JP3589767B2 - Microbial materials for crop cultivation - Google Patents
Microbial materials for crop cultivation Download PDFInfo
- Publication number
- JP3589767B2 JP3589767B2 JP32929495A JP32929495A JP3589767B2 JP 3589767 B2 JP3589767 B2 JP 3589767B2 JP 32929495 A JP32929495 A JP 32929495A JP 32929495 A JP32929495 A JP 32929495A JP 3589767 B2 JP3589767 B2 JP 3589767B2
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- weight
- genus
- microorganism
- microbial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
- C05F11/08—Organic fertilisers containing added bacterial cultures, mycelia or the like
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は作物栽培用微生物資材に関し、詳しくは、アゾスピリラム属に属する細菌を含有し、その含有量が調整された保存安定性に優れる作物栽培用微生物資材に関する。
【0002】
【従来の技術】
近年、植物に有益に作用する微生物を利用して農作物の生産を向上させようとする試みが為されている。この様な微生物の代表的な例として、根粒細菌、シュードモナス属に属する細菌、アゾスピリラム属に属する細菌等を挙げることができる。この中でもアゾスピリラム属に属する細菌は、植物とゆるく共生し植物の生育促進を行うことが知られている植物成長促進根圏細菌の1種であり、この細菌の純粋培養物を作物に接種することにより収量を増加させようとする試みや、この細菌を根粒菌と同時にマメ科植物に接種し、根粒菌単独の場合よりも収量を増加させようとする試みが行われている。上記アゾスピリラム属に属する細菌を実際に作物に接種するには、菌体の培養を行った後、通常、鹿沼土などの土壌類、あるいは、多孔質の石材などを担体として用い、これに菌体の培養物を吸着させた微生物資材を作製し、これを作物の栽培用土等に施用する方法が一般的にとられている。
【0003】
しかし、これらの微生物資材において、その有効活性は経時的に低下し、保存期間が長くなると有効活性がなくなってしまうものもあった。つまり、常に有効活性が安定した微生物資材が得られるわけではなく、そのため、微生物資材を施用した作物での効果が安定していないという問題があった。この有効活性の維持は、微生物資材が含有する菌体の保存性に大きく左右される場合がほとんどである。よって、微生物資材の実用化を進める上で、この微生物資材が含有する菌体の保存性を向上させて微生物資材の有効活性を安定させる技術の開発が切望されていた。
【0004】
【発明が解決しようとする課題】
本発明は、上記観点からなされたものであり、高い生産効率が安定して得られるような作物栽培のための保存安定性の向上した微生物資材を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決するために検討を重ねた結果、水分を含む担体と、少なくともアゾスピリラム属に属する細菌を含む土壌微生物と、を含有する作物栽培用の微生物資材において、アゾスピリラム属に属する細菌の含有量を担体1g当たり2×108〜1012個体とすることで、微生物資材中の微生物を安定に保存でき、また、この微生物資材を用いれば効率的に作物の栽培ができることを見出し、本発明を完成させた。
【0006】
すなわち本発明は、水分を含む担体と、少なくともアゾスピリラム属に属する細菌を含む土壌微生物と、を含有する作物栽培用の微生物資材において、アゾスピリラム属に属する細菌の含有量が担体1g当たり2×108〜1012個体である作物栽培用の微生物資材である。
【0007】
上記本発明の作物栽培用微生物資材(以下、単に「微生物資材」ということもある)に用いる担体は、水分を含有し上記アゾスピリラム属に属する細菌を含む土壌微生物を担持できる担体であれば特に制限されるものではなく、通常、微生物資材に用いられる有機質の素材あるいは無機質の素材を、必要に応じて添加される任意成分と共に用いて作製することが可能である。これら素材は、単独であるいは2種以上を組み合わせて用いることができる。また、本発明においては、担体が石炭灰を担体全量に対して概ね3〜75重量%含有することが好ましい。ここで担体中の石炭灰の含有量であるが、これは担体材料が原料の状態にあるときの含有量をいい、担体材料が原料の状態で水分を既に含有しているか、乾燥しているかに係わらず、その状態での重量をそのまま用いて算出される含有量をいう。
【0008】
本発明に用いられる担体は水分を含有するが、その含有量は具体的には担体全量に対して50〜90重量%程度であることが好ましく、より好ましくは55〜85重量%程度である。ここで、本発明の微生物資材における担体の水分含量とは、担体を70℃で3日間乾燥させた前後の担体の重量から、以下の式で算出される水分含量をいう。
【0009】
【数1】
水分含量(重量%)=100 ×(乾燥前の重量−乾燥後の重量)/乾燥前の重量
【0010】
本発明の微生物資材が含有するアゾスピリラム属に属する細菌としては、アゾスピリラム属に属する細菌に同定されるグラム陰性細菌であれば特に限定されるものではなく、具体的には、アゾスピリラム・リポフェラム、アゾスピリラム・ブラジレンス、アゾスピリラム・ハロプレファランス、アゾスピリラム・アマゾネンセ等を挙げることができる。本発明の微生物資材が含有するアゾスピリラム属に属する細菌の含有量は上述の通り、担体1g当たり概ね2×108〜1012個体であり、好ましくは4×108〜1011個体、より好ましくは5×108〜5×1010個体である。
【0011】
また、本発明の微生物資材には、土壌微生物としてアゾスピリラム属に属する細菌以外の土壌微生物を配合することも可能である。この様な土壌微生物としては、一般的に土壌に生息し、植物に有用な効果を及ぼすとされる微生物を挙げることができる。さらに、本発明の微生物資材においては、上記担体及び土壌微生物の他に、通常微生物資材が含有する任意成分を必要に応じて配合することも可能である。
【0012】
本発明の作物栽培用の微生物資材は、通常の微生物資材を用いるのと同様の方法で作物の栽培に用いられる。
本発明の作物栽培用の微生物資材は、微生物資材中のアゾスピリラム属に属する細菌の含有量を担体1g当たり2×108〜1012個体に調整することによって、微生物の保存性を高め、従来の微生物資材に比べ格段にその効果を安定性のあるものにした。また、本発明の微生物資材を用いて作物を栽培すれば、微生物による効果が安定して得られるようになり効率的な作物の栽培が可能となる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
まず、本発明の微生物資材に用いる担体には、通常、微生物資材に用いられる有機質あるいは無機質の素材を主材として用いることが可能であり、具体的には、赤玉土、焼成赤玉土、鹿沼土、黒ボク土、バーミキュライト、パーライト、ゼオライト、石炭灰などの無機質素材、ピートモス、パルプ、藁、バカス、油かす、魚かす、骨粉、血粉、カニがら、木炭、貝化石などの有機質素材を用いることができる。これら無機質、有機質素材は1種を単独で又は2種以上の混合物として本発明の微生物資材の担体に用いることが可能である。さらに、前記担体には以下に述べるpH調整のために配合される石灰等の各種微量成分を必要に応じて配合することも可能である。
【0014】
また、本発明に用いる担体においては、担体1重量部に水5重量部を加えたときのpH(以下、単にpHと記載されている場合には、前記条件で測定されたpHを示す)が5.5〜8.0の範囲であることが好ましい。例えば、ピートモスなどにはpHが5.5以下のものもあるので、これを単独で用いる場合には、微生物資材で通常pH調整に用いられる石灰等の添加剤等を加えてpHを上記範囲となるように調整することが好ましい。ピートモス以外の素材を用いる場合でも、必要に応じて上記と同様にしてpHを調整することが可能である。
【0015】
本発明の微生物資材の担体には、例えば、上記各種素材の1種又は2種以上が用いられるが、前記担体は石炭灰を、具体的には、微粉炭の燃焼灰、流動床燃焼灰の粉砕粉などを含有することが好ましい。本発明の微生物資材の担体に配合される石炭灰として好ましい石炭灰は、酸化カルシウムの含量が0.5重量%以上であり、平均粒径が5mm以下のものである。石炭灰として、より好ましくは粒径3mm〜10μmの粒子が石炭灰全体の80%以上を占めるものが挙げられる。さらに、本発明に用いる石炭灰としては、石炭灰1重量部に水5重量部を加えたときのpHが9以上のものがより好ましい。また、担体中の石炭灰の含有量は、乾燥重量で担体全量の3〜75重量%であることが好ましい。さらに、この様にして担体に石炭灰を配合する場合にも、担体のpHは5.5〜8.0の範囲となるようにすることが好ましい。
【0016】
この様な担体に水分を含有させることで本発明の微生物資材に用いる担体が得られる。あるいは、水分は上記担体に微生物を混合してから加えることも可能である。また、通常の状態で既に水分を含有しているような担体は、そのままで本発明の微生物資材に用いることが可能である。本発明に用いられる担体が含有する水分量の適量に関しては、上述の通りである。
【0017】
本発明の微生物資材には、上記担体の他に必須成分として少なくともアゾスピリラム属に属する細菌を含む土壌微生物が配合される。アゾスピリラム属に属する細菌の具体例は、上述の通りであるが、より具体的には、アゾスピリラム・リポフェラムとして、アゾスピリラム・リポフェラム ATCC29709等を、アゾスピリラム・ブラシレンスとして、アゾスピリラム・ブラシレンス ATCC 29145、アゾスピリラム・ブラシレンス ATCC29710等を、アゾスピリラム・ハロプレファランスとして、アゾスピリラム・ハロプレファランスATCC43709等を、アゾスピリラム・アマゾネンセとして、アゾスピリラム・アマゾネンセ ATCC35119等を挙げることができる。また、本発明において用いるアゾスピリラム属に属する細菌はこれらに限定されるものではない。
【0018】
また、上記アゾスピリラム属に属する細菌以外の土壌微生物としては、一般的に土壌に生息し、植物に有用な効果を及ぼすとされる微生物であれば特に制限されるものではないが、具体的には、アゾリゾビウム属、シュードモナス属、リゾビウム属、バチルス属、ブラジリゾビウム属、アグロバクテリウム属、ストレプトミセス属、キサントモナス属、ラクトバチルス属、アエロモナス属、アナベナ属、フランキア属、ロドシュードモナス属、トリコデルマ属、グロムス属、アスペルギルス属、ペニシリウム属、リゾプス属、フザリウム属、グリオグラディウム属、ギガスポラ属、スクテロスポラ属、ノストック属、又はアゾトバクター属に属する微生物を挙げることができる。
【0019】
また、これらの微生物の1種をアゾスピリラム属に属する細菌と共に本発明の微生物資材に用いてもよいし、これら微生物の2種以上を組み合わせてアゾスピリラム属に属する細菌と共に用いることも可能である。アゾスピリラム属に属する細菌とこれらの微生物を組み合わせて用いる場合には、植物に対してそれぞれの微生物が有する有用性を損なわないような組み合わせや配合量を適宜選択することが好ましい。
【0020】
これらの微生物を本発明に用いるに際しては、通常の微生物資材に微生物を用いる場合と同様に、菌体をその菌体が増殖可能な培地で培養した培養物を用いることが好ましい。例えば、アゾスピリラム属に属する細菌については、RC培地(L−リンゴ酸:5g/L、KOH:4.8g/L、酵母エキス:0.5g/L、KH2PO4:0.5g/L、MgSO4・7H2O:0.2g/L、NaCl:0.1g/L、FeCl3・6H2O:0.015g/L、pH7.0)等を用いて、通常の培養条件、例えば25〜37℃で2〜3日間、培養することで菌体の培養物を得ることができる。
【0021】
この様にして得られる菌体の培養物は、そのまま、または培養物から遠心分離等によって菌体を分離してから、あるいは培養物や菌体を乾燥してから本発明に用いることが可能である。
【0022】
本発明の微生物資材における微生物と水分を含有する担体との配合の割合は、アゾスピリラム属に属する細菌については上述の通りである。その他の微生物についてはアゾスピリラム属に属する細菌を除く微生物の総菌体数として、アゾスピリラム属に属する細菌の配合量の概ね0.1〜10倍の菌体数を配合することが、栽培作物に対する優れた生長促進効果を得るために、好ましい。
【0023】
また、上記の様にして得られる本発明の作物栽培用の微生物資材を用いて作物を栽培する方法であるが、通常の微生物資材を用いるのと同様の方法で行えばよく、具体的には以下の方法を挙げることができる。
【0024】
微生物資材を栽培用土に施用する方法として、ポットやセル等を用いて作物の苗を育てたり作物を栽培するような場合には、栽培用土に適当量の微生物資材を配合し均一に混合してそこに作物の種子を播種する、あるいは苗を植える、挿し芽をする、タネイモを播く等の方法が挙げられる。また、圃場で作物の栽培を行う場合には、作物の根圏をカバーする範囲の土壌(栽培用土)に、適当量の微生物資材を均一に混合しそこに種子の播種、苗の移植等を行う方法が一般的な方法として挙げられる。
【0025】
栽培用土に微生物資材を施用する場合の微生物資材の施用量は、栽培用土の乾燥重量1g当たりにアゾスピリラム属に属する細菌の個数として103〜107個が含有するように施用することが好ましく、より好ましくは、105〜107個/g乾土である。施用量が103個/g乾土未満では作物の生育促進効果の発現が不安定になりやすく、また、107個/g乾土を越えて施用しても効果は頭打ちになり経済的に好ましくない。
【0026】
栽培用土の基材としては、一般的な材料、例えば、畑土、田土、山土、砂、赤玉土、炭、ゼオライト、パーライト、バーミキュライト、鹿沼土、軽石、サンゴ砂等から選ばれる1種又は2種以上を挙げることができる。これらのうちでも好ましい基材は、上記材料の数種を組み合わせた人工培土や砂である。また、栽培用土には上記基材の他に各種目的に応じた各種成分を配合することが可能であり、例えば、緩効性肥料等を配合することがよく行われる。
【0027】
本発明の作物栽培用の微生物資材が適用される作物としては、特に制限されないが、具体的には、マメ科、アブラナ科、キク科、サトイモ科、セリ科、ユリ科、イネ科、バラ科等から選ばれる作物が挙げられる。これらの内でも、ソラマメ、ラッカセイ、アズキ、ダイズ、サヤエンドウ、サヤインゲン(以上、マメ科作物)、コマツナ、ハクサイ、キャベツ、ダイコン、カブ、カリフラワー、ブロッコリー(以上、アブラナ科作物)、レタス、シュンギク、ゴボウ(以上、キク科作物)、サトイモ、コンニャク(以上、サトイモ科作物)、セロリ、ニンジン(以上、セリ科作物)、ヤマイモ、ネギ、タマネギ、アスパラガス(以上、ユリ科作物)、トウモロコシ(イネ科作物)、イチゴ(バラ科作物)等の作物を、本発明の微生物資材を用いて栽培した場合に顕著な効果が得られる作物として挙げることができる。
【0028】
【実施例】
以下に本発明の実施例を説明する。まず、本発明の微生物資材に用いる菌体培養物の製造例について説明する。
【0029】
【製造例】
菌体の培養
アゾスピリラム属に属する細菌として、アゾスピリラム・ブラシレンス ATCC 29145を用い、これをRC培地(L−リンゴ酸:5g/L、KOH:4.8g/L、酵母エキス:0.5g/L、KH2PO4:0.5g/L、MgSO4・7H2O:0.2g/L、NaCl:0.1g/L、FeCl3・6H2O:0.015g/L、pH7.0)に接種し、32℃で48時間培養した。培養終了後、遠心分離により菌体を集菌した。
【0030】
また、後記の実施例においては、アゾスピリラム属に属する細菌以外に土壌微生物としてブラジリゾビウム属に属する細菌(ブラジリゾビウム・ジャポニカムATCC 10324)を次のように培養して用いた。ブラジリゾビウム・ジャポニカム ATCC 10324を培地(マニトール:10g/L、酵母エキス:0.4g/L、KH2PO4:0.5g/L、MgSO4・7H2O:0.2g/L、NaCl:0.1g/L)に接種し、32℃で48時間培養した。培養終了後、遠心分離により菌体を集菌した。
【0031】
【実施例1、2】
水分含量を55%に調整したバーミキュライトを担体として用い、これに上記製造例で得られたアゾスピリラム属に属する細菌を担体1g当り109個体又は1010個体となるように配合し均一に混合して3種類の微生物資材を作製した。得られた微生物資材を、それぞれ実施例1、実施例2の微生物資材とした。また、上記製造例で得られたアゾスピリラム属に属する細菌の湿菌体に何も配合しない湿菌体そのものを比較例1の微生物資材とした。さらに、上記実施例で用いた担体と同様の担体に上記製造例で得られたアゾスピリラム属に属する細菌を担体1g当り106個体又は107個体となるように配合し均一に混合して比較例2及び比較例3の微生物資材を作製した。
【0032】
<アゾスピリラム属に属する細菌の保存性試験>
上記各実施例及び各比較例の微生物資材をそれぞれ表1に示す温度に置き、240日後に次の方法により菌体の生存数を測定し生存率を求めた。微生物資材の1gを採取し、0.1MのMgSO430mlに懸濁して1時間振盪後、懸濁液を10000倍に希釈し標準寒天培地(組成;酵母エキス:2.5g/L、ペプトン:5.0g/L、グルコース:1.0g/L、寒天:15.0g/L、pH;6.0〜7.0)を用いて培養を行った際の菌数を測定した。各実施例及び各比較例の微生物資材におけるアゾスピリラム属に属する細菌の240日後の生存率を表1に示す。
【0033】
【表1】
【0034】
この結果より、担体を用いなかったり、アゾスピリラム属に属する細菌の含有量が本発明の範囲外であったりする比較例の微生物資材に比べ、実施例の微生物資材は、含有するアゾスピリラム属に属する細菌の保存性が非常によいことがわかる。
【0035】
【実施例3〜5】
水分含量を55%に調整したバーミキュライトを担体として用い、これに上記製造例で得られたアゾスピリラム属に属する細菌及びブラジリゾビウム属に属する細菌を担体1g当りそれぞれ109個体となるように配合し均一に混合して実施例3の微生物資材を作製した。同様にして上記各細菌を担体1g当りそれぞれ1010個体又は1011個体となるように配合し均一に混合して実施例4(1010個体/g含有)、実施例5(1011個体/g含有)の微生物資材を作製した。また、上記製造例で得られたアゾスピリラム属に属する細菌の湿菌体とブラジリゾビウム属に属する細菌の湿菌体を均一に混合して何も配合しない湿菌体混合物そのものを比較例3の微生物資材とした。なお、比較例3の微生物資材においては菌体濃度は各菌共に5×1011個体/gであった。さらに、上記実施例で用いた担体と同様の担体に上記製造例で得られたアゾスピリラム属に属する細菌とブラジリゾビウム属に属する細菌をそれぞれ担体1g当り106個体又は107個体となるように配合し均一に混合して比較例4(106個体/g含有)及び比較例5(107個体/g含有)の微生物資材を作製した。
【0036】
<各細菌の保存性試験>
上記各実施例及び各比較例の微生物資材をそれぞれ表2に示す温度に置き、240日後に上記アゾスピリラム属に属する細菌の保存性試験と同様の方法により各菌体の生存数を測定し生存率を求めた。各実施例及び各比較例の微生物資材におけるアゾスピリラム属に属する細菌及びブラジリゾビウム属に属する細菌の240日後の生存率を表2に示す。
【0037】
【表2】
【0038】
この結果より、担体を用いなかったり、アゾスピリラム属に属する細菌の含有量が本発明の範囲外であったりする比較例の微生物資材に比べ、実施例の微生物資材は、含有するアゾスピリラム属に属する細菌の保存性が非常によいことがわかる。また、実施例においてアゾスピリラム属に属する細菌と共に配合されたブラジリゾビウム属に属する細菌が、アゾスピリラム属に属する細菌の保存性に悪影響を与えることなく、さらにブラジリゾビウム属に属する細菌自体の保存性についても実施例の方がよいことがわかる。
【0039】
【実施例6、7】
実施例6では、担体として水分含量を50%に調整したバーミキュライトを、実施例7では担体として、ピートモス(石灰を加えpHを5.5〜6.0に調整したピートモス。なお、以下に用いたピートモスは全てこれと同様に処理したピートモスであった。)9重量部に石炭灰1重量部を加え、水分含量55重量%に調整したものを用い、それぞれの担体に微生物として製造例で得られたアゾスピリラム属に属する細菌とブラジリゾビウム属に属する細菌を担体1g当たりそれぞれ109個体の割合で配合し均一に混合して微生物資材を得た。なお、ここで用いた石炭灰は、酸化カルシウムの含量が0.5重量%であり、平均粒径が15μm、pHが10のものであった。また、以下の実施例で用いた石炭灰もこれと同じ石炭灰であった。
【0040】
<各細菌の保存性試験>
上記各実施例の微生物資材をそれぞれ25℃の温度条件下に置き、90日後と240日後に上記アゾスピリラム属に属する細菌の保存性試験と同様の方法により各菌体の生存数を測定し生存率を求めた。各実施例及び各比較例の微生物資材におけるアゾスピリラム属に属する細菌及びブラジリゾビウム属に属する細菌の90日後及び240日後の生存率を表3に示す。
【0041】
【表3】
【0042】
この結果より、担体に石炭灰を配合すれば、菌体の保存性が飛躍的によくなることがわかる。
【0043】
【実施例8〜13】
実施例8では担体として水分含量50重量%に調整したピートモスを、実施例9では担体としてピートモス95重量部に石炭灰5重量部を加え水分含量を55重量%に調整したものを、実施例10ではピートモス90重量部に石炭灰10重量部を加え水分含量を55重量%に調整したものを、実施例11ではピートモス70重量部に石炭灰30重量部を加え水分含量を55重量%に調整したものを、実施例12ではピートモス50重量部に石炭灰50重量部を加え水分含量を55重量%に調整したものを、実施例13ではピートモス30重量部に石炭灰70重量部を加え水分含量を55重量%に調整したものを用い、それぞれの担体に微生物として製造例で得られたアゾスピリラム属に属する細菌を担体1g当たり109個体の割合で配合し均一に混合して微生物資材を得た。
【0044】
<アゾスピリラム属に属する細菌の保存性試験>
上記各実施例の微生物資材をそれぞれ25℃の温度条件下に置き、240日後に上記アゾスピリラム属に属する細菌の保存性試験と同様の方法により菌体の生存数を測定し生存率を求めた。各実施例の微生物資材におけるアゾスピリラム属に属する細菌の240日後の生存率を表4に示す。
【0045】
【表4】
【0046】
この結果より、担体に石炭灰を配合すれば、より菌体の保存性がよくなることが確認され、また石炭灰の配合量の適量がわかる。
【0047】
【実施例14】
ピートモス9重量部に石炭灰1重量部を加え、水分含量55重量%に調整した担体に、微生物として製造例で得られたアゾスピリラム属に属する細菌を担体1g当たり109個体、ブラジリゾビウム属に属する細菌を担体1g当たり1010個体の割合で配合し均一に混合して実施例14の微生物資材を作製した。
【0048】
上記各実施例で得られた微生物資材を用いて作物の栽培を行い、本発明の微生物資材による作物の生育促進効果を評価した。
【0049】
<作物栽培における本発明の微生物資材の評価>
(1)ダイズにおける生育効果−1
作物としてダイズの品種(サッポロミドリ)を用い、栽培用土は赤玉土、容器は径9cm黒色ビニールポットを用いた。栽培用土に比較例6は何も添加せず、比較例7ではピートモス9重量部に石炭灰1重量部を加え水分含量55重量%に調整したものを、試験例1では実施例10で作製した微生物資材を、試験例2では実施例7で作製した微生物資材を、1ポット当たり1gの割合となるように添加し均一に混合した。ポットにこれらの栽培用土を上部に2cmの隙間を残して加え、ダイズ種子を2粒ずつ播種した。この様なポットを比較例6、比較例7、試験例1、試験例2のそれぞれにつき20ポットずつ作製した。
【0050】
これらのポットをビニール温室中に置き、1日1回潅水し、昼25℃、夜15℃となるように管理した。種子が発芽してから1ポット当たり1本になるように間引きを行い、1ヶ月生育させた。栽培開始から1ヶ月の時点で苗を全て引き抜き根に付いた土を水洗いし、地上部と根部を切り分けた後、茎長を測定した。その後、試料の地上部と根とを別々に110℃で3日間乾燥させ、それぞれの重量を測定した。各実施例及び比較例で根重量、地上重量、茎長について20本の平均を求め、さらに、比較例6の値を100%とした相対値を算出した。結果を表5に示す。
【0051】
【表5】
【0052】
(2)ダイズにおける生育効果−2
作物としてダイズの品種(サッポロミドリ)を用い、栽培用土は赤玉土、容器は径9cm黒色ビニールポットを用いた。栽培用土に比較例8ではピートモス9重量部に石炭灰1重量部を加え水分含量55重量%に調整したものを、試験例3では実施例10で作製した微生物資材を、試験例4では実施例7で作製した微生物資材を、試験例5では実施例14で作製した微生物資材を、1ポット当たり1gの割合となるように添加し均一に混合した。ポットにこれらの栽培用土を上部に2cmの隙間を残して加え、ダイズ種子を2粒ずつ播種した。この様なポットを比較例8、試験例3、試験例4、試験例5のそれぞれにつき20ポットずつ作製した。
【0053】
これらのポットを上記(1)の実験と同様に管理して、ダイズの栽培を1ヶ月間行った。その後、上記(1)の実験と同様にして、各実施例及び比較例毎にダイズの根重量、地上重量、茎長を測定し20本の平均を求め、さらに、比較例8の値を100%とした相対値を算出した。結果を表6に示す。
【0054】
【表6】
【0055】
これらの結果から、本発明の微生物資材を栽培用土に施用して栽培を行った試験例の作物においては、何も添加せずにあるいは担体のみを添加して栽培した比較例の作物に比べ、根部、地上部の重量、茎長とも大きく、作物全体の生育状態がよいことがわかる。また、アゾスピリラム属に属する細菌と他の微生物とを効果的に組み合わせることが可能であることが確認された。
【0056】
【発明の効果】
本発明の作物栽培用の微生物資材においては、微生物の保存性に関して従来の微生物資材に比べ格段に安定性を有する。また、本発明の微生物資材を用いて作物を栽培すれば、微生物による効果が安定して得られるようになり効率的な作物の栽培が可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microbial material for cultivating crops, and more particularly, to a microbial material for cultivating crops which contains bacteria belonging to the genus Azospirillum and whose content is adjusted to have excellent storage stability.
[0002]
[Prior art]
In recent years, attempts have been made to improve the production of agricultural crops by utilizing microorganisms that have a beneficial effect on plants. Representative examples of such microorganisms include rhizobial bacteria, bacteria belonging to the genus Pseudomonas, and bacteria belonging to the genus Azospirillum. Among them, bacteria belonging to the genus Azospirillum are a kind of plant growth promoting rhizosphere bacteria that are known to loosely coexist with plants and promote plant growth. Inoculating a pure culture of this bacteria into crops Attempts have been made to increase the yield and to increase the yield more than in the case of rhizobia alone by inoculating the bacteria with legumes simultaneously with the rhizobia. In order to actually inoculate the bacterium belonging to the genus Azospirillum into a crop, after culturing the cells, usually, soil such as Kanuma soil, or a porous stone material is used as a carrier, and the cells are added thereto. In general, a method of preparing a microbial material having a culture adsorbed thereon and applying the same to a cultivation soil of a crop or the like is generally employed.
[0003]
However, in some of these microbial materials, the effective activity decreases with time, and there is a case where the effective activity is lost when the storage period is extended. That is, it is not always possible to obtain a microbial material having a stable effective activity, and therefore, there has been a problem that the effect in a crop to which the microbial material has been applied is not stable. Maintaining this effective activity is largely dependent on the preservability of the cells contained in the microbial material in most cases. Therefore, in order to promote the practical use of the microbial material, there has been a strong demand for the development of a technique for improving the preservability of the cells contained in the microbial material and stabilizing the effective activity of the microbial material.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object of the present invention is to provide a microorganism material with improved storage stability for crop cultivation that can stably obtain high production efficiency.
[0005]
[Means for Solving the Problems]
The present inventor has conducted studies to solve the above problems, and as a result, in a microbial material for cultivating crops containing a carrier containing water and a soil microorganism containing at least a bacterium belonging to the genus Azospirillum, the genus Azospirillum. The content of bacteria belonging to 2 × 10 8 -10 12 The present inventors have found that the microorganisms in the microbial material can be stably stored by using the individual, and that the crop can be efficiently cultivated by using the microbial material, thereby completing the present invention.
[0006]
That is, the present invention provides a microorganism material for cultivating crops containing a carrier containing water and a soil microorganism containing at least a bacterium belonging to the genus Azospirillum. 8 -10 12 It is a microorganism material for cultivating an individual crop.
[0007]
The carrier used for the above-mentioned microbial material for cultivating crops of the present invention (hereinafter may be simply referred to as “microorganism material”) is not particularly limited as long as it is a carrier that contains water and can carry soil microorganisms containing bacteria belonging to the genus Azospirillum. However, it is possible to use an organic material or an inorganic material, which is usually used for a microbial material, together with optional components added as necessary. These materials can be used alone or in combination of two or more. Further, in the present invention, the carrier preferably contains coal ash in an amount of about 3 to 75% by weight based on the total amount of the carrier. Here, the content of coal ash in the carrier, which refers to the content when the carrier material is in the raw material state, whether the carrier material already contains moisture in the raw material state or is dry Regardless of the weight, it refers to the content calculated using the weight in that state as it is.
[0008]
The carrier used in the present invention contains water, and its content is specifically preferably about 50 to 90% by weight, more preferably about 55 to 85% by weight, based on the total amount of the carrier. Here, the moisture content of the carrier in the microbial material of the present invention refers to the moisture content calculated by the following formula from the weight of the carrier before and after the carrier is dried at 70 ° C. for 3 days.
[0009]
(Equation 1)
Water content (% by weight) = 100 × (weight before drying−weight after drying) / weight before drying
[0010]
The bacterium belonging to the genus Azospiriram contained in the microorganism material of the present invention is not particularly limited as long as it is a Gram-negative bacterium identified as a bacterium belonging to the genus Azospiriram.Specifically, azospiriram lipoferram, azospiriram Brasilence, azospiriram halopreferance, azospiriram amazonense and the like can be mentioned. As described above, the content of bacteria belonging to the genus Azospirillum contained in the microorganism material of the present invention is approximately 2 × 10 8 -10 12 Individual, preferably 4 × 10 8 -10 11 Individual, more preferably 5 × 10 8 ~ 5 × 10 10 Individual.
[0011]
In addition, the microorganism material of the present invention may contain soil microorganisms other than bacteria belonging to the genus Azospirillum as soil microorganisms. Examples of such soil microorganisms include microorganisms that generally inhabit the soil and exert a useful effect on plants. Further, in the microbial material of the present invention, in addition to the above-mentioned carrier and soil microorganisms, it is possible to mix optional components usually contained in the microbial material as needed.
[0012]
The microbial material for cultivating crops of the present invention is used for cultivating crops in the same manner as using ordinary microbial materials.
The microbial material for cultivating crops of the present invention has a content of bacteria belonging to the genus Azospirillum in the microbial material of 2 × 10 8 -10 12 By adjusting to the individual, the preservation of microorganisms was enhanced, and the effect was remarkably more stable than conventional microorganism materials. In addition, when a crop is cultivated using the microbial material of the present invention, the effect of the microorganism can be obtained stably, and efficient crop cultivation becomes possible.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
First, for the carrier used for the microbial material of the present invention, an organic or inorganic material used for the microbial material can be generally used as a main material. Specifically, Akadama soil, calcined Akadama soil, Kanuma soil Use of inorganic materials, such as, ando clay, vermiculite, perlite, zeolite, and coal ash; organic materials such as peat moss, pulp, straw, bacas, oil cake, fish cake, bone meal, blood meal, crab chunks, charcoal, and shell fossils Can be. These inorganic and organic materials can be used alone or as a mixture of two or more as the carrier of the microorganism material of the present invention. Furthermore, various kinds of trace components such as lime, which are blended for the pH adjustment described below, can be blended into the carrier as needed.
[0014]
In addition, in the carrier used in the present invention, the pH when 5 parts by weight of water is added to 1 part by weight of the carrier (hereinafter, when simply referred to as pH, indicates the pH measured under the above conditions). It is preferably in the range of 5.5 to 8.0. For example, since peat moss and the like have a pH of 5.5 or less, when used alone, the pH is adjusted to the above range by adding an additive such as lime which is usually used for pH adjustment with a microbial material. It is preferable that the adjustment be made. Even when a material other than peat moss is used, the pH can be adjusted as necessary in the same manner as described above.
[0015]
For the carrier of the microbial material of the present invention, for example, one or more of the above various materials are used, and the carrier is coal ash, specifically, pulverized coal combustion ash, fluidized bed combustion ash. It is preferable to contain a pulverized powder or the like. Coal ash preferable as coal ash to be mixed with the carrier of the microorganism material of the present invention has a calcium oxide content of 0.5% by weight or more and an average particle size of 5 mm or less. As coal ash, more preferably, particles having a particle size of 3 mm to 10 μm occupy 80% or more of the entire coal ash are exemplified. Further, the coal ash used in the present invention is more preferably one having a pH of 9 or more when 1 part by weight of coal ash and 5 parts by weight of water are added. Further, the content of coal ash in the carrier is preferably 3 to 75% by weight of the total amount of the carrier in terms of dry weight. Further, when coal ash is mixed with the carrier in this manner, it is preferable that the pH of the carrier is in the range of 5.5 to 8.0.
[0016]
By adding water to such a carrier, a carrier used for the microorganism material of the present invention can be obtained. Alternatively, the water can be added after mixing the microorganism with the carrier. In addition, a carrier that already contains water in a normal state can be used as it is in the microbial material of the present invention. The appropriate amount of water contained in the carrier used in the present invention is as described above.
[0017]
The microorganism material of the present invention is blended with a soil microorganism containing at least a bacterium belonging to the genus Azospirillum as an essential component in addition to the carrier. Specific examples of the bacterium belonging to the genus Azospiriram are as described above. More specifically, the azospiriram lipoferrum is azospiriram lipoferam ATCC29709 and the like, and the azospiriram brasilence is azospiriram brasilence ATCC 29145; Examples of the azospiriram halopreferance ATCC43709 and the like, and examples of azospirilum amazonense such as Azospirillum amazonense ATCC35119 and the like. The bacterium belonging to the genus Azospirillum used in the present invention is not limited to these.
[0018]
The soil microorganisms other than the bacteria belonging to the genus Azospirillum are not particularly limited as long as they are generally microorganisms that inhabit the soil and exert a useful effect on plants. , Azorhizobium, Pseudomonas, Rhizobium, Bacillus, Streptomyces, Xanthomonas, Lactobacillus, Aeromonas, Anabaena, Frankia, Rhodoseudomonas, Trichoderma, Glomus , Aspergillus, Penicillium, Rhizopus, Fusarium, Gliogradium, Gigaspora, Scutelospora, Nostock, or Azotobacter.
[0019]
One of these microorganisms may be used together with a bacterium belonging to the genus Azospirillum in the microbial material of the present invention, or two or more of these microorganisms may be used in combination with a bacterium belonging to the genus Azospirillum. When a bacterium belonging to the genus Azospirillum is used in combination with these microorganisms, it is preferable to appropriately select a combination and a compounding amount that do not impair the usefulness of each microorganism with respect to a plant.
[0020]
When these microorganisms are used in the present invention, it is preferable to use a culture obtained by culturing the cells in a medium in which the cells can grow, as in the case of using the microorganism as a normal microorganism material. For example, for bacteria belonging to the genus Azospirillum, an RC medium (L-malic acid: 5 g / L, KOH: 4.8 g / L, yeast extract: 0.5 g / L, KH 2 PO 4 : 0.5 g / L, MgSO 4 ・ 7H 2 O: 0.2 g / L, NaCl: 0.1 g / L, FeCl 3 ・ 6H 2 O: 0.015 g / L, pH 7.0) or the like, and culturing at a normal culturing condition, for example, at 25 to 37 ° C for 2 to 3 days, to obtain a culture of bacterial cells.
[0021]
The culture of the cells obtained in this manner can be used in the present invention as it is, or after separating the cells from the culture by centrifugation or the like, or after drying the culture or the cells. is there.
[0022]
The mixing ratio of the microorganism and the carrier containing water in the microorganism material of the present invention is as described above for the bacteria belonging to the genus Azospirillum. For other microorganisms, as the total number of microorganisms excluding bacteria belonging to the genus Azospirillum, it is excellent for cultivated crops to incorporate a number of bacteria approximately 0.1 to 10 times the amount of the bacteria belonging to the genus Azospirillum. It is preferable for obtaining a growth promoting effect.
[0023]
In addition, a method for cultivating a crop using the microorganism material for crop cultivation of the present invention obtained as described above may be performed in the same manner as using a normal microorganism material, and specifically, The following methods can be mentioned.
[0024]
As a method of applying the microbial material to the cultivation soil, when growing a seedling or cultivating a crop using a pot, a cell, or the like, mix an appropriate amount of the microbial material into the cultivation soil and uniformly mix. There are methods of sowing the seeds of the crop there, or planting seedlings, cutting and buds, sowing taneimo, and the like. When cultivating crops in a field, an appropriate amount of microbial material is evenly mixed with the soil (cultivation soil) in a range covering the rhizosphere of the crop, and seeding, seedling transplantation, etc. are performed there. The method of performing is a general method.
[0025]
When the microorganism material is applied to the cultivation soil, the application rate of the microorganism material is 10 as the number of bacteria belonging to the genus Azospirillum per 1 g of the dry weight of the cultivation soil. 3 -10 7 The application is preferably carried out so that the individual contains 5 -10 7 Pcs / g dry soil. Application rate is 10 3 If the amount is less than the number of pieces per gram of dry soil, the effect of promoting the growth of the crop is likely to be unstable. 7 Even if the applied amount is more than the unit / g dry soil, the effect reaches a peak and is not economically preferable.
[0026]
As the base material for the cultivation soil, general materials, for example, one selected from the group consisting of field soil, rice field, mountain soil, sand, Akadama soil, charcoal, zeolite, perlite, vermiculite, Kanuma soil, pumice, coral sand, etc. Two or more types can be mentioned. Among these, a preferable substrate is artificial soil or sand obtained by combining some of the above materials. In addition, it is possible to mix various components according to various purposes in the cultivation soil in addition to the above-described base material. For example, a slow-release fertilizer and the like are often mixed.
[0027]
Crops to which the microorganism material for crop cultivation of the present invention is applied are not particularly limited, and specifically, legumes, brassicaceae, asteraceae, araceae, seriaceae, lilies, gramineae, and roses And the like. Among these, fava beans, peanuts, adzuki beans, soybeans, green peas, green beans (above legume crops), komatsuna, Chinese cabbage, cabbage, radish, turnip, cauliflower, broccoli (above brassica crops), lettuce, shungiku, burdock (Asteraceae crops), taro, konjac (Araceae crops), celery, carrot (Acetylaceae crops), yam, green onion, onion, asparagus (Laceae crops), corn (Poaceae) Crops), strawberries (Rosaceae crops), and other crops can be cited as crops that have a remarkable effect when cultivated using the microbial material of the present invention.
[0028]
【Example】
Hereinafter, embodiments of the present invention will be described. First, a production example of a cell culture used for the microorganism material of the present invention will be described.
[0029]
[Production example]
Cell culture
Azospirillum brassiiens ATCC 29145 was used as a bacterium belonging to the genus Azospirillum, and this was used in an RC medium (L-malic acid: 5 g / L, KOH: 4.8 g / L, yeast extract: 0.5 g / L, KH 2 PO 4 : 0.5 g / L, MgSO 4 ・ 7H 2 O: 0.2 g / L, NaCl: 0.1 g / L, FeCl 3 ・ 6H 2 O: 0.015 g / L, pH 7.0) and cultured at 32 ° C for 48 hours. After completion of the culture, the cells were collected by centrifugation.
[0030]
In the examples described later, bacteria belonging to the genus Brasilizobium as a soil microorganism in addition to bacteria belonging to the genus Azospirillum (Brazilizobium japonicum ATCC 10324) were used by culturing as follows. Bradyrhizobium japonicum ATCC 10324 in a medium (mannitol: 10 g / L, yeast extract: 0.4 g / L, KH 2 PO 4 : 0.5 g / L, MgSO 4 ・ 7H 2 O: 0.2 g / L, NaCl: 0.1 g / L) and cultured at 32 ° C. for 48 hours. After completion of the culture, the cells were collected by centrifugation.
[0031]
Embodiments 1 and 2
Vermiculite whose moisture content was adjusted to 55% was used as a carrier, and the bacteria belonging to the genus Azospirillum obtained in the above Production Example were added to the carrier at a rate of 10% per gram of the carrier. 9 Individual or 10 10 Three kinds of microbial materials were prepared by blending and mixing uniformly so as to be individual. The obtained microorganism materials were used as the microorganism materials of Example 1 and Example 2, respectively. In addition, the wet cells themselves that did not contain anything in the wet cells of the bacteria belonging to the genus Azospirillum obtained in the above Production Example were used as the microorganism materials of Comparative Example 1. Further, the bacterium belonging to the genus Azospirillum obtained in the above-mentioned Production Example was added to the same carrier as the carrier used in the above-mentioned Example at 10 g / g of the carrier. 6 Individual or 10 7 The microbial materials of Comparative Example 2 and Comparative Example 3 were prepared by blending and mixing uniformly so as to be individual.
[0032]
<Preservation test of bacteria belonging to the genus Azospirillum>
The microbial materials of each of the above Examples and Comparative Examples were placed at the temperatures shown in Table 1, and after 240 days, the number of surviving cells was measured by the following method to determine the survival rate. 1 g of microbial material was collected and 0.1M MgSO 4 After suspending in 30 ml and shaking for 1 hour, the suspension was diluted 10000-fold and standard agar medium (composition: yeast extract: 2.5 g / L, peptone: 5.0 g / L, glucose: 1.0 g / L, (Agar: 15.0 g / L, pH: 6.0 to 7.0) was used to measure the number of bacteria. Table 1 shows the survival rates after 240 days of bacteria belonging to the genus Azospirillum in the microbial materials of the examples and comparative examples.
[0033]
[Table 1]
[0034]
From these results, compared to the microbial material of the comparative example where no carrier is used or the content of the bacterium belonging to the genus Azospirillum is outside the scope of the present invention, the microbial material of the example contains the bacterium belonging to the genus Azospirillum. It can be seen that the storability is very good.
[0035]
Embodiments 3 to 5
A vermiculite having a water content adjusted to 55% was used as a carrier, and the bacteria belonging to the genus Azospirillum and the bacteria belonging to the genus Brasilizobium obtained in the above Production Example were each added to 10 g of the carrier. 9 The microbial material of Example 3 was prepared by blending and mixing uniformly to give an individual. Similarly, each of the above bacteria was added to 10 10 Individual or 10 11 Example 4 (10) 10 Individual / g), Example 5 (10 11 (Individual / g) was prepared. Further, the wet cell mixture of the bacteria belonging to the genus Azospirillum and the wet cells of the bacteria belonging to the genus Bradyrhizobium obtained in the above Production Example were uniformly mixed, and the mixture of the wet cells itself, which contained nothing, was used as the microbial material of Comparative Example 3. And In the microorganism material of Comparative Example 3, the cell concentration was 5 × 10 11 Individual / g. Furthermore, the bacteria belonging to the genus Azospirillum and the bacteria belonging to the genus Bradyrhizobium obtained in the above-mentioned Production Example were each added to the same carrier as the carrier used in the above Examples at a rate of 10 / g / g carrier. 6 Individual or 10 7 Comparative Example 4 (10 6 Individual / g) and Comparative Example 5 (10 7 (Individual / g) was prepared.
[0036]
<Preservation test of each bacteria>
The microbial material of each of the above Examples and Comparative Examples was placed at the temperature shown in Table 2, and after 240 days, the number of surviving cells was measured by the same method as the test for preservation of the bacteria belonging to the genus Azospirillum. I asked. Table 2 shows the survival rates of the bacteria belonging to the genus Azospirillum and the bacteria belonging to the genus Bradyrhizobium after 240 days in the microbial materials of the examples and comparative examples.
[0037]
[Table 2]
[0038]
From these results, compared to the microbial material of the comparative example where no carrier is used or the content of the bacterium belonging to the genus Azospirillum is outside the scope of the present invention, the microbial material of the example contains the bacterium belonging to the genus Azospirillum. It can be seen that the storability is very good. In addition, the bacteria belonging to the genus Brasilizobium combined with the bacteria belonging to the genus Azospirillum in the examples, without affecting the preservative properties of the bacteria belonging to the genus Azospirillum, the examples also show the preservative properties of the bacteria belonging to the genus Brasilirizobium. Is better.
[0039]
Embodiments 6 and 7
In Example 6, vermiculite having a water content adjusted to 50% was used as a carrier, and in Example 7, peat moss (peat moss whose pH was adjusted to 5.5 to 6.0 by adding lime was used as a carrier. All the peat moss was peat moss treated in the same manner.) One part by weight of coal ash was added to 9 parts by weight, and the mixture was adjusted to a water content of 55% by weight. Bacteria belonging to the genus Azospirillum and bacteria belonging to the genus Bradyrhizobium are each 10 g / g carrier. 9 Microbial materials were obtained by blending at an individual rate and mixing uniformly. The coal ash used here had a calcium oxide content of 0.5% by weight, an average particle size of 15 μm, and a pH of 10. The coal ash used in the following examples was also the same coal ash.
[0040]
<Preservation test of each bacteria>
The microbial material of each of the above Examples was placed under a temperature condition of 25 ° C., and after 90 days and 240 days, the number of surviving cells was measured by the same method as the test for preservation of bacteria belonging to the genus Azospirillum, and the survival rate was determined. I asked. Table 3 shows the survival rates of the bacteria belonging to the genus Azospirillum and the bacteria belonging to the genus Bradyrhizobium after 90 days and 240 days in the microbial materials of the examples and comparative examples.
[0041]
[Table 3]
[0042]
From this result, it can be seen that when coal ash is mixed with the carrier, the preservability of the bacterial cells is dramatically improved.
[0043]
Embodiments 8 to 13
In Example 8, peat moss adjusted to 50% by weight of water was used as a carrier. In Example 9, 95 parts by weight of peat moss was used as a carrier and 5 parts by weight of coal ash was added to adjust the water content to 55% by weight. In Example 11, 10 parts by weight of coal ash was added to 90 parts by weight of peat moss to adjust the water content to 55% by weight. In Example 11, 30 parts by weight of coal ash was added to 70 parts by weight of peat moss to adjust the water content to 55% by weight. In Example 12, 50 parts by weight of peat moss was added to 50 parts by weight of coal ash to adjust the water content to 55% by weight. In Example 13, 30 parts by weight of peat moss was added to 70 parts by weight of coal ash to reduce the water content. The bacterium belonging to the genus Azospiriram obtained in the Production Example was used as a microorganism in each carrier, and the bacterium was adjusted to 55% by weight. 9 Microbial materials were obtained by blending at an individual rate and mixing uniformly.
[0044]
<Preservation test of bacteria belonging to the genus Azospirillum>
The microbial material of each of the above Examples was placed under a temperature condition of 25 ° C., and 240 days later, the number of surviving cells was measured by the same method as in the preservation test of the bacterium belonging to the genus Azospirillum to determine the survival rate. Table 4 shows the survival rates of the bacteria belonging to the genus Azospirillum in the microbial material of each example after 240 days.
[0045]
[Table 4]
[0046]
From this result, it was confirmed that the blending of coal ash with the carrier improved the preservability of the bacterial cells, and the amount of coal ash was found to be appropriate.
[0047]
Embodiment 14
1 part by weight of coal ash was added to 9 parts by weight of peat moss, and a bacterium belonging to the genus Azospiriram obtained as a microorganism in the production example was added to a carrier adjusted to a water content of 55% by weight per 10 g of the carrier. 9 Individuals, bacteria belonging to the genus Brasilyzobium are added at a rate of 10 10 The microbial material of Example 14 was prepared by blending at an individual ratio and mixing uniformly.
[0048]
Crop was cultivated using the microbial material obtained in each of the above examples, and the growth promoting effect of the microbial material of the present invention was evaluated.
[0049]
<Evaluation of the microorganism material of the present invention in crop cultivation>
(1) Growth effect on soybean-1
A soybean variety (Sapporo midori) was used as a crop, cultivation soil was Akadama clay, and a container was a 9 cm diameter black vinyl pot. In Comparative Example 6, nothing was added to the cultivation soil, and in Comparative Example 7, 1 part by weight of coal ash was added to 9 parts by weight of peat moss to adjust the water content to 55% by weight. In Test Example 2, the microbial material prepared in Example 7 was added and uniformly mixed at a ratio of 1 g per pot. These cultivation soils were added to the pot leaving a gap of 2 cm at the top, and two soybean seeds were sown. Twenty such pots were produced for each of Comparative Example 6, Comparative Example 7, Test Example 1, and Test Example 2.
[0050]
These pots were placed in a vinyl greenhouse, irrigated once a day, and maintained at 25 ° C. in the day and 15 ° C. in the night. After the seeds germinated, the seeds were thinned out to one per pot and grown for one month. One month after the start of cultivation, all the seedlings were pulled out, the soil on the roots was washed with water, and the above-ground part and the root part were cut off, and then the stem length was measured. Thereafter, the aerial part and the root of the sample were separately dried at 110 ° C. for 3 days, and the weight of each was measured. In each of the examples and comparative examples, an average of 20 root weights, above-ground weights, and stem lengths was obtained, and a relative value was calculated with the value of comparative example 6 being 100%. Table 5 shows the results.
[0051]
[Table 5]
[0052]
(2) Growth effect in soybean-2
A soybean variety (Sapporo midori) was used as a crop, cultivation soil was Akadama clay, and a container was a 9 cm diameter black vinyl pot. In Comparative Example 8, the cultivation soil was prepared by adding 1 part by weight of coal ash to 9 parts by weight of peat moss and adjusted to a moisture content of 55% by weight. In Test Example 3, the microbial material produced in Example 10 was used. The microbial material prepared in Example 7 and the microbial material prepared in Example 14 in Test Example 5 were added at a ratio of 1 g per pot and uniformly mixed. These cultivation soils were added to the pot leaving a gap of 2 cm at the top, and two soybean seeds were sown. Twenty such pots were prepared for Comparative Example 8, Test Example 3, Test Example 4, and Test Example 5, respectively.
[0053]
These pots were managed in the same manner as in the above experiment (1), and soybean cultivation was performed for one month. Then, in the same manner as in the experiment of (1) above, the root weight, ground weight, and stem length of soybean were measured for each of Examples and Comparative Examples, and the average of 20 soybeans was obtained. % Was calculated. Table 6 shows the results.
[0054]
[Table 6]
[0055]
From these results, in the crop of the test example in which the microbial material of the present invention was applied to the cultivation soil and cultivated, compared to the crop of the comparative example cultivated without any addition or with only the carrier added, The weight and stem length of the root portion and the aerial portion are both large, indicating that the growth condition of the whole crop is good. It has also been confirmed that bacteria belonging to the genus Azospirillum can be effectively combined with other microorganisms.
[0056]
【The invention's effect】
The microbial material for cultivating crops of the present invention has remarkably more stable microorganism preservation than conventional microbial materials. In addition, when a crop is cultivated using the microbial material of the present invention, the effect of the microorganism can be obtained stably, and efficient crop cultivation becomes possible.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32929495A JP3589767B2 (en) | 1995-12-18 | 1995-12-18 | Microbial materials for crop cultivation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32929495A JP3589767B2 (en) | 1995-12-18 | 1995-12-18 | Microbial materials for crop cultivation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09165312A JPH09165312A (en) | 1997-06-24 |
JP3589767B2 true JP3589767B2 (en) | 2004-11-17 |
Family
ID=18219862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32929495A Expired - Fee Related JP3589767B2 (en) | 1995-12-18 | 1995-12-18 | Microbial materials for crop cultivation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3589767B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5318433B2 (en) * | 2008-02-27 | 2013-10-16 | 十勝農業協同組合連合会 | Microbial materials |
CN105191638B (en) * | 2015-10-14 | 2017-09-12 | 吉首大学 | A kind of method of total crop return during maize straw harvest |
CN109370607A (en) * | 2018-12-10 | 2019-02-22 | 中国石油大学(华东) | Modification of gasification furnace slag with humic acid to produce soil conditioner and its application in soil improvement and remediation |
-
1995
- 1995-12-18 JP JP32929495A patent/JP3589767B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09165312A (en) | 1997-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210300834A1 (en) | Methods and compositions for increasing the amounts of phosphorus available for plant uptake from soils | |
US5697186A (en) | Flocculated microbial inoculants for delivery of agriculturally beneficial microorganisms | |
Leaungvutiviroj et al. | Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production | |
JPH04280889A (en) | Biologically enriched base layer, method of its production and use of said base layer for recovering pioneer plant growth gradually and largely | |
CN113337421A (en) | Compound microbial agent and application thereof | |
JPH0819407B2 (en) | Soil conditioner for plant cultivation, production method and use method thereof | |
JP3589767B2 (en) | Microbial materials for crop cultivation | |
Brockwell et al. | Studies on seed pelleting as an aid to legume seed inoculation. 2. Survival of Rhizobium meliloti applied to medic seed sown into dry soil | |
JPH09227323A (en) | Microbial material for crop cultivation and crop cultivation method using the same | |
JP2012044904A (en) | Rhizobium-inoculating material, method for inoculating the rhizobium-inoculating material, and cultivation method | |
JP3574685B2 (en) | Microbial preparations for legumes | |
JPH10218715A (en) | Microbial seed dressing composition | |
JP3907933B2 (en) | Rhizobium inoculation material and production method thereof | |
WO1994019924A1 (en) | Flocculated microbial inoculants for delivery of agriculturally beneficial microorganisms | |
JP3574686B2 (en) | Microbial preparations for legumes | |
WO2021159220A1 (en) | Biostimulant based on the bacterium pseudomonas lini strain s57 and method of application for promoting plant growth | |
JPH10203917A (en) | Microbial seed dressing composition | |
JPH10210807A (en) | Microbial seed dressing composition | |
JPH11266857A (en) | Microbial material for crop cultivation and method of cultivating crop | |
JPH10273409A (en) | Microbial seed dressing composition | |
JP3026067B2 (en) | Plant growth promoting bacteria and plant cultivation method using the same | |
JP2006248898A (en) | Crop growth promoter and method for cultivating crop using the same | |
KR890004023B1 (en) | Manufacturing method of mycorrhizal inoculator using perlite | |
JPH06189745A (en) | Microorganism material | |
SUKIMAN et al. | Encapsulation of Moluccan albizia's (Paraserianthes falcataria) seeds to support tree plantation program in urban areas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040818 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070827 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110827 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |