rate of temperature increase of 2 ° C./min and hold for 150 hours, then return to room temperature at a rate of 3 ° C./min, tape-shaped Ag sheath oxide about 5.0 mm wide and about 0.2 mm thick A superconducting wire was obtained. The region of the superconducting portion in the wire had a width of about 4 mm and a thickness of about 0.07 mm.
At this point, the critical current value and critical current density of these wires were measured.
The critical current value was measured using a four-terminal method. The current value when a voltage of 1 μV / cm was generated between the voltage terminals under a self-magnetic field at 77 K was defined as the critical current value, and the cross-sectional area was converted to 1 cm 2 . The current value was defined as the critical current density.
[0022]
Next, each Ag sheath oxide superconducting wire after sintering was annealed at 815 ° C. for 12 hours. However, the rate of temperature rise during annealing was 2.67 ° C./min, and the rate of temperature fall was 1.33 ° C./min. After the annealing treatment, the critical current value and the critical current density of these wires were measured again.
The results are shown in FIG. From this, it was found that the critical current value and the critical current density of the Ag sheath oxide superconducting wire increased by the wire annealing treatment when 1.5 ≦ a ≦ 2.1.
[0023]
The same test as above was performed on b this time.
However, the composition ratio of the mixed powder sample is BiO 1.5 : PbO: SrCO 3 : CaCO 3 : CuO = 1.85: b: 1.90: 2.05: 3.05 and 0 ≦ b ≦ 0.6 Changed b.
As a result, when 0.14 ≦ b ≦ 0.45, it was found that the critical current value and the critical current density of the Ag sheath oxide superconducting wire increased by the wire annealing treatment.
[0024]
The same test as above was performed for c this time.
However, the composition ratio of the mixed powder sample is BiO 1.5 : PbO: SrCO 3 : CaCO 3 : CuO = 1.85: 0.35: c: 2.05: 3.05 and b is between 1 ≦ c ≦ 3. Was changed.
As a result, it was found that the critical current value and the critical current density of the Ag sheath oxide superconducting wire increased by the wire annealing treatment when 1.6 ≦ c ≦ 2.2.
[0025]
The same test as above was performed on d this time.
However, the composition ratio of the mixed powder sample is BiO 1.5 : PbO: SrCO 3 : CaCO 3 : CuO = 1.85: 0.35: 1.90: d: 3.05 and d is between 1 ≦ d ≦ 3. Was changed.
As a result, it was found that when 1.7 ≦ d ≦ 2.3, the critical current value and the critical current density of the Ag sheath oxide superconducting wire increased by the wire annealing treatment.
[0026]
【The invention's effect】
According to the present invention, the critical current density of the oxide superconducting wire manufactured by the PIT method can be increased to a practical level of 50,000 A / cm 2 or more. If this wire and the wire making method are applied to, for example, a power transmission cable, a cable without power transmission loss greatly contributes to efficient use of power and cost reduction.
[0027]
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross-sectional TEM photograph of an oxide superconductor in a wire after a wire annealing treatment according to the present invention.
FIG. 2 is a schematic TEM photograph of a cross-section of an oxide superconductor in a wire manufactured in the same manner as in the present invention except that an annealing process is not performed.
FIG. 3 is an external view and a cross section of a metal sheath oxide superconducting wire.
FIG. 4 is a table showing the relationship between wire annealing conditions (temperature / time) and the critical current value (Ic) of the wire in the present invention.
FIG. 5 is a table showing the relationship between wire annealing conditions (temperature / time) and the critical current density (Jc) of the wire in the present invention.
FIG. 6 shows a critical current value (Ic) and a critical current density (Jc) before and after wire annealing (815 ° C., 12 hours) of an oxide superconducting wire prepared by changing the composition ratio of BiO 1.5 in the present invention. FIG. 3 is a table showing the values of.

Claims (2)

(BiPb) 2 Sr 2 Ca 2 Cu 3 x 系酸化物超電導体を主成分とする酸化物超電導線材の製造方法であって、
所定の組成比のBiO1.5、PbO、SrCO3、CaCO3及びCuOを混合し、所定の条件で仮焼し、次に所定の条件で加圧成形し成形体を得た後、金属パイプの中に挿入し、所定の条件で伸線、圧延して線材とし、この線材に大気中で840〜845℃の焼成を50〜200時間行い、この焼成工程を終了した後か、または焼成工程の降温時において805〜820℃の温度で4〜30時間の線材アニール処理を行うことを特徴とする酸化物超電導線材の製造方法。
A method for producing an oxide superconducting wire mainly comprising (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor,
After mixing BiO 1.5 , PbO, SrCO 3 , CaCO 3 and CuO having a predetermined composition ratio, calcining them under predetermined conditions, and then press-molding them under predetermined conditions to obtain a compact, a metal pipe is formed. And wire drawn and rolled under predetermined conditions to obtain a wire, and the wire is fired at 840 to 845 ° C. in the air for 50 to 200 hours. After the firing process is completed, or the temperature of the firing process is lowered. A wire annealing treatment at a temperature of 805 to 820 [deg.] C. for 4 to 30 hours.
金属シース材の中に、請求項1に記載の製造方法により製造された(BiPb)2Sr2Ca2Cu3x系酸化物超電導体を有する線材であって、
該酸化物超電導体中における酸化物超電導体結晶粒子の粒界間において、粒径1μm以下のCuO粒子、Cu2O粒子、及びCa2PbO4粒子のうち少なくとも1つを含有することを特徴とする酸化物超電導線材。
A wire having a (BiPb) 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor manufactured by the manufacturing method according to claim 1 in a metal sheath material,
Between the grain boundaries of the oxide superconductor crystal particles in the oxide superconductor, CuO particles having a particle size of 1 μm or less, Cu 2 O particles, and at least one of Ca 2 PbO 4 particles is contained. Oxide superconducting wire.
JP2000153502A 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire Expired - Fee Related JP3590567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153502A JP3590567B2 (en) 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153502A JP3590567B2 (en) 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2001332146A JP2001332146A (en) 2001-11-30
JP3590567B2 true JP3590567B2 (en) 2004-11-17

Family

ID=18658746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153502A Expired - Fee Related JP3590567B2 (en) 2000-05-24 2000-05-24 Manufacturing method of oxide superconducting wire and oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3590567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696811B2 (en) * 2005-09-22 2011-06-08 住友電気工業株式会社 Manufacturing method of Bi-based superconductor

Also Published As

Publication number Publication date
JP2001332146A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
JP3450328B2 (en) Improved processing of oxide superconductors
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH04292819A (en) Method for manufacturing oxide superconducting wire
JP2821794B2 (en) Oxide superconductor and manufacturing method thereof
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JPH07508849A (en) High critical temperature superconductor and its manufacturing method
JPH10511926A (en) Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C)
KR100821209B1 (en) Method for manufacturing high temperature superconducting thick film tape using nickel substrate
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2727565B2 (en) Superconductor manufacturing method
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH06162843A (en) Manufacture of bi oxide superconductor
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2828631B2 (en) Manufacturing method of superconducting material
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JPH02217320A (en) Method for manufacturing Bi-based oxide superconductor
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JPH03290316A (en) Production of bi-based oxide superconductor
JPH0717366B2 (en) Method for producing oxide-based superconducting material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees