JP3587488B2 - Contactor and manufacturing method thereof - Google Patents
Contactor and manufacturing method thereof Download PDFInfo
- Publication number
- JP3587488B2 JP3587488B2 JP30620696A JP30620696A JP3587488B2 JP 3587488 B2 JP3587488 B2 JP 3587488B2 JP 30620696 A JP30620696 A JP 30620696A JP 30620696 A JP30620696 A JP 30620696A JP 3587488 B2 JP3587488 B2 JP 3587488B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- probe pin
- contactor
- probe pins
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000000523 sample Substances 0.000 claims description 95
- 239000013078 crystal Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 description 12
- 238000005498 polishing Methods 0.000 description 9
- 229910003460 diamond Inorganic materials 0.000 description 8
- 239000010432 diamond Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Measuring Leads Or Probes (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体集積回路等の被検査体の電極に接触させて電気特性を測定するためのプローブカード等に用いるコンタクターに関する。
【0002】
【従来技術】
半導体集積回路等の製造工程において、一般に半導体ウェハーに多数のチップが形成された段階で各チップの電気的特性が測定され、良否の判定が行なわれている。この測定に際して、多数のプローブピンが被検査体の電極形状に応じて植設されたプローブカードと呼ばれる接続端子が使用されている。
【0003】
前記プローブカードは、一般的に、複数のプローブピンを電極に接触させる目的で、複数のプローブピン先端がつくる面の平坦度や、被検査体の電極の平坦度、及び評価装置に組み込んだ場合の両者の平行度等の誤差を吸収し、更に抵抗値が安定するように荷重を負荷しなければならない。そのためプローブピンは被検査体と接触する先端部とプローブカードへの固定部分との間が弾性領域で撓む様に設計されている。このプローブピンを撓ませるのに必要な、プローブピンの垂直方向への過剰な移動量をオーバードライブ量と称する。
【0004】
一方、最近の半導体の微細化、高集積化に伴いプローブピンの小径化、並びにその配置の狭ピッチ化が進んでいる。しかし、プローブピンの直径が小さくなると、プローブピン先端の位置の高精度化が必要であるにもかかわらず、プローブピンの直径が小さくなるため、数万回乃至数十万回のコンタクトでプローブピン先端の位置精度が悪化する問題があった。更に、現在使用されているプローブピンは主にW(タングステン)を材料とする線材の一本一本をプリント配線基板に植設して作られているが、最近の狭ピッチ化、高密度化への要求に対して、その製造方法の面、更にプローブピン先端の位置精度の面の両面において対応が困難になっている。
【0005】
そこで、VLS成長で形成した針状単結晶をプローブピンとして用いる方法が提案さており(特開平5−198636号公報、特開平5−215774号公報、特開平5−218156号公報)、これらの方法により、狭ピッチで高密度のプローブカードの製造が容易になり、しかも高精度にプローブピンを配置することができる様になった。
【0006】
しかし、上記方法で得られるプローブピンは、被検査体の表面とほぼ垂直に配置され、針状単結晶を導電性膜で被覆した構造を採用しているが、このプローブピンはオーバードライブを負荷するときに不規則な方向に座屈変形する欠点を有する。このために、ピッチが狭い場合には、隣接するプローブピン同士が接触して破損したり、或いは電気的短絡が発生する等の問題がある。電気的短絡については、プローブピンの側面に絶縁膜をコーティングする等の対策も検討されているが、この手法を用いたとしても、絶縁膜の接触摩耗による絶縁不良が懸念される。従って、この種の針状単結晶を用いた狭ピッチで高密度の垂直プローブピンにおいて、オーバードライブを加えてもプローブピン同士が接触しない構造を達成することが実用上重要な解決すべき課題となっている。
【0007】
また、前記針状単結晶を用いたプローブピンに関しては、使用初期のプローブピン先端の位置精度は良好であるとしても、数万回乃至数十万回のコンタクトを繰り返すと、通常プローブピン表面に設けられている導電性膜の塑性変形に原因して、プローブピン先端位置のズレが発生する。この位置ズレの方向は、座屈変型で曲がる方向が不規則なため、プローブピン毎に異なりばらばらである。加えて、最近の電極が狭ピッチで配置されている被検査体においては、その電極バンプの形状は一般的に長方形の形をとっているので、プローブピン先端位置ズレが電極バンプの長手方向と一致するようなプローブピンの場合コンタクトに何等問題が無いが、前記位置ズレが電極バンプの長手方向と直交する向きの場合には、いくつかのプローブピンが電極とコンタクトできずプローブカードが機能しなくなるという問題を発生することがあった。
【0008】
【発明が解決しようとする課題】
本発明は、上述した従来の問題点に鑑みてなされたものであって、プローブピン同士の接触による破損や電気的短絡を低減するとともに、プローブピンに要求されるオーバードライブを数十万回以上負荷してピン先位置精度が悪化したとしても、被検査体の電極バンプと良好なコンタクトができ、半導体集積回路の狭ピッチ化、高密度化に対応可能なプローブカードに用いることのできるコンタクターを供給することを目的としている。
【0009】
【課題を解決するための手段】
本発明は、非検査体に対して垂直に配置された、針状単結晶からなるプローブピンを複数本有するコンタクターであって、該プローブピンの被検査体への接触面が該プローブピンの長手方向の中心線に対して89度以下の傾斜角を有し、しかも該プローブピンが形成する列の少なくとも一列において前記接触面の傾斜方向が同じであることを特徴とするコンタクターである。
【0011】
【発明の実施形態】
以下、図をもって本発明を詳細に説明する。
【0012】
本発明のコンタクターは、図1に例示されるとおり、プローブピン1の被検査体4と接触する側の接触面2が、プローブピン1の中心線3に対して89度以下の傾斜角をもち、しかも、図には記載されていないが、該プローブピンが形成する列の少なくとも一列において、該プローブピンの接触面の傾斜方向が同じである構造を有するものである。そして、この構造を採用することで、プローブピンがプロービングの際に座屈変形する方向が制御でき、隣接するプローブピン同士が接触することを防止する効果を有する。
【0013】
本発明でのコンタクターは垂直に配置されたプローブピンを有するものであり、前記プローブピンには従来から使用されているW、Be−Cu等の導電膜を必要としない線材でも構わない。しかし、強度が強く、数十万回以上のコンタクトでも塑性変型が少ないという優れた特性を持つという理由から、針状単結晶に必要に応じて導電膜を被覆したものがより好ましい。
【0014】
前記針状単結晶について、その材質は、例えばSi、LaB6、Ge、α−Al2O3、GaAs、GaP、MgO、NiO、SiC、InGa等である。これらのうち、半導体と同じ材質のSiが熱膨張率等の特性が同じであり、プローブピンの位置精度が高温でも変化しにくいという理由から好ましい。これら針状単結晶の製法に関しては、VLS成長によるものが転位密度が低いので高強度で高弾性であること、しかも小径のものが容易に得られることから好ましいが、本発明はこれに限定されるものではない。尚、針状単結晶の形状は、一般的に、直径が数〜100μmであり、長さが数百μm〜数mmである。
【0015】
前記針状単結晶は、一般的に電気抵抗値が高く、そのままプローブカード等に用いた時には充分な電気信号を得難いことがあるので、必要に応じて表面に導電性膜を設けることで導電化する。導電性膜はAu、Cu等の低電気抵抗の金属をめっき法、蒸着法、スパッタリング法等の公知の方法を用いて形成することができるが、オーバードライブによる導電性膜の永久変形をなるべく小さく抑えるために、Au等の延性材料を安価なめっき法で形成するのが好ましく、また、その厚みは導電性が充分に付与され、しかもプローブピン先端の位置ズレをなるべく小さくするために1.0〜3.0μmとすることが好ましい。
【0016】
本発明のプローブピン先端の被検査体との接触面に傾斜をつける方法としては、プローブピンの少なくとも先端近傍を曲げ変形させた状態で研摩する方法が最も好ましい。特に、針状単結晶を用いたプローブピンの場合には、その弾性変形時の反力を研磨加工時の負荷荷重とすることができ、容易に傾斜した面を形成できるので好ましい。また、研磨時の研磨材としては、アルミナ、ダイアモンド等の硬質の無機物質を含んだいろいろな砥石等によっても構わないが、ダイヤモンド粒子を含有したテープを使用することが、針状単結晶に強度的ダメージを与えずしかも研磨面の縁でのダレのような異常を生じることなく所望の形状に加工できるという理由から、最も好ましい。
【0017】
本発明では、前記接触面が該プローブピンの長手方向の中心線に対して89度以下である。前記接触面が傾斜していることにより、プローブピンがプロービングの際に座屈変形する方向を規定することができるからである。前記傾斜角については、本発明者らが実験的に検討した結果、89度以下であれば充分に前記効果が得られるという知見に基づいたものである。一方、その下限値については、原理的にこれを規定する必要がないが、傾斜が著しくなるほど研磨しずらくなり、しかもプロービングに際して先端部で欠けを発生しやすくなることから不都合が発生することがある。実用的には、前記事情を考慮して70度以上89度以下が好ましい範囲として選択される。
【0018】
そして、上記の接触面を傾斜することでプロービングの際のプローブピンの座屈方向を制御する効果は、該プローブピンが形成する列の少なくとも一列において前記接触面の傾斜方向が同じであるときに、プローブピン同士の接触を防止できるという実用上の効果を発揮する。
【0019】
針状単結晶先端の接触面は、上述のとおり、プローブピンの長手方向の中心線に対して89度以下の傾斜角を付けて研磨した後、必要に応じて導電性膜で被覆するが、更に、導電性膜の上に接点材料として用いられる金属や合金で被覆することも可能である。この場合の前記金属や合金としては、耐久性の優れた金属、例えば、Pd、Ir、Rh、Ni等の金属や、PdにAg、Cu、Pt、Au等の金属を添加したPd合金や、AgにSn、In、Zn、Cu等の酸化物を添加したAg合金等を用いることができる。
【0020】
【実施例】
以下、実施例及び比較例を用いて本発明を更に詳細に説明する。
【0021】
<中間体の準備>
図2に例示するとおり、SOI(Silicon on Insulator)ウェハー5にフォトリソグラフィーを用いてSiの電極ライン6を形成し、前記電極ライン6上の所定の位置にAuバンプを形成し、その位置にSiの針状単結晶7をVLS法で成長させた。尚、このとき使用したピン配置のパターンは一列に60μmピッチで300本配置した形状であった。上記操作において、Auバンプの直径、厚み及び成長時間を調整することで、直径が15μmで、長さが2200〜2400μmの針状単結晶を得た。これをコンタクター中間体8とし、以降の操作の試料とした。
【0022】
〔実施例1〜6〕
前記試料を用い、図3に例示するとおり、平坦度の優れた円盤9にダイヤモンド粒子を含有する樹脂からなるテープ、即ちダイヤモンドテープ10を貼り合わせ、その上に針状単結晶7の先端が接する様に、しかも前記円盤9の回転中心を外した位置に配置した。この接触した位置から垂直方向にコンタクター中間体8を押し下げ、円盤を回転させることで、針状単結晶7を円盤の回転方向に曲げ変形させながら先端を研磨した。
【0023】
研摩においては、プローブピンを所定の長さにするために、コンタクター中間体8をダイヤモンドテープ10に接してから10μm下方へ押し下げて20秒間研磨する作業を繰り返して行なった。このとき使用した円盤は平坦度1μm以下直径3.5インチのガラスディスクであり、ダイヤモンドテープは平均粒径0.1μmのダイヤモンド粒子を含む樹脂テープであり、厚み75μmのものである。またガラスディスクの回転数は800rpmであり、ディスクの回転中心から20〜35mm離れた位置で研磨した。針状単結晶の長さが目標の2000μmに達した後、押し下げ量を15μmで15秒間研磨し最終仕上げすることにより、プローブピンの接触面を傾斜角89度以下のコンタクター中間体を得た。尚、この最後の研磨時間を15秒〜1秒に調整することで、接触面の傾斜角度を89〜70度に調整することもできる。
【0024】
次に、図4に例示するとおり、前記針状単結晶7及び電極ライン6の表面に無電解めっきでNi下地膜11を0.1μmの厚さで形成し、更に、導電性膜のAu膜12を電気めっき法で2.0μmの厚さで成膜しコンタクターとした。
【0025】
上記操作で得られたコンタクターを用いて後述の耐久性試験を行い、プローブピン先端の位置ズレ量とプローブピン同士の接触による短絡の有無について評価した。結果を表1に示す。
【0026】
【表1】
【0027】
<耐久性試験と評価方法>
耐久性試験はオーバードライブを40μm負荷し、サイクルタイム175msec、コンタクト時間125msecの条件でプロービングを100万回行なった。プローブピンをコンタクトさせるウェハーは3インチサイズのSiウェハーにAu膜を電気めっきで2μmの厚さで形成したものを用いた。
プローブピン先端の位置ズレの測定は、XYステージ(測定精度±1μm)付きの工場顕微鏡を使用し倍率200倍で、耐久性試験前後のプローブピン先端のXY座標を測定し、耐久性試験前後の座標のズレ量でもとめた。尚、表1中のXY方向は図3〜図6に示すXY方向と一致させてあるので、接触面の傾斜方向並びに研摩時等の針状単結晶並びにプローブピンの曲がり方向は、実施例1〜3の場合には図と一致するが、実施例4〜6の場合には図と異なり紙面と垂直方向となっている。また、短絡本数についは、10万回毎にAu膜を成膜していないSiウェハーとコンタクトさせ、隣りのピンとの抵抗値をデジタルマルチメータで測定し、その値が1kΩ以下を示したピン本数を計測し、計10回の測定値を合算し、その合計値を求めた。
【0028】
また、上記実施例1〜6のコンタクターに関して、コンタクターのプロービング時のプローブピンの座屈変形する方向を見定めるために、Au膜を2.0μm厚で成膜したSiウェハー13にコンタクトしてプローブピンの曲がり方を目視にて確認したところ、図5に模式的に示すとおりに、いずれのプローブピンもその座屈方向が同じであった。
【0029】
〔比較例1〜4〕
最終仕上げ時の押し下げ量を5μmとし、20〜60秒間研摩したこと以外は実施例1〜6と同じ操作で、前記試料から接触面の傾斜角が89.2〜90度のコンタクターを得て比較例1〜4とした。これらのコンタクターを実施例1〜6と同じ方法で評価し、その結果を表1に併せて記載した。
【0030】
更に、上記の比較例1〜4のコンタクターについて、コンタクターのプロービング時のプローブピンの座屈変形する方向を見定めるために、Au膜を2.0μm厚で成膜したSiウェハー13にコンタクトしてプローブピンの曲がり方を目視にて確認したところ、図6に模式的に示したとおり、おのおののプローブピンはいろいろな座屈方向を示していた。
【0031】
【発明の効果】
本発明のコンタクターは、実施例から明かなとおり、プローブピン間の接触による電気的短絡が大幅に低減でき、しかもプローブピンの破損もないという顕著な効果があり、長期に渡って高い信頼性を示すので、例えば半導体検査用プローブカードに用いることができ、有用である。更に、本発明のコンタクターは、針状単結晶をプローブピンに用いているので直径が細く、しかもVLS法等によりプローブピンが狭ピッチに配置されているので、半導体の電極パッドの狭ピッチ化、高密度化にも対応できるという効果を奏する。
【0032】
また、実施例から明らかなとおり、本発明のコンタクターはプロービング時に座屈変形する方向が制御されているので、接触面の傾斜方向と交差する方向の位置ズレが小さいという特徴を有するので、この特徴を生かして、接触面の傾斜方向を電極パッドの長手方向と一致させるときには、プローブピン先端の位置ズレが原因で発生するコンタクト不良を防止できるという格別の効果を奏する。
【図面の簡単な説明】
【図1】本発明のコンタクターの一例を示す模式図。
【図2】本発明の実施例1〜6に係るコンタクター中間体の模式図。
【図3】本発明の実施例1〜6に係るプローブピンの研磨方法の説明図。
【図4】本発明の実施例1〜6に係るコンタクターを示す模式図。
【図5】本発明の実施例1〜6の座屈変形状況の説明図。
【図6】本発明の比較例1〜4の座屈変形状況の説明図。
【符号の説明】
1;プローブピン
2;プローブピンの被検査体への接触面
3;プローブピンの中心線
4;被検査体
5;SOIウェハー
6;Si電極ライン
7;針状単結晶
8;コンタクター中間体
9;円盤
10;ダイヤモンドテープ
11;Ni下地膜
12;Au膜
13;Au膜を成膜したSiウェハー
14;プローブピン(実施例1〜6)
15;プローブピン(比較例1〜4)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a contactor used for a probe card or the like for measuring electrical characteristics by contacting an electrode of a device under test such as a semiconductor integrated circuit.
[0002]
[Prior art]
2. Description of the Related Art In a process of manufacturing a semiconductor integrated circuit or the like, generally, at the stage when a large number of chips are formed on a semiconductor wafer, the electrical characteristics of each chip are measured to judge the quality. At the time of this measurement, a connection terminal called a probe card in which a large number of probe pins are implanted according to the electrode shape of the device under test is used.
[0003]
The probe card is generally used for the purpose of bringing a plurality of probe pins into contact with electrodes, the flatness of the surface formed by the tips of the plurality of probe pins, the flatness of the electrodes of the device under test, and when incorporated in an evaluation device. A load must be applied so as to absorb errors such as parallelism between the two, and to further stabilize the resistance value. For this reason, the probe pin is designed so that the portion between the tip portion that comes into contact with the test object and the portion fixed to the probe card bends in the elastic region. The excessive amount of vertical movement of the probe pin required to bend the probe pin is called an overdrive amount.
[0004]
On the other hand, with the recent miniaturization and high integration of semiconductors, the diameter of probe pins has been reduced and the pitch of their arrangement has been reduced. However, when the diameter of the probe pin is reduced, the diameter of the probe pin is reduced in spite of the necessity of increasing the accuracy of the position of the tip of the probe pin. There was a problem that the positional accuracy of the tip deteriorated. Furthermore, currently used probe pins are made by implanting each wire material mainly made of W (tungsten) on a printed wiring board. , It is difficult to meet the requirements of both the manufacturing method and the position accuracy of the tip of the probe pin.
[0005]
Therefore, a method has been proposed in which a needle-like single crystal formed by VLS growth is used as a probe pin (JP-A-5-198636, JP-A-5-215774, and JP-A-5-218156). As a result, it is easy to manufacture a high-density probe card with a narrow pitch, and it is possible to arrange probe pins with high accuracy.
[0006]
However, the probe pins obtained by the above method are arranged almost perpendicular to the surface of the device to be inspected, and adopt a structure in which a needle-like single crystal is covered with a conductive film. In that it buckles and deforms in an irregular direction. For this reason, when the pitch is small, there is a problem that adjacent probe pins come into contact with each other to be damaged or an electrical short circuit occurs. For electrical shorts, measures such as coating the side surfaces of the probe pins with an insulating film have been studied. However, even if this method is used, there is a concern that insulation failure due to contact wear of the insulating film may occur. Therefore, in a narrow-pitch, high-density vertical probe pin using a needle-shaped single crystal of this kind, it is a practically important problem to achieve a structure in which the probe pins do not contact each other even when overdrive is added. Has become.
[0007]
Further, regarding the probe pin using the needle-shaped single crystal, even if the position accuracy of the tip of the probe pin in the initial stage of use is good, if the contact is repeated tens of thousands to hundreds of thousands of times, the probe pin usually has a probe pin surface. The tip of the probe pin is displaced due to plastic deformation of the provided conductive film. The direction of the positional deviation is different for each probe pin because the direction of bending is irregular due to the buckling type. In addition, in a test object in which recent electrodes are arranged at a narrow pitch, the electrode bumps generally have a rectangular shape, so that the displacement of the probe pin tip position is different from the longitudinal direction of the electrode bumps. In the case of a probe pin that matches, there is no problem in contact, but when the displacement is in a direction orthogonal to the longitudinal direction of the electrode bump, some probe pins cannot contact the electrode and the probe card functions. There was a problem that it disappeared.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional problems, and reduces breakage and electrical short-circuit due to contact between probe pins, and reduces the overdrive required for the probe pins to several hundred thousand times or more. A contactor that can be used for a probe card that can make good contact with the electrode bumps of the device under test and can respond to narrower pitch and higher density of semiconductor integrated circuits even if the pin tip position accuracy deteriorates due to loading. It is intended to supply.
[0009]
[Means for Solving the Problems]
The present invention is a contactor having a plurality of probe pins made of a needle-shaped single crystal arranged perpendicular to a non-inspected body, wherein a contact surface of the probe pins with the inspected body has a longitudinal length of the probe pins. A contactor having an inclination angle of 89 degrees or less with respect to the center line of the direction, and the inclination direction of the contact surface is the same in at least one of the rows formed by the probe pins.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0012]
In the contactor of the present invention, as illustrated in FIG. 1, the
[0013]
The contactor according to the present invention has a vertically arranged probe pin, and the probe pin may be a wire that does not require a conventionally used conductive film such as W or Be-Cu. However, it is more preferable that the needle-shaped single crystal is coated with a conductive film as necessary, because it has excellent strength such that the strength is high and the plastic deformation is small even in the case of several hundred thousand contacts or more.
[0014]
The material of the acicular single crystal is, for example, Si, LaB 6 , Ge, α-Al 2 O 3 , GaAs, GaP, MgO, NiO, SiC, InGa, or the like. Among these, Si of the same material as the semiconductor is preferable because it has the same characteristics such as the coefficient of thermal expansion and the positional accuracy of the probe pin is hardly changed even at high temperatures. With regard to the method for producing these needle-like single crystals, those obtained by VLS growth are preferable because they have a high dislocation density and therefore have high strength and high elasticity, and can be easily obtained with a small diameter, but the present invention is not limited thereto. Not something. Incidentally, the shape of the needle-like single crystal is generally several to 100 μm in diameter and several hundred μm to several mm in length.
[0015]
The needle-shaped single crystal generally has a high electric resistance value, and when used as it is in a probe card or the like, it may be difficult to obtain a sufficient electric signal. I do. The conductive film can be formed of a metal having a low electric resistance such as Au or Cu by a known method such as a plating method, a vapor deposition method, and a sputtering method. However, permanent deformation of the conductive film due to overdrive is minimized. In order to suppress this, it is preferable to form a ductile material such as Au by an inexpensive plating method, and the thickness thereof is set at 1.0 to provide sufficient conductivity and to minimize the displacement of the tip of the probe pin. It is preferable to set it to 3.0 μm.
[0016]
As a method of inclining the contact surface of the tip of the probe pin with the object to be inspected according to the present invention, it is most preferable to grind the probe pin in a state where at least the vicinity of the tip is bent and deformed. In particular, in the case of a probe pin using a needle-like single crystal, the reaction force at the time of its elastic deformation can be used as a load during polishing, and an inclined surface can be easily formed, which is preferable. In addition, as a polishing material at the time of polishing, various grindstones containing a hard inorganic substance such as alumina and diamond may be used, but a tape containing diamond particles can be used to obtain a needle-like single crystal having a high strength. This is most preferable because it can be processed into a desired shape without causing any damage and without causing anomalies such as sagging at the edge of the polished surface.
[0017]
In the present invention, the contact surface is not more than 89 degrees with respect to a longitudinal center line of the probe pin. This is because the inclination of the contact surface can define the direction in which the probe pin buckles and deforms during probing. The present inventors have experimentally studied the inclination angle, and based on the finding that the above effect can be sufficiently obtained if the inclination angle is 89 degrees or less. On the other hand, it is not necessary to define the lower limit value in principle, but it becomes difficult to polish as the inclination becomes remarkable, and in addition, inconvenience may occur because probing tends to be chipped at the tip during probing. is there. Practically, 70 to 89 degrees is selected as a preferable range in consideration of the above circumstances.
[0018]
And the effect of controlling the buckling direction of the probe pins at the time of probing by inclining the contact surface is that the inclination direction of the contact surface is the same in at least one of the rows formed by the probe pins. Thus, a practical effect of preventing contact between probe pins can be exhibited.
[0019]
As described above, the contact surface of the needle-shaped single crystal tip is polished with an inclination angle of 89 degrees or less with respect to the center line in the longitudinal direction of the probe pin, and then covered with a conductive film as necessary. Further, the conductive film can be coated with a metal or alloy used as a contact material. As the metal or alloy in this case, a metal having excellent durability, for example, a metal such as Pd, Ir, Rh, or Ni, or a Pd alloy obtained by adding a metal such as Ag, Cu, Pt, or Au to Pd, An Ag alloy in which an oxide such as Sn, In, Zn, or Cu is added to Ag can be used.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0021]
<Preparation of intermediate>
As illustrated in FIG. 2, an
[0022]
[Examples 1 to 6]
As shown in FIG. 3, a tape made of a resin containing diamond particles, that is, a
[0023]
In the polishing, in order to make the probe pin have a predetermined length, the operation of bringing the contactor
[0024]
Next, as illustrated in FIG. 4, a
[0025]
Using the contactor obtained by the above operation, a durability test described below was performed to evaluate the amount of displacement of the tip of the probe pin and the presence or absence of a short circuit due to contact between the probe pins. Table 1 shows the results.
[0026]
[Table 1]
[0027]
<Durability test and evaluation method>
In the durability test, overdriving was performed with a load of 40 μm, and probing was performed 1 million times under the conditions of a cycle time of 175 msec and a contact time of 125 msec. As a wafer to be contacted with the probe pins, a 3-inch Si wafer formed by forming an Au film with a thickness of 2 μm by electroplating was used.
The displacement of the tip of the probe pin was measured using a factory microscope equipped with an XY stage (measurement accuracy ± 1 μm) at a magnification of 200 times, and measuring the XY coordinates of the tip of the probe pin before and after the durability test. The displacement of the coordinates was also determined. Since the XY directions in Table 1 correspond to the XY directions shown in FIGS. 3 to 6, the inclination direction of the contact surface and the bending direction of the needle-like single crystal and the probe pin at the time of polishing and the like were determined in Example 1. In the case of Nos. 1 to 3, the figures are the same as those in the figures, but in the case of Examples 4 to 6, the directions are perpendicular to the paper surface unlike the figures. The number of short-circuits was measured every 100,000 times by contacting the wafer with an Si wafer on which no Au film was formed, measuring the resistance between adjacent pins with a digital multimeter, and finding the value of 1 kΩ or less. Was measured, and the measured values of a total of 10 times were added up, and the total value was obtained.
[0028]
In addition, in order to determine the direction in which the probe pins buckle and deform when the contactors are probed, the contactors of Examples 1 to 6 were brought into contact with the
[0029]
[Comparative Examples 1 to 4]
The same operation as in Examples 1 to 6 was performed except that the amount of depression at the time of the final finishing was 5 μm and polishing was performed for 20 to 60 seconds, and a contactor having an inclination angle of the contact surface of 89.2 to 90 degrees was obtained from the sample and compared. Examples 1 to 4 were used. These contactors were evaluated in the same manner as in Examples 1 to 6, and the results are shown in Table 1.
[0030]
Further, in order to determine the direction in which the probe pins buckle and deform when the contactors are probed, the contactors of Comparative Examples 1 to 4 were brought into contact with the
[0031]
【The invention's effect】
As is clear from the examples, the contactor of the present invention has a remarkable effect that the electric short circuit due to the contact between the probe pins can be greatly reduced and the probe pins are not damaged, and high reliability is provided for a long time. Since it is shown, it can be used for a probe card for semiconductor inspection, for example, and is useful. Furthermore, the contactor of the present invention has a small diameter because the needle-shaped single crystal is used for the probe pin, and the probe pins are arranged at a narrow pitch by the VLS method or the like. This has the effect of being able to cope with higher densities.
[0032]
Also, as is clear from the examples, the contactor of the present invention has a feature that the direction of buckling deformation during probing is controlled, so that the position shift in the direction intersecting the inclination direction of the contact surface is small. When the inclination direction of the contact surface is made to coincide with the longitudinal direction of the electrode pad by taking advantage of the above, there is an extraordinary effect that the contact failure caused by the displacement of the tip of the probe pin can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a contactor of the present invention.
FIG. 2 is a schematic view of a contactor intermediate according to Examples 1 to 6 of the present invention.
FIG. 3 is an explanatory diagram of a method of polishing a probe pin according to Examples 1 to 6 of the present invention.
FIG. 4 is a schematic diagram showing contactors according to Examples 1 to 6 of the present invention.
FIG. 5 is an explanatory view of a buckling deformation state of Examples 1 to 6 of the present invention.
FIG. 6 is an explanatory view of a buckling deformation state of Comparative Examples 1 to 4 of the present invention.
[Explanation of symbols]
1;
15; Probe pin (Comparative Examples 1-4)
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30620696A JP3587488B2 (en) | 1996-11-18 | 1996-11-18 | Contactor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30620696A JP3587488B2 (en) | 1996-11-18 | 1996-11-18 | Contactor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10148646A JPH10148646A (en) | 1998-06-02 |
JP3587488B2 true JP3587488B2 (en) | 2004-11-10 |
Family
ID=17954278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30620696A Expired - Fee Related JP3587488B2 (en) | 1996-11-18 | 1996-11-18 | Contactor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3587488B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5027468B2 (en) * | 2006-09-15 | 2012-09-19 | 日本ミクロコーティング株式会社 | Probe cleaning or probe processing sheet and probe processing method |
JP2008026336A (en) * | 2007-09-27 | 2008-02-07 | Fujitsu Ltd | Contactor |
JP5443910B2 (en) * | 2009-09-09 | 2014-03-19 | 東京エレクトロン株式会社 | Probe polishing apparatus and probe polishing method |
-
1996
- 1996-11-18 JP JP30620696A patent/JP3587488B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10148646A (en) | 1998-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5773987A (en) | Method for probing a semiconductor wafer using a motor controlled scrub process | |
US7400155B2 (en) | Membrane probing system | |
US7533462B2 (en) | Method of constructing a membrane probe | |
US7218131B2 (en) | Inspection probe, method for preparing the same, and method for inspecting elements | |
WO2007029422A1 (en) | Semiconductor device inspecting apparatus and power supply unit | |
WO2001007207A1 (en) | Membrane probing system | |
US7393773B2 (en) | Method and apparatus for producing co-planar bonding pads on a substrate | |
JP3587488B2 (en) | Contactor and manufacturing method thereof | |
US20030098702A1 (en) | Probe card and probe contact method | |
JP3606685B2 (en) | Probe pin and contactor having the same | |
TWI223369B (en) | Semiconductor device having pad | |
JP4663040B2 (en) | Probe cards and how to use them | |
KR100214162B1 (en) | Manufacture of semiconductor device | |
JP3822722B2 (en) | Contact probe, method of manufacturing the same, and probe device including the contact probe | |
JP2002303637A (en) | Probe pin and contactor having the same | |
JP2000227440A (en) | Probe pin and contactor having the same | |
JPH10160757A (en) | Probe pin and probing method | |
JP2003161742A (en) | Silicon probe card and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |