[go: up one dir, main page]

JP3590254B2 - Hydraulic valve - Google Patents

Hydraulic valve Download PDF

Info

Publication number
JP3590254B2
JP3590254B2 JP00466998A JP466998A JP3590254B2 JP 3590254 B2 JP3590254 B2 JP 3590254B2 JP 00466998 A JP00466998 A JP 00466998A JP 466998 A JP466998 A JP 466998A JP 3590254 B2 JP3590254 B2 JP 3590254B2
Authority
JP
Japan
Prior art keywords
valve
water
diaphragm
flow
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00466998A
Other languages
Japanese (ja)
Other versions
JPH11201446A (en
Inventor
貞雄 岡田
直樹 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP00466998A priority Critical patent/JP3590254B2/en
Publication of JPH11201446A publication Critical patent/JPH11201446A/en
Application granted granted Critical
Publication of JP3590254B2 publication Critical patent/JP3590254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は瞬間湯沸器等に組み込まれる水圧応動ガス弁に関するもので、前記給湯器に接続される水道配管側の給水圧が上昇した場合でも出湯量の低下を低く抑え得るようにしたものである。
【0002】
【従来の技術】
図4は従来の水圧応動ガス弁が組み込まれた瞬間湯沸器の概略図である。
ガス回路(11)には、電磁弁(13)とその下流側の応動弁(15)が配設されていると共に、該ガス回路(11)の下流端のノズル部(16)(16)にはガスバーナ(21)(21)のガス入口部(22)(22)が臨んでいる。
【0003】
一方、熱交換器(24)を通る水回路(26)の上流端部にはガス回路を開けるべく水流を検知する水ガバナ(31)が配設されていると共に、後述するように該水ガバナ(31)は給水圧の変動に因る出湯量変化を緩和する機能を有している。又、水回路(26)の下流端にはシャワーヘッド(28)が配設されている。
又、上記水ガバナ(31)は開弁レバー(33)を介して操作ボタン(35)と連動するようになっていると共に、該操作ボタン(35)の操作信号は、既述電磁弁(13)等を制御する制御回路(37)に印加されている。
【0004】
上記水ガバナ(31)のバルブケーシング(39)には上記開弁レバー(33)に連動する開閉弁(459) が設けられており、該開閉弁(459) によって通水筒(47)の上流端の弁口(49)が開閉されるようになっている。
上記通水筒(47)にはその軸線方向に移動自在である流量調整弁体(51)が収納されていると共に、該流量調整弁体(51)には下流側から流量調整弁口(53)が対向しており、該流量調整弁口(53)に対する流量調整弁体(51)の接離動作によってその弁開度が調整されるようになっている。
【0005】
上記流量調整弁口(53)の下流側の一次圧室(55)はダイヤフラム(59)によって二次圧室(57)と区画されていると共に、該二次圧室(57)は上記一次圧室(55)の下流側に形成された絞り部(61)の下流側と連通路(62)を介して繋がっている。
上記流量調整弁体(51)から突出する弁軸(63)の先端のバネ受け円板(60)は取付けバネ(86)でダイヤフラム(59)側に付勢されており、これにより、流量調整弁体(51)はダイヤフラム(59)に追随して移動するようになっている。又、上記ダイヤフラム(59)に対して前記流量調整弁体(51)の反対側から当接するロッド(64)の他端には、戻しバネ(71)で付勢されていると共にリミットスイッチ(67)をON・OFFさせる為のスイッチ投入片(65)が設けられており、更に、スイッチ投入片(65)と一体のロッド(65a) と所定のクリアランス(通常は2.5mm程度)を存して閉弁バネ(69)で閉弁方向に付勢されたリフト弁式の応動弁(15)が設けられている。
【0006】
このものでは、操作ボタン(35)を押し込むと、該操作ボタン(35)の先端(36)で回動せしめられる開弁レバー(33)に連動して開閉弁(459) が開弁動作する。即ち、開閉弁(459) が通水筒(47)の上流端の弁口(49)から上流側に離反する方向に移動し、これにより、弁口(49)が開弁状態になる。すると、水ガバナ(31)の水入口(73)→通水筒(47)の弁口(49)→該通水筒(47)の下流端の流量調整弁口(53)→水ガバナ(31)の一次圧室(55)→絞り部(61)→熱交換器(24)→シャワーヘッド(28)の経路で給水されるが、このとき、絞り部(61)で流量が絞られて該部分で一定の圧力低下が生じる。そして、絞り部(61)の下流側と連通する二次圧室(57)が圧力低下し、これにより、該二次圧室(57)側にダイヤフラム(59)が変形動作して応動弁(15)が閉弁バネ(69)の付勢力に抗して開弁動作する。
【0007】
上記応動弁(15)が開弁すると、該応動弁(15)と連動するスイッチ投入片(65)で押圧されていたリミットスイッチ(67)の腕(68)が非押圧状態になってこれがON動作し、制御回路(37)の出力で電磁弁(13)が開弁状態に維持されてガスバーナ(21)(21)にガス供給されると共に、点火電極(75)からの火花でガスバーナ(21)(21)が燃焼する。これにより、熱交換器(24)が加熱されてシャワーヘッド(28)から出湯する。
【0008】
上記出湯状態において、水ガバナ(31)の水入口(73)に接続される水道配管側の給水圧が変動すると、一次圧室(55)と二次圧室(57)の圧力差が変動するが、このとき、流量調整弁体(51)が流量調整弁口(53)に接離動作し、これにより絞り量が変化して上記圧力差が一定に保たれ、水回路(26)内の流量が一定に保たれる。即ち、給水圧が高くなって水回路(26)内の流量が増加しそうになると、一次圧室(55)と二次圧室(57)の圧力差が大きくなって流量調整弁体(51)が絞り動作して前記流量増加を抑えると共に、これとは逆に、上記給水圧が低下して流量が減少しそうになると、上記圧力差が小さくなって流量調整弁体(51)が開放動作し、これにより、前記流量の減少を抑制して、流量調整弁口(53)の通過流量を一定に保つ。
【0009】
このように、上記従来のものでは、水ガバナ(31)の上流の水道配管側の給水圧変動に起因する水回路(26)内の流量変化をある程度抑えることができるから、前記給水圧変動が生じても、シャワーヘッド(28)からの出湯量の変動を小さく抑えることができ、安定した出湯動作が確保できる。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来のものでは、水ガバナ(31)の上流側の給水圧変動が生じても出湯量をある程度安定させることはできるが、該安定性は未だ不十分であり、特に、上記給水圧が著しく上昇した場合は、該給水圧が流量調整弁体(51)自体に作用し、ダイヤフラム(59)を二次圧室(57)側に過剰に変形動作させる。この結果、流量調整弁体(51)が過剰に絞られて水回路(26)の流量が著しく低下するという問題があった。
【0011】
上記問題を解決する為に、上記給水圧が作用する流量調整弁体(51)を小型(小受圧面積)にすることや、又、応動弁(15)の閉弁バネ(69)のバネ定数を大きくすることも考えられるが、前者のものでは流量調整弁体(51)に対応する流量調整弁口(53)も小さくなって流路抵抗が大きくなってしまう。一方、後者の場合は、特に給水圧が低い場合において出湯操作時に応動弁(15)が開弁し難くなってガスバーナ(21)への点火動作が円滑に開始しない。
【0012】
本願は係る点に鑑みて成されたもので、出湯操作操作時のガスバーナ(21)への点火動作の円滑さを確保しながら、給水圧が上昇した際の出湯量低下を一層確実に抑制し得る水圧応動ガス弁を提供することをその課題とする。
【0013】
【課題を解決するための手段】
上記課題を解決する為に採用した請求項1の発明の技術的手段は、
『ガスバーナ(21)へのガス回路(11)に配設され且つ水回路に配設されたダイヤフラム(59)の変形動作に連動して開閉動作する応動弁(15)を具備する水圧応動ガス弁であって、
前記ダイヤフラム(59)はその受圧面が前記水回路内に露出するように張設されており、
前記水回路内に於ける前記受圧面の対向部に形成された流量調整弁口と、
前記流量調整弁口に対して前記ダイヤフラム(59)側の反対側から対向し且つ該ダイヤフラム(59)の変形動作に追随して前記流量調整弁口に接離する方向に移動する流量調整弁体(51)と、
前記流量調整弁体(51)が全開位置から前記流量調整弁口に所定距離接近するまでは自由状態に保たれ且つ前記所定距離接近した後には前記流量調整弁体(51)を前記流量調整弁口から離反する方向に付勢する補正バネとを具備し、
前記補正バネは、前記流量調整弁体(51)と該流量調整弁体(51)の下流側に形成された固定部の間に介装されたコイルバネであり、
前記流量調整弁体(51)は、該流量調整弁体(51)から突出する弁軸(63)を前記ダイヤフラム(59)に対して前記補正バネより弱い押圧バネ(86)で押圧することによって該ダイヤフラム(59)に押し付けられている』することである。
【0014】
上記技術的手段によれば、水回路に水流が発生するとダイヤフラム(59)の受圧面とその反対面に作用する圧力の差が生じ、該ダイヤフラム(59)がこれに対向する流量調整弁口から離反する方向に変形動作して既述従来のものと同様に応動弁(15)が開弁してガス回路(11)にガスが流れる。
上記水回路に水流が発生して上記ダイヤフラム(59)が変形動作する場合、流量調整弁体(51)が流量調整弁口に所定距離接近するまでは補正バネが自由状態に保たれて付勢力を発揮しないから、上記補正バネを具備しない既述従来のものと同様に給水圧が低くてもガス回路(11)の応動弁(15)が円滑に開弁する。
【0015】
この状態で上流の水道配管側の給水圧が上昇すると、該給水圧が流量調整弁体(51)の受圧面に作用し、流量調整弁体(51)が前記流量調整弁口に接近し始める。ところが、流量調整弁体(51)が流量調整弁口に所定距離接近した後(応動弁(15)が開弁した後)には、補正バネが非自由状態になって圧縮されていることから、流量調整弁体(51)の閉弁方向への移動が上記補正バネの付勢力で抑えられ、これにより、流量調整弁体(51)の絞り動作が抑制され、流量の過剰低下が抑えられる。
【0016】
請求項2の発明のように『流量調整弁体(51)の受圧面積を64mm2とした場合、前記補正バネのバネ定数が0.64Kg/mm以上に設定されている』ものとすることができる。
【0017】
又、前記所定距離は、『応動弁(15)が開弁したときの流量調整弁体(51)の位置と該流量調整弁体(51)の全開位置との二点間の距離以上である』もの(請求項3の発明)とすることができる。このものでは、応動弁(15)が開弁するまでは補正バネが自由状態に保たれる。従って、応動弁(15)が開弁するまでは、流量調整弁(51)が全開位置側に補正バネで押されることがなく、応動弁(15)の円滑な開弁動作が確保できる。
【0018】
【発明の効果】
以上説明したように、請求項1〜請求項3の発明によれば、ガス回路(11)に配設された応動弁(15)が開弁するまで補正バネが付勢力を発揮しないから、該補正バネを具備しない既述従来のものと同様に応動弁(15)が円滑に開弁する。そして、本発明の水圧応動ガス弁を例えば湯沸器に組み込んだ場合には、上記応動弁(15)の開弁時にガスバーナへの点火動作が実行されるのが通常であるから、係る場合には、給水圧が低い場合でも該応動弁(15)からガス供給されるガスバーナへの点火動作が円滑に行われる。又、流量調整弁体(51)が流量調整弁口に所定距離接近した後(応動弁(15)が開弁した後)には、流量調整弁体(51)の開度絞り動作を抑制する方向に補正バネが付勢力を発揮するから、前記応動弁(15)が開弁した状態で上流の水道配管側の給水圧が上昇しても、流量調整弁体(51)が開度絞り方向に移動しにくくなる。従って、補正バネを具備しない既述従来のものに比べて水回路内の流量低下を一層確実に抑制することができる。
【0019】
請求項2の発明では、流量調整弁体(51)の受圧面積を64mm2とした場合に、補正バネのバネ定数を0.64Kg/mm以上に設定したから、上記給水圧の上昇量に関わらず水回路の流量をほぼ一定に保ち得ることが確認できた。
請求項3の発明によれば、応動弁(15)が開弁したときの流量調整弁体(51)の位置まで該流量調整弁体(51)が全開位置から移動しない限り補正バネが圧縮されない。従って、応動弁(15)が開弁する前に補正バネが圧縮されてしまう不都合を確実に防止することができ、応動弁(15)の円滑な開弁動作を一層確実なものにすることができる。
【0020】
【発明の実施の形態】
次に、上記発明の実施の形態について説明する。
図1は、本願発明に係る水圧応動ガス弁が組み込まれた瞬間湯沸器の概略構造図である。
ガス回路(11)には、既述従来のものと同様に電磁弁(13)とその下流側の応動弁(15)が設けられていると共に、該ガス回路(11)の下流端のノズル部(16)(16)にはガスバーナ(21)(21)のガス入口部(22)(22)が臨んでいる。又、上記応動弁(15)は閉弁バネ(69)で閉弁方向に付勢されていると共に、該応動弁(15)から後述の水ガバナ(31)の配設部まで延びるロッド(64)の途中には戻しバネ(71)で付勢されたスイッチ投入片(65)が設けられている。
【0021】
次に、熱交換器(24)を通る水回路(26)の上流端部には水ガバナ(31)が配設されている。そして、該水ガバナ(31)と既述した応動弁(15)とこれらを連結するロッド(64)によって本願発明の対象たる水圧応動ガス弁が構成されている。
次に、上記水ガバナ(31)の構造を説明する。
[水ガバナ(31)の全体構成]
図2に示すように、水ガバナ(31)のバルブケーシング(39)には、水入口(73)→ダイヤフラム弁(45)の配設部→通水筒(47)内→該通水筒(47)の下流側の流量調整弁口(53)→該流量調整弁口(53)とダイヤフラム(59)の間の一次圧室(55)→出湯量調節弁(77)→絞り部(61)→水出口(79)と繋がる水回路(81)が形成されており、絞り部(61)とダイヤフラム(59)に隣接した二次圧室(57)は連通路(62)で連通している。
【0022】
以下水ガバナ(31)の各部品の詳細を説明する。
[ダイヤフラム弁(45)について]
バルブケーシング(39)の側壁からその内部の水回路(81)に繋がるように穿設された開口部(42)はダイヤフラム弁(45)を構成するダイヤフラム(43)で閉塞されており、上記ダイヤフラム(43)の外周のビード(44)部分は、前記開口部(42)を覆うダイヤフラムカバー(74)の開口端側のフランジ(76)と上記バルブケーシング(39)の構成壁で挟圧された状態になっている。
【0023】
ダイヤフラム(43)にはシート部材(40)が係止され、中央の突出軸部(400) が通水筒(47)の弁口(413) に摺動自在に貫通しており、これにより、ダイヤフラム弁(45)と通水筒(47)の同心性が確保されている。又、上記突出軸部(400) の中心に貫設されたパイロット孔(46)を開閉する為のパイロット弁(41)はバネ(48)で閉弁方向に付勢されている。
【0024】
又、該パイロット弁(41)の弁軸(411) は、ダイヤフラムカバー(74)に取付けられた軸ガイド(412) を貫通して該ダイヤフラムカバー(74)の外側に突出していると共に、上記シート部材(40)とダイヤフラム(43)の重合部の外周近傍にはダイヤフラムカバー(74)内とバルブケーシング(39)の水入口(73)側の水回路(81)内を連通させるリーク孔(431) が穿設されている。
【0025】
又、ダイヤフラム(43)に取付けられた上記シート部材(40)で開閉される弁口(413)を具備する既述通水筒(47)の下流側端部はバルブケーシング(39)に形成された円柱状凹部(470)にOリング(471)を用いて水密状に圧入されている。
[流量調整弁体(51)について]
上記通水筒(47)内に収納された流量調整弁体(51)は、後述の流量調整弁口(53)に対してダイヤフラム(59)の反対側から対向していると共に、該流量調整弁体(51)は流量調整弁口(53)から離れるに従って直径が大きくなるような円錐台状に形成されている。上記流量調整弁体(51)には大径側の端面から側壁に貫通する通路(511)が形成されていると共に、流量調整弁体(51)に於ける小径側端の弁頭部(512)は、バルブケーシング(39)に螺合された筒ネジ(85)の内周に形成された流量調整弁口(53)に対して上流側から対向している。又、筒ネジ(85)の上流側端の外周には環状溝(850)が周設され、コイルバネから成る補正バネ(83)の一端が上記環状溝(850)(請求項1の発明の発明特定事項たる「固定部」に対応している)に外嵌固定されている。又、水回路(81)内が通水停止状態にある初期状態では、流量調整弁体(51)が流量調整弁口(53)から最も離れた状態にあると共に、該流量調整弁体(51)の上流側端部の外周フランジ(515)と上記補正バネ(83)の上流側端部の間に所定の間隙(b)が形成されており、上記補正バネ(83)は自由状態になっている。この間隙(b)は、応動弁(15)と通水停止時に於けるスイッチ投入片(65)のロッド(65a)との間隙(a)より大きくなっており、具体的には、前記間隙(b)の寸法は3mmに設定され他方の間隙(a)は2.5mmに設定されている。従って、上記ロッド(65a)が応動弁(15)に当接するまでは補正バネ(65)が圧縮されず、これにより、応動弁(15)を開弁させる給水圧(作動圧)を低くすることができる。よって、該応動弁(15)の開弁動作と連動する後述のガスバーナ(21)(21)への点火動作が確実に行える。即ち、上記とは逆に応動弁(15)が開弁する前に補正バネ(65)が圧縮されてこれが付勢力を発揮すると、該付勢力によって応動弁(15)が開弁しにくくなり、これにより、作動水圧(応動弁(15)を開弁させるのに必要な水圧)が高くなる。従って、かかる場合は、ガスバーナ(21)(21)への点火動作が円滑に行われないが、本発明の上記実施の形態では上記のように給水圧が低下してもガスバーナ(21)(21)への点火動作が円滑且つ確実に実行される。
【0026】
尚、上記補正バネ(83)のバネ定数は既述した応動弁(15)用の閉弁バネ(69)やスイッチ投入片(65)用の戻しバネ(71)のバネ定数より大きな値に設定されているが、このバネ定数の具体的値については後述する。
上記流量調整弁体(51)の下流側端部から突出する弁軸(63)の下流端には該軸と同心状のバネ受け円板(60)が連設されており、該バネ受け円板(60)と上記筒ネジ(85)の間にはバネ受け円板(60)を後述のダイヤフラム(59)に緩く押圧する為の押圧バネ(86)が介装されている。尚、上記押圧バネ(86)のバネ定数は既述補正バネ(83)のバネ定数より小さな値に設定されている。
【0027】
上記ダイヤフラム(59)は、バルブケーシング(39)の側壁に開設された開口部(30)を閉塞するように張設されており、該ダイヤフラム(59)の外周のビード(591) 部分は蓋体(88)とバルブケーシング(39)の構成壁で挟圧保持されている。又、蓋体(88)の外面に突設されたガイド筒(89)には、応動弁(15)を駆動する為のロッド(64)が摺動自在に貫通している。
【0028】
そして、ダイヤフラム(59)と蓋体(88)によって包囲された空間が二次圧室(57)となり、ダイヤフラム(59)を挟んで上記二次圧室(57)の反対側に形成されている空間が一次圧室(55)となっている。従って、ダイヤフラム(59)に於ける一次圧室(55)側の表面が請求項1の発明の発明特定事項たる受圧面となり、この受圧面の対向部に既述流量調整弁口(53)が位置した状態になっている。
【0029】
[出湯量調節弁(77)について]
上記ダイヤフラム(59)の下流側に配設された出湯量調節弁(77)は、円筒体の側壁に切欠(78)を開設したもので、該出湯量調節弁(77)を図2の状態から時計方向に回転させると、水回路(81)に形成された弁座口(82)が流量調節弁(77)の周側壁で閉塞される度合いが大きくなり、これにより、水ガバナ(31)の下流側の熱交換器(24)への給水量が低下して出湯量が少なくなる。
【0030】
[絞り部(61)について]
上記出湯量調節弁(77)の下流側隣接部に形成された絞り部(61)は円錐筒(66)で構成されており、該円錐筒(66)の側壁に形成された窓(660) は連通路(62)を介して既述二次圧室(57)に連通しており、これにより、絞り部(61)で絞られて一定圧力だけ低下した水圧が上記二次圧室(57)に伝達されるようになっている。
【0031】
又、上記円錐筒(66)の下流側に位置する水出口(79)は、図1に示すように水回路(26)を介して熱交換器(24)に繋がるように構成されている。
[動作の説明]
次に、上記水圧応動ガス弁の動作を説明する。
水圧応動ガス弁が作動していない初期状態では、ダイヤフラム弁(45)が閉弁状態にあり、ダイヤフラムカバー(74)内の水圧は、リーク孔(431) によって水回路(81)内の水圧と一致している。
【0032】
湯沸器前面の操作部に配設された操作ボタン(35)を押し込むと、既述従来のものと同様に、該操作ボタン(35)の先端(36)で開弁レバー(33)の入力端が押されて該開弁レバー(33)が回動し、その出力端に連設された弁軸(411) がバネ(48)の付勢力に抗して後退してパイロット孔(46)が開かれてダイヤフラムカバー(74)内の水圧が低下する。すると、該ダイヤフラムカバー(74)内と水回路(81)との圧力差により、ダイヤフラム弁(45)用のダイヤフラム(43)が上記ダイヤフラムカバー(74)内側に変形動作して該ダイヤフラム(43)が弁口(413) から離反し、これによって弁口(413) が開弁される。
【0033】
これにより、水ガバナ(31)の水入口(73)→通水筒(47)の弁口(413) →該通水筒(47)の下流側の流量調整弁口(53)→一次圧室(55)→出湯量調節弁(77)→絞り部(61)→水出口(79)の経路で水が流れて、その後、該水は熱交換器(24)からシャワーヘッド(28)に供給される。
上記絞り部(61)に水流が生じると、該絞り部(61)の上流側よりも下流側が一定圧だけ水圧低下し、該圧力低下が連通路(62)を介して二次圧室(57)に伝達される。すると、上記ダイヤフラム(59)が二次圧室(57)側に変形動作し、該変形動作方向にロッド(64)が移動して応動弁(15)が閉弁バネ(69)の付勢力に抗して開弁される。この場合、水ガバナ(31)内の水回路(81)に水流が生じる前の初期状態では流量調整弁体(51)の上流端の外周フランジ(515) に補正バネ(83)が当接しておらず、該補正バネ(83)の付勢力が流量調整弁体(51)に作用していないから、補正バネ(83)がダイヤフラム(59)の円滑な変形動作を阻害する心配がなく、上記補正バネ(83)を具備しない既述従来のものと同様の円滑さでダイヤフラム(59)が変形動作して応動弁(15)が開弁する。流量調整弁体(51)がダイヤフラム(59)の変形動作に追随移動してその上流端の外周フランジ(515) が補正バネ(83)に当接したときに応動弁(15)が点火可能開度(ガスバーナ(21)を燃焼させるのに十分なガス量を供給できる開度)になる。そして、上記補正バネ(83)が外周フランジ(515) に当接した後は、前記応動弁(15)はある程度の開度(ガスバーナ(21)を燃焼させるのに十分なガス量を供給できる開度)になっており、その後更に応動弁(15)が開度増加しても、該開度増加が、応動弁(15)部分を流れるガス量の増加に殆ど影響を与えることがない。そして、応動弁(15)が上記点火可能開度になった後には、上記のように流量調整弁体(51)の外周フランジ(515) が補正バネ(83)に当接してこれを圧縮し、図3に示すように、流量調整弁口(53)に流量調整弁体(51)の弁頭部(512) が一部挿入状態に維持され、この状態で以後の給湯動作が進行する。
【0034】
又、上記ダイヤフラム(59)の変形動作によって応動弁(15)が開弁動作すると、上記ロッド(64)に固定されたスイッチ投入片(65)で押圧されていたリミットスイッチ(67)の腕(68)が非押圧状態になって該リミットスイッチ(67)がON動作する。すると、該ON信号を処理する制御回路(37)の出力によって、電磁弁(13)が開弁すると共に点火電極(75)が火花放電してガスバーナ(21)が燃焼する。これにより、シャワーヘッド(28)から温水が流出する。
【0035】
上記給湯状態において、水ガバナ(31)の水入口(73)に接続される水道配管内の給水圧が上昇すると、該上昇した給水圧が流量調整弁体(51)に作用して流量調整弁口(53)の開度を減少させようとする。ところが、上記のものでは、補正バネ(83)が流量調整弁体(51)の外周フランジ(515) に当接しており、該補正バネ(83)の付勢力で流量調整弁体(51)が過剰に閉弁するのが防止されている。従って、上記実施の形態に係る水圧応動ガス弁では、上記補正バネ(83)を具備しない既述従来のもののように給水圧が上昇したときにシャワーヘッド(28)からの出湯量が低下するような不都合が回避できる。
【0036】
尚、水入口(73)に接続された上流側の水道配管内の水圧変化に関わらずシャワーヘッド(28)からの出湯量を一定に保つ為には補正バネ(83)のバネ定数を次のように設定することが必要である。即ち、流量調整弁体(51)の受圧面の面積を64mm とし、取付けバネ(86),閉弁バネ(69),戻しバネ(71)のバネ定数を夫々0.05Kg/mm ,0.13Kg/mm ,0.05Kg/mm とした場合、補正バネ(83)のバネ定数を1.17Kg/mm 以上に,該補正バネ(83)の自由長を約9.2mmに夫々設定し、圧縮状態(出湯状態)での補正バネ(83)の長さが約6.3mmとなるように各部の寸法を設定する必要がある。この場合、上記水ガバナ(31)の上流に接続される水道配管側の給水圧が約50kpa〜785kpaの範囲で変化しても、出湯時に於ける流量調整弁口(53)と流量調整弁体(51)の間隙が約0.18mmになり且つ流量が5リットル/分に維持されることが確認できた。即ち、上記の範囲で給水圧が変化しても水回路(26)内の流量低下を防止することができることが確認できた。尚、補正バネ(83)のバネ定数を0.64Kg/mm 以上に設定すれば、上記範囲で給水圧変化が生じても、上記補正バネ(83)を設けない場合に比べて水回路(26)内の流量低下を抑えることができる。
【図面の簡単な説明】
【図1】本願発明の実施の形態に係る水圧応動ガス弁が組み込まれた瞬間湯沸器の概略構成図
【図2】本願発明の実施の形態に係る水圧応動ガス弁の水ガバナ部の拡大断面図
【図3】本願発明の実施の形態に係る水圧応動ガス弁の作動状態の断面図
【図4】従来例の説明図
【符号の説明】
(21) ガスバーナ
(11) ガス回路
(59) ダイヤフラム
(15) 応動弁
(51) 流量調整弁体
(53) 流量調整弁口
(83) 補正バネ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water pressure responsive gas valve incorporated in an instantaneous water heater or the like, and is capable of suppressing a decrease in the amount of hot water even when a water supply pressure on a water pipe side connected to the water heater increases. is there.
[0002]
[Prior art]
FIG. 4 is a schematic view of an instantaneous water heater incorporating a conventional hydraulic pressure-responsive gas valve.
The gas circuit (11) is provided with an electromagnetic valve (13) and a response valve (15) on the downstream side thereof, and a nozzle (16) (16) at the downstream end of the gas circuit (11). Faces the gas inlets (22) and (22) of the gas burners (21) and (21).
[0003]
On the other hand, at the upstream end of the water circuit (26) passing through the heat exchanger (24), a water governor (31) for detecting a water flow is provided to open a gas circuit. (31) has a function of mitigating a change in the amount of hot water caused by a change in water supply pressure. A shower head (28) is provided at the downstream end of the water circuit (26).
The water governor (31) is linked to an operation button (35) via a valve opening lever (33), and an operation signal of the operation button (35) is transmitted to the solenoid valve (13). ) Is applied to a control circuit (37) for controlling the operation.
[0004]
A valve casing (39) of the water governor (31) is provided with an on-off valve (459) interlocked with the valve-opening lever (33). The on-off valve (459) allows the upstream end of the water flow cylinder (47) to be opened. Is opened and closed.
The water flow cylinder (47) houses a flow control valve body (51) movable in the axial direction, and the flow control valve body (51) has a flow control valve port (53) from the downstream side. Are opposed to each other, and the opening degree of the valve is adjusted by the operation of moving the flow regulating valve body (51) toward and away from the flow regulating valve port (53).
[0005]
A primary pressure chamber (55) downstream of the flow control valve port (53) is partitioned from a secondary pressure chamber (57) by a diaphragm (59), and the secondary pressure chamber (57) is connected to the primary pressure chamber (57). It is connected via a communication passage (62) to a downstream side of a throttle section (61) formed downstream of the chamber (55).
The spring receiving disk (60) at the tip of the valve shaft (63) protruding from the flow rate adjusting valve body (51) is urged toward the diaphragm (59) by the mounting spring (86), thereby adjusting the flow rate. The valve element (51) moves so as to follow the diaphragm (59). The other end of the rod (64) that comes into contact with the diaphragm (59) from the opposite side of the flow regulating valve body (51) is urged by a return spring (71) and has a limit switch (67). ) Is provided with a switch-on piece (65) for turning ON / OFF the switch-on piece, and there is a rod (65a) integral with the switch-on piece (65) and a predetermined clearance (usually about 2.5 mm). A lift valve type reaction valve (15) urged in a valve closing direction by a valve closing spring (69) is provided.
[0006]
In this device, when the operation button (35) is pushed, the on-off valve (459) opens in conjunction with the valve opening lever (33) rotated by the tip (36) of the operation button (35). That is, the on-off valve (459) moves in a direction away from the valve port (49) at the upstream end of the water flow pipe (47) to the upstream side, whereby the valve port (49) is opened. Then, the water inlet (73) of the water governor (31) → the valve port (49) of the water flow cylinder (47) → the flow control valve port (53) at the downstream end of the water flow cylinder (47) → the water governor (31). Water is supplied through the route of the primary pressure chamber (55) → the throttle unit (61) → the heat exchanger (24) → the shower head (28). At this time, the flow rate is reduced by the throttle unit (61) and A constant pressure drop occurs. Then, the pressure in the secondary pressure chamber (57) communicating with the downstream side of the throttle portion (61) decreases, whereby the diaphragm (59) deforms toward the secondary pressure chamber (57) and the response valve ( 15) performs the valve opening operation against the urging force of the valve closing spring (69).
[0007]
When the responsive valve (15) is opened, the arm (68) of the limit switch (67) which has been pressed by the switch-in piece (65) interlocked with the responsive valve (15) is in a non-pressed state and is turned on. The solenoid valve (13) is maintained in the open state by the output of the control circuit (37) and is supplied with gas to the gas burners (21) and (21), and the gas burner (21) is sparked by the ignition electrode (75). ) (21) burns. Thereby, the heat exchanger (24) is heated and the hot water is discharged from the shower head (28).
[0008]
In the hot water supply state, when the supply pressure of the water supply pipe connected to the water inlet (73) of the water governor (31) changes, the pressure difference between the primary pressure chamber (55) and the secondary pressure chamber (57) changes. However, at this time, the flow regulating valve body (51) moves in and out of contact with the flow regulating valve port (53), whereby the throttle amount changes and the pressure difference is kept constant. The flow rate is kept constant. That is, when the water supply pressure increases and the flow rate in the water circuit (26) is likely to increase, the pressure difference between the primary pressure chamber (55) and the secondary pressure chamber (57) increases, and the flow rate regulating valve element (51). Is throttled to suppress the increase in the flow rate, and conversely, when the water supply pressure is reduced and the flow rate is likely to decrease, the pressure difference is reduced and the flow regulating valve body (51) is opened. Thus, the decrease in the flow rate is suppressed, and the flow rate through the flow control valve port (53) is kept constant.
[0009]
As described above, in the above-described conventional apparatus, a change in the flow rate in the water circuit (26) due to a change in the water supply pressure on the water supply pipe upstream of the water governor (31) can be suppressed to some extent. Even if it occurs, the variation in the amount of hot water from the shower head (28) can be suppressed to a small value, and a stable hot water operation can be ensured.
[0010]
[Problems to be solved by the invention]
However, in the above-mentioned conventional apparatus, although the amount of hot water can be stabilized to some extent even if the supply water pressure on the upstream side of the water governor (31) fluctuates, the stability is still insufficient. When the pressure rises significantly, the feed water pressure acts on the flow regulating valve body (51) itself, causing the diaphragm (59) to excessively deform toward the secondary pressure chamber (57). As a result, there has been a problem that the flow regulating valve element (51) is excessively throttled and the flow rate of the water circuit (26) is significantly reduced.
[0011]
In order to solve the above problem, the flow rate adjusting valve body (51) on which the feed water pressure acts is reduced in size (small pressure receiving area), and the spring constant of the valve closing spring (69) of the response valve (15). However, in the former case, the flow control valve port (53) corresponding to the flow control valve body (51) also becomes small, and the flow path resistance increases. On the other hand, in the latter case, particularly when the water supply pressure is low, the response valve (15) becomes difficult to open during the tapping operation, and the operation of igniting the gas burner (21) does not start smoothly.
[0012]
The present invention has been made in view of the above points, and more reliably suppresses a drop in the amount of hot water when the supply water pressure increases, while ensuring smooth ignition of the gas burner (21) at the time of a hot water operation. It is an object to provide a hydraulically responsive gas valve that can be obtained.
[0013]
[Means for Solving the Problems]
The technical means of the invention of claim 1 adopted to solve the above problem is as follows:
`` A hydraulically responsive gas valve comprising a responsive valve (15) arranged in the gas circuit (11) to the gas burner (21) and opening and closing in conjunction with the deformation operation of the diaphragm (59) arranged in the water circuit And
The diaphragm (59) is stretched so that its pressure receiving surface is exposed in the water circuit,
A flow control valve port formed at a portion of the water circuit facing the pressure receiving surface,
A flow control valve body that faces the flow control valve port from the side opposite to the diaphragm (59) and moves in a direction to contact and separate from the flow control valve port following the deformation operation of the diaphragm (59). (51),
The flow regulating valve body (51) is maintained in a free state from the fully opened position to approach the flow regulating valve port a predetermined distance, and after approaching the predetermined distance, moves the flow regulating valve body (51) to the flow regulating valve. A correction spring that biases in a direction away from the mouth,
The correction spring is a coil spring interposed between the flow regulating valve body (51) and a fixed portion formed on the downstream side of the flow regulating valve body (51),
The flow rate adjusting valve element (51) presses a valve shaft (63) projecting from the flow rate adjusting valve element (51) against the diaphragm (59) with a pressing spring (86) weaker than the correction spring. Pressed against the diaphragm (59). "
[0014]
According to the above technical means, when a water flow is generated in the water circuit, a difference between the pressure acting on the pressure receiving surface of the diaphragm (59) and the pressure acting on the opposite surface is generated, and the diaphragm (59) is moved from the flow regulating valve port opposed thereto. Deformation operation is performed in the direction in which the gas flows away from each other, and the responsive valve (15) is opened and gas flows into the gas circuit (11) in the same manner as in the related art.
When a water flow is generated in the water circuit and the diaphragm (59) deforms, the correction spring is kept in a free state until the flow regulating valve body (51) approaches a predetermined distance from the flow regulating valve opening, and the urging force is maintained. Therefore, the responsive valve (15) of the gas circuit (11) opens smoothly even if the water supply pressure is low, as in the case of the above-mentioned conventional device not having the correction spring.
[0015]
When the water supply pressure on the upstream water supply pipe side rises in this state, the water supply pressure acts on the pressure receiving surface of the flow control valve body (51), and the flow control valve body (51) starts approaching the flow control valve port. . However, after the flow control valve element (51) approaches the flow control valve port by a predetermined distance (after the response valve (15) is opened), the correction spring is in a non-free state and is compressed. The movement of the flow control valve element (51) in the valve closing direction is suppressed by the biasing force of the correction spring, whereby the throttle operation of the flow control valve element (51) is suppressed, and an excessive decrease in the flow rate is suppressed. .
[0016]
According to the second aspect of the invention, "the pressure receiving area of the flow regulating valve body (51) is 64 mm. Two In this case, the spring constant of the correction spring is set to 0.64 Kg / mm or more. "
[0017]
Further, the predetermined distance is equal to or longer than a distance between two points of a position of the flow regulating valve body (51) when the response valve (15) is opened and a fully opened position of the flow regulating valve body (51). ] (The invention of claim 3). In this case, the correction spring is kept free until the response valve (15) is opened. Therefore, until the response valve (15) is opened, the flow regulating valve (51) is not pushed by the correction spring toward the fully open position, and the smooth opening operation of the response valve (15) can be ensured.
[0018]
【The invention's effect】
As described above, according to the first to third aspects of the present invention, the correction spring does not exert a biasing force until the responsive valve (15) disposed in the gas circuit (11) is opened. The responsive valve (15) opens smoothly as in the case of the above-described conventional type having no correction spring. Then, when the hydraulic pressure-responsive gas valve of the present invention is incorporated in, for example, a water heater, the ignition operation to the gas burner is usually performed when the response valve (15) is opened. Thus, even when the supply water pressure is low, the ignition operation to the gas burner supplied with gas from the response valve (15) is performed smoothly. Also, after the flow control valve body (51) approaches the flow control valve port by a predetermined distance (after the response valve (15) is opened), the opening degree restricting operation of the flow control valve body (51) is suppressed. Since the correction spring exerts a biasing force in the direction, even if the water supply pressure on the upstream water supply pipe side rises with the response valve (15) opened, the flow regulating valve body (51) opens the throttle in the opening direction. It is difficult to move. Therefore, a decrease in the flow rate in the water circuit can be more reliably suppressed as compared with the above-described conventional one having no correction spring.
[0019]
According to the second aspect of the present invention, the pressure receiving area of the flow regulating valve body (51) is 64 mm. Two In this case, since the spring constant of the correction spring was set to 0.64 kg / mm or more, it was confirmed that the flow rate of the water circuit could be maintained substantially constant regardless of the amount of increase in the water supply pressure.
According to the invention of claim 3, the correction spring is not compressed unless the flow regulating valve body (51) moves from the fully open position to the position of the flow regulating valve body (51) when the response valve (15) is opened. . Therefore, the inconvenience that the correction spring is compressed before the response valve (15) is opened can be reliably prevented, and the smooth opening operation of the response valve (15) can be further ensured. it can.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described.
FIG. 1 is a schematic structural view of an instantaneous water heater in which a hydraulically responsive gas valve according to the present invention is incorporated.
The gas circuit (11) is provided with a solenoid valve (13) and a downstream responsive valve (15) in the same manner as the conventional one, and a nozzle portion at the downstream end of the gas circuit (11). The gas inlets (22) and (22) of the gas burners (21) and (21) face (16) and (16). The responsive valve (15) is urged in a valve closing direction by a valve closing spring (69), and extends from the responsive valve (15) to a portion where a water governor (31) described later is provided. A switch closing piece (65) urged by a return spring (71) is provided in the middle of ()).
[0021]
Next, a water governor (31) is provided at an upstream end of the water circuit (26) passing through the heat exchanger (24). The water governor (31), the above-described responsive valve (15), and the rod (64) connecting these components together constitute a hydraulic responsive gas valve to which the present invention is applied.
Next, the structure of the water governor (31) will be described.
[Overall configuration of water governor (31)]
As shown in FIG. 2, in the valve casing (39) of the water governor (31), a water inlet (73) → an arrangement portion of the diaphragm valve (45) → in a water flow cylinder (47) → the water flow cylinder (47). Downstream of the flow control valve port (53) → the primary pressure chamber (55) between the flow control valve port (53) and the diaphragm (59) → the hot water supply amount control valve (77) → the throttle section (61) → water A water circuit (81) connected to the outlet (79) is formed, and the throttle section (61) and the secondary pressure chamber (57) adjacent to the diaphragm (59) communicate with each other through a communication passage (62).
[0022]
Hereinafter, each component of the water governor (31) will be described in detail.
[About diaphragm valve (45)]
An opening (42) formed so as to connect from a side wall of the valve casing (39) to a water circuit (81) therein is closed by a diaphragm (43) constituting a diaphragm valve (45). The bead (44) portion on the outer periphery of the (43) is pressed between the flange (76) on the opening end side of the diaphragm cover (74) covering the opening (42) and the component wall of the valve casing (39). It is in a state.
[0023]
A seat member (40) is locked to the diaphragm (43), and a central protruding shaft portion (400) is slidably penetrated through a valve port (413) of the water flow pipe (47). Concentricity between the valve (45) and the water pipe (47) is ensured. A pilot valve (41) for opening and closing a pilot hole (46) provided through the center of the protruding shaft (400) is urged in a valve closing direction by a spring (48).
[0024]
The valve shaft (411) of the pilot valve (41) protrudes outside the diaphragm cover (74) through a shaft guide (412) attached to the diaphragm cover (74). A leak hole (431) is provided in the vicinity of the outer periphery of the overlapping portion of the member (40) and the diaphragm (43) to allow communication between the inside of the diaphragm cover (74) and the water circuit (81) on the water inlet (73) side of the valve casing (39). ) Is drilled.
[0025]
Further, the downstream end of the above-described water passage cylinder (47) having a valve port (413) that is opened and closed by the seat member (40) attached to the diaphragm (43) is formed in a valve casing (39). The O-ring (471) is used to press-fit the cylindrical recess (470) in a watertight manner.
[About flow control valve element (51)]
The flow control valve element (51) housed in the water flow cylinder (47) is opposed to a flow control valve port (53) described later from the opposite side of the diaphragm (59), and the flow control valve is The body (51) is formed in a truncated conical shape such that the diameter increases as the distance from the flow control valve port (53) increases. A passage (511) penetrating from the large-diameter end face to the side wall is formed in the flow control valve element (51), and a valve head (512) at the small-diameter end of the flow control valve element (51) is formed. ) Is opposed to the flow regulating valve port (53) formed on the inner periphery of the cylindrical screw (85) screwed into the valve casing (39) from the upstream side. An annular groove (850) is provided around the outer periphery of the upstream end of the cylindrical screw (85), and one end of a correction spring (83) composed of a coil spring is connected to the annular groove (850) (the invention of claim 1). (Corresponding to the “fixing part”), which is a specific matter). In the initial state in which the inside of the water circuit (81) is in the water stop state, the flow regulating valve body (51) is located farthest from the flow regulating valve port (53) and the flow regulating valve body (51 A predetermined gap (b) is formed between the outer peripheral flange (515) of the upstream end of the correction spring (83) and the upstream end of the correction spring (83), and the correction spring (83) is in a free state. ing. This gap (b) is larger than the gap (a) between the response valve (15) and the rod (65a) of the switch-on piece (65) at the time of stopping water flow, and specifically, the gap (b) The dimension of b) is set to 3 mm and the other gap (a) is set to 2.5 mm. Therefore, the correction spring (65) is not compressed until the rod (65a) comes into contact with the responsive valve (15), thereby reducing the water supply pressure (operating pressure) for opening the responsive valve (15). Can be. Therefore, the ignition operation to the gas burners (21) (21) described later in conjunction with the valve opening operation of the response valve (15) can be performed reliably. That is, contrary to the above, if the correction spring (65) is compressed before the response valve (15) opens and exerts an urging force, the urging force makes it difficult for the response valve (15) to open, As a result, the working water pressure (water pressure required to open the response valve (15)) increases. Therefore, in such a case, the ignition operation to the gas burners (21) and (21) is not performed smoothly. However, in the above embodiment of the present invention, even if the water supply pressure is reduced as described above, the gas burners (21) and (21) ) Is smoothly and reliably performed.
[0026]
The spring constant of the correction spring (83) is set to a value larger than the spring constants of the valve closing spring (69) for the response valve (15) and the return spring (71) for the switch-on piece (65). However, a specific value of the spring constant will be described later.
A spring receiving disk (60) concentric with the valve shaft (63) protruding from the downstream end of the flow regulating valve body (51) is connected to the downstream end of the valve shaft (63). A pressing spring (86) for loosely pressing the spring receiving disk (60) against a diaphragm (59) described below is interposed between the plate (60) and the cylindrical screw (85). The spring constant of the pressing spring (86) is set to a value smaller than the spring constant of the correction spring (83).
[0027]
The diaphragm (59) is stretched so as to close an opening (30) formed in a side wall of the valve casing (39), and a bead (591) portion on the outer periphery of the diaphragm (59) is a lid. (88) and the constituent wall of the valve casing (39). A rod (64) for driving the responsive valve (15) slidably penetrates a guide cylinder (89) protruding from the outer surface of the lid (88).
[0028]
The space surrounded by the diaphragm (59) and the lid (88) becomes a secondary pressure chamber (57), and is formed on the opposite side of the secondary pressure chamber (57) across the diaphragm (59). The space is a primary pressure chamber (55). Therefore, the surface of the diaphragm (59) on the side of the primary pressure chamber (55) serves as a pressure receiving surface which is a feature of the invention of the first aspect, and the flow rate adjusting valve port (53) described above is provided at an opposing portion of the pressure receiving surface. It is located.
[0029]
[About hot water quantity control valve (77)]
The tapping amount control valve (77) disposed downstream of the diaphragm (59) has a notch (78) formed in the side wall of the cylindrical body, and the tapping amount control valve (77) is in the state shown in FIG. When rotated clockwise from, the degree to which the valve seat (82) formed in the water circuit (81) is closed by the peripheral side wall of the flow control valve (77) increases, and as a result, the water governor (31) The amount of water supplied to the heat exchanger (24) on the downstream side of the furnace decreases, and the amount of hot water discharged decreases.
[0030]
[Restrictor (61)]
The throttle portion (61) formed on the downstream side adjacent to the tapping amount control valve (77) is constituted by a conical cylinder (66), and a window (660) formed on a side wall of the conical cylinder (66). Communicates with the above-mentioned secondary pressure chamber (57) through the communication passage (62), whereby the water pressure reduced by a certain pressure by the throttle section (61) is reduced by the secondary pressure chamber (57). ).
[0031]
The water outlet (79) located downstream of the conical cylinder (66) is configured to be connected to the heat exchanger (24) via the water circuit (26) as shown in FIG.
[Description of operation]
Next, the operation of the hydraulically responsive gas valve will be described.
In an initial state where the water pressure responsive gas valve is not operated, the diaphragm valve (45) is in a closed state, and the water pressure in the diaphragm cover (74) is equal to the water pressure in the water circuit (81) by the leak hole (431). Match.
[0032]
When the operation button (35) arranged on the operation unit on the front of the water heater is pushed in, the tip (36) of the operation button (35) is used to input the valve opening lever (33) in the same manner as in the prior art. When the end is pushed, the valve opening lever (33) rotates, and the valve shaft (411) connected to the output end of the valve retreats against the urging force of the spring (48) to retract the pilot hole (46). Is opened, and the water pressure in the diaphragm cover (74) decreases. Then, due to the pressure difference between the inside of the diaphragm cover (74) and the water circuit (81), the diaphragm (43) for the diaphragm valve (45) is deformed into the inside of the diaphragm cover (74) to operate. Is separated from the valve port (413), whereby the valve port (413) is opened.
[0033]
Thereby, the water inlet (73) of the water governor (31) → the valve port (413) of the water flow pipe (47) → the flow rate control valve port (53) on the downstream side of the water flow pipe (47) → the primary pressure chamber (55). ) → water supply amount control valve (77) → water (61) → water outlet (79), water flows, and then the water is supplied from the heat exchanger (24) to the shower head (28). .
When a water flow is generated in the throttle portion (61), the water pressure on the downstream side from the upstream side of the throttle portion (61) drops by a certain pressure, and the pressure drop is reduced via the communication passage (62) to the secondary pressure chamber (57). ). Then, the diaphragm (59) deforms toward the secondary pressure chamber (57), the rod (64) moves in the deforming direction, and the responsive valve (15) receives the urging force of the valve closing spring (69). The valve is opened in opposition. In this case, in the initial state before water flow occurs in the water circuit (81) in the water governor (31), the correction spring (83) comes into contact with the outer peripheral flange (515) at the upstream end of the flow regulating valve body (51). Since the biasing force of the correction spring (83) is not acting on the flow regulating valve element (51), there is no fear that the correction spring (83) will hinder the smooth deformation operation of the diaphragm (59). The diaphragm (59) deforms and the responsive valve (15) is opened with the same smoothness as the above-described conventional one without the correction spring (83). When the flow regulating valve element (51) moves following the deformation operation of the diaphragm (59) and the outer peripheral flange (515) at its upstream end comes into contact with the correction spring (83), the responsive valve (15) can be ignited. Degree (opening degree capable of supplying a sufficient amount of gas to burn the gas burner (21)). After the correction spring (83) comes into contact with the outer peripheral flange (515), the responsive valve (15) is opened to a certain degree (opening amount capable of supplying a gas amount sufficient to burn the gas burner (21)). Degree), and even if the response valve (15) further increases in opening thereafter, the increase in the opening hardly affects the increase in the amount of gas flowing through the response valve (15). After the responsive valve (15) has reached the above-mentioned ignitable opening, the outer peripheral flange (515) of the flow regulating valve body (51) comes into contact with the correction spring (83) to compress it, as described above. As shown in FIG. 3, the valve head (512) of the flow control valve element (51) is partially inserted into the flow control valve port (53), and the subsequent hot water supply operation proceeds in this state.
[0034]
When the response valve (15) is opened by the deformation operation of the diaphragm (59), the arm (67) of the limit switch (67) pressed by the switch-in piece (65) fixed to the rod (64). 68) is in a non-pressed state, and the limit switch (67) is turned on. Then, by the output of the control circuit (37) for processing the ON signal, the solenoid valve (13) is opened and the ignition electrode (75) is spark-discharged to burn the gas burner (21). Thereby, hot water flows out of the shower head (28).
[0035]
In the above hot water supply state, when the water supply pressure in the water supply pipe connected to the water inlet (73) of the water governor (31) increases, the increased water supply pressure acts on the flow control valve body (51) to cause the flow control valve (51). An attempt is made to reduce the opening of the mouth (53). However, in the above configuration, the correction spring (83) is in contact with the outer peripheral flange (515) of the flow adjustment valve body (51), and the flow adjustment valve body (51) is actuated by the urging force of the correction spring (83). Excessive valve closing is prevented. Therefore, in the water pressure responsive gas valve according to the above-described embodiment, the amount of hot water from the shower head (28) is reduced when the water supply pressure is increased as in the above-described conventional device not having the correction spring (83). Problems can be avoided.
[0036]
In order to keep the amount of hot water from the shower head (28) constant irrespective of a change in water pressure in the water supply pipe on the upstream side connected to the water inlet (73), the spring constant of the correction spring (83) is set as follows. It is necessary to set as follows. That is, the area of the pressure receiving surface of the flow regulating valve element (51) is 64 mm. 2 When the spring constants of the mounting spring (86), the valve closing spring (69), and the return spring (71) are set to 0.05 kg / mm, 0.13 kg / mm, and 0.05 kg / mm, respectively, the correction spring (83) ) Is set to 1.17 kg / mm 2 or more, and the free length of the correction spring (83) is set to about 9.2 mm, and the length of the correction spring (83) in the compressed state (hot tap state) is set to about It is necessary to set the dimensions of each part to be 6.3 mm. In this case, even if the water supply pressure on the side of the water supply pipe connected upstream of the water governor (31) changes in the range of about 50 kPa to 785 kpa, the flow control valve port (53) and the flow control valve body at the time of tapping the hot water. It was confirmed that the gap of (51) became about 0.18 mm and the flow rate was maintained at 5 liter / min. That is, it was confirmed that the flow rate in the water circuit (26) could be prevented from lowering even if the water supply pressure changed in the above range. If the spring constant of the correction spring (83) is set to 0.64 kg / mm 2 or more, the water circuit (26) can be set even when the water supply pressure changes within the above range, compared to the case where the correction spring (83) is not provided. ) Can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an instantaneous water heater incorporating a hydraulically responsive gas valve according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a water governor portion of the hydraulic pressure-responsive gas valve according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view of an operating state of the hydraulically responsive gas valve according to the embodiment of the present invention.
FIG. 4 is an explanatory view of a conventional example.
[Explanation of symbols]
(21) Gas burner
(11) Gas circuit
(59) Diaphragm
(15) Response valve
(51) Flow adjustment valve
(53) Flow control valve port
(83) Correction spring

Claims (3)

ガスバーナ(21)へのガス回路(11)に配設され且つ水回路に配設されたダイヤフラム(59)の変形動作に連動して開閉動作する応動弁(15)を具備する水圧応動ガス弁であって、
前記ダイヤフラム(59)はその受圧面が前記水回路内に露出するように張設されており、
前記水回路内に於ける前記受圧面の対向部に形成された流量調整弁口と、
前記流量調整弁口に対して前記ダイヤフラム(59)側の反対側から対向し且つ該ダイヤフラム(59)の変形動作に追随して前記流量調整弁口に接離する方向に移動する流量調整弁体(51)と、
前記流量調整弁体(51)が全開位置から前記流量調整弁口に所定距離接近するまでは自由状態に保たれ且つ前記所定距離接近した後には前記流量調整弁体(51)を前記流量調整弁口から離反する方向に付勢する補正バネとを具備し、
前記補正バネは、前記流量調整弁体(51)と該流量調整弁体(51)の下流側に形成された固定部の間に介装されたコイルバネであり、
前記流量調整弁体(51)は、該流量調整弁体(51)から突出する弁軸(63)を前記ダイヤフラム(59)に対して前記補正バネより弱い押圧バネ(86)で押圧することによって該ダイヤフラム(59)に押し付けられている、水圧応動ガス弁。
A hydraulically responsive gas valve having a responsive valve (15) disposed in the gas circuit (11) to the gas burner (21) and opening and closing in conjunction with the deformation operation of the diaphragm (59) disposed in the water circuit. So,
The diaphragm (59) is stretched so that its pressure receiving surface is exposed in the water circuit,
A flow control valve port formed at a portion of the water circuit facing the pressure receiving surface,
A flow control valve body that faces the flow control valve port from the side opposite to the diaphragm (59) and moves in a direction to contact and separate from the flow control valve port following the deformation operation of the diaphragm (59). (51),
The flow regulating valve body (51) is maintained in a free state from the fully opened position to approach the flow regulating valve port a predetermined distance, and after approaching the predetermined distance, moves the flow regulating valve body (51) to the flow regulating valve. A correction spring that biases in a direction away from the mouth,
The correction spring is a coil spring interposed between the flow regulating valve body (51) and a fixed portion formed on the downstream side of the flow regulating valve body (51),
The flow rate adjusting valve element (51) presses a valve shaft (63) projecting from the flow rate adjusting valve element (51) against the diaphragm (59) with a pressing spring (86) weaker than the correction spring. A hydraulically responsive gas valve pressed against the diaphragm (59).
流量調整弁体(51)の受圧面積を64mm2とした場合、前記補正バネのバネ定数が0.64Kg/mm以上に設定されている請求項1の水圧応動ガス弁。 2. The hydraulically responsive gas valve according to claim 1, wherein the spring constant of the correction spring is set to 0.64 kg / mm or more when the pressure receiving area of the flow regulating valve element (51) is 64 mm 2 . 前記所定距離は、応動弁(15)が開弁したときの流量調整弁体(51)の位置と該流量調整弁体(51)の全開位置との二点間の距離以上である請求項1又は請求項2の水圧応動ガス弁。The said predetermined distance is more than the distance between two points of the position of the flow control valve body (51) when the response valve (15) opens, and the fully open position of this flow control valve body (51). Or a hydraulically responsive gas valve according to claim 2.
JP00466998A 1998-01-13 1998-01-13 Hydraulic valve Expired - Fee Related JP3590254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00466998A JP3590254B2 (en) 1998-01-13 1998-01-13 Hydraulic valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00466998A JP3590254B2 (en) 1998-01-13 1998-01-13 Hydraulic valve

Publications (2)

Publication Number Publication Date
JPH11201446A JPH11201446A (en) 1999-07-30
JP3590254B2 true JP3590254B2 (en) 2004-11-17

Family

ID=11590328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00466998A Expired - Fee Related JP3590254B2 (en) 1998-01-13 1998-01-13 Hydraulic valve

Country Status (1)

Country Link
JP (1) JP3590254B2 (en)

Also Published As

Publication number Publication date
JPH11201446A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US4349330A (en) Combustion control device for nozzle spray type burner
US6571829B2 (en) Gas control valve in water heater
EP1058058B1 (en) Control valve for vessel gas water heater
US4346835A (en) Instantaneous water heater gas control valve
US5092519A (en) Control system for water heaters
JP3590254B2 (en) Hydraulic valve
US2505455A (en) Gas burner control
US4651928A (en) Light duty oil burner
JPH0333572A (en) Flow regulating device
KR100440772B1 (en) Gas valve
US5067651A (en) Fuel control device, fuel control system using the device and method of making the device
US4624632A (en) Flame failure device
JPS6116892B2 (en)
JP2002303418A (en) Gas valve
US4921161A (en) Fuel control device, fuel control system using the device and method of making the device
US4813596A (en) Fuel control device, fuel control system using the device and method of making the device
JPS6250730B2 (en)
JPS5832059Y2 (en) gas proportional control valve
KR100187052B1 (en) Pressure adjusting method of gas governor
JPH0379914A (en) Automatic fire power adjusting device
JPH0120523Y2 (en)
KR980008904U (en) Automatic Thermostat of Gas Oven Range
JPH11108204A (en) Gas fitting plug
JP3765917B2 (en) Water heater
JP2002228261A (en) Water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees