JP3586949B2 - 帳票認識装置 - Google Patents
帳票認識装置 Download PDFInfo
- Publication number
- JP3586949B2 JP3586949B2 JP29803995A JP29803995A JP3586949B2 JP 3586949 B2 JP3586949 B2 JP 3586949B2 JP 29803995 A JP29803995 A JP 29803995A JP 29803995 A JP29803995 A JP 29803995A JP 3586949 B2 JP3586949 B2 JP 3586949B2
- Authority
- JP
- Japan
- Prior art keywords
- frame
- frame structure
- detecting
- component
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Character Discrimination (AREA)
- Character Input (AREA)
Description
【発明の属する技術分野】
本発明は、帳票のような枠罫線と文字を含む文書画像において枠罫線の構造を認識し、帳票を識別し帳票内に記入されている特定の文字領域を切り出し、文字を自動認識するための帳票認識装置に関する。
【0002】
【従来の技術】
近年、文書情報の電子化に伴い、OCR(Optical Character Reader)を始めとする文字認識技術や文書画像処理に対する要望が高まっており、帳票など表形式文書の自動読み取り技術もそのひとつである。とりわけ複数の書式が混在する帳票を処理する場合は、予め人手で帳票を種類毎に分類した後OCR装置に読み取らせる必要があり、時間と労力の削減のため帳票の識別と文字読み取りをともに自動化する事が要望されている。
【0003】
帳票の識別技術としては、例えば特開平2−217977号公報のように局部的な罫線構造の相違から帳票の種類を識別し、予め指示された領域を読み取る方法があり、その従来例を図19、図21及び図22を用いて説明する。例えば図19(a)に示すように帳票イメージ310に対し点線で囲む線分検出領域において水平線分を抽出する事により同図(b)に示す如くk1〜k6の6本の線分が検出される。これに対し図20(a)に示す帳票320において同様に線分抽出を行うと、同図(b)に示す如くm1〜m7の7本の線分が検出される。したがって予め複数の帳票が識別可能な線分検出領域を設定し、領域内の線分の本数、互いの位置関係、長さを検出し比較することにより帳票310と320の識別が可能となり、予め指定された文字読み取り領域、すなわち図19(a)の帳票310においては文字領域311及び312を、図20(a)の帳票320においては文字領域321及び322を切り出し、文字認識を行うことにより自動読み取りを達成するものである。
【0004】
切り出された文字の認識については、様々な方式が提案されており例えば、ニューラルネットを用いた文字認識法(森:”PDPモデルによる手書き漢字認識”、電子情報通信学会論文誌、Vol.J73−D−II, No.8 pp.1268−1274 1990)があり、認識率も実用的なところまできているが、今回は帳票の枠線認識装置ということで文字認識の前処理に限定しているので文字認識に関しては省略するものとする。
【0005】
【発明が解決しようとする課題】
しかしながら前記の従来の構成では、帳票の枠罫線構造の局所的な相違を検出するため図22(a)に示すような帳票330が混在する場合、線分検出を行うと同図(b)に示すようにn1〜n7の7本の線分が検出され、図20(b)に示した場合と同一となり図21(a)の文字読み取り領域331及び332を特定することが難しく、また線分検出領域の範囲を予め目視で確認して設定する必要があり、作業が複雑化するという課題があった。
【0006】
本願発明は、前記従来技術の課題を解決するもので、多種多様な書式の帳票が混在する場合でも帳票を識別し、帳票毎の文字読み取り領域を正確に検出する信頼性の高い帳票認識装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
この課題を解決するために本発明は、2値画像から枠罫線のコーナーを検出するコーナー検出手段と、前記検出された枠罫線のコーナーの形状の組み合わせから枠罫線の構成要素を検出する構成要素検出手段と、前記構成要素どうしを連結し、枠構造情報として出力する矩形検出手段と、前記枠構造情報をもとに最外郭の外形枠を検出し、外形枠の構造の特徴を外形枠構造特徴として抽出する外形枠検出手段と、抽出された外形枠毎に内部の構造特徴を内部構造特徴として抽出する特徴抽出手段と、1つ以上の帳票の書式として外形枠及び内部構造特徴を予め登録した枠構造参照テーブルと、前記検出された外形枠構造特徴と前記枠構造参照テーブルを検索し帳票の候補を決め、決められた候補に対して前記検出された内部構造特徴と照合することにより帳票の種別を特定する枠構造照合手段とを設けたものである。
さらに、枠罫線を含む2値画像を記憶する画像メモリと、前記検出された外形枠構造特徴及び内部構造特徴から文字読み取り対象領域の座標に基づき前記画像メモリから文字領域を切り出す文字切り出し手段と、切り出された文字を認識する文字認識手段とを有するようにしたものである。
【0008】
これにより、多種多様な書式の帳票が混在する場合でも帳票を識別し、帳票毎の文字読み取り領域を正確に検出でき、信頼性の高い帳票認識装置が実現できる。
【0009】
【発明の実施の形態】
本発明の請求項1記載の発明は、2値画像から枠罫線のコーナーを検出するコーナー検出手段と、前記検出された枠罫線のコーナーの形状の組み合わせから枠罫線の構成要素を検出する構成要素検出手段と、前記構成要素どうしを連結し、枠構造情報として出力する矩形検出手段と、前記枠構造情報をもとに最外郭の外形枠を検出し、外形枠の構造の特徴を外形枠構造特徴として抽出する外形枠検出手段と、抽出された外形枠毎に内部の構造特徴を内部構造特徴として抽出する特徴抽出手段と、1つ以上の帳票の書式として外形枠及び内部構造特徴を予め登録した枠構造参照テーブルと、前記検出された外形枠構造特徴と前記枠構造参照テーブルを検索し帳票の候補を決め、決められた候補に対して前記検出された内部構造特徴と照合することにより帳票の種別を特定する枠構造照合手段とを具備する帳票認識装置としたものであり、帳票内の外形枠の構造に基づき帳票の書式カテゴリを判定し、さらに個々の外形枠毎に予め参照テーブルに登録した見本となる枠罫線構造と照合するため、正確に帳票の種別を特定できるという作用を有する。
【0010】
請求項2に記載の発明は、更に、枠罫線と文字を含む2値画像から水平及び垂直方向の所定長以上のランを検出することにより枠罫線を抽出する罫線抽出手段を有し、前記抽出した枠罫線からなるパターンのコーナーを検出することを特徴とするもので、文字が消去され枠罫線のみからコーナー検出が可能となり高精度に構成要素が検出できるという作用を有する。
【0011】
請求項3に記載の発明は、構成要素検出手段は、前記コーナーの形状の組み合わせから罫線の屈曲や交差による構成要素としてL字要素、T字要素及び十字要素の構成要素を検出するもので、コーナーの組合せから罫線の構成要素を検出することにより傾いて読み取られた帳票からでも安定して構成要素が検出できるために正確に帳票の種別を特定でき帳票毎の文字読み取り領域を正確に検出できるという作用を有する。
請求項4に記載の発明は、外形枠検出手段は、頂点座標を連結させて、独立した外形枠毎に外形枠構造特徴として抽出することを特徴とするもので、外形枠の頂点座標を連結することで容易に外形枠構造を抽出することができるという作用を有する。
請求項5に記載の発明は、外形枠構造特徴は、対象帳票内の外形枠の総数、位置及び形状を抽出することを特徴とするもので、外形枠の頂点座標を連結することで容易に外形枠構造を抽出することができるという作用を有する。
請求項6に記載の発明は、特徴抽出手段は、各外形枠毎に内部構造特徴として内部の枠の数、位置、幅及び高さを抽出することを特徴とするもので、抽出された各外形枠毎の内部構造を用いて帳票の種別を正確に特定することができるという作用を有する。
請求項7に記載の発明は、さらに、枠罫線を含む2値画像を記憶する画像メモリと、前記検出された外形枠構造特徴及び内部構造特徴から文字読み取り対象領域の座標に基づき前記画像メモリから文字領域を切り出す文字切り出し手段と、切り出された文字を認識する文字認識手段とを有することを特徴とするもので、正確に帳票の種別を特定でき帳票毎の文字読み取り領域を正確に検出できるという作用を有する。
請求項8に記載の発明は、2値画像から枠罫線のコーナーを検出するステップと、前記検出された枠罫線のコーナーの形状の組み合わせから枠罫線の構成要素を検出するステップと、前記構成要素どうしを連結し、枠構造情報として出力するステップと、枠構造情報をもとに最外郭の外形枠を検出し、外形枠の構造の特徴を外形枠構造特徴として抽出するステップと、個々の外形枠に囲まれた内部の構造特徴を内部構造特徴として抽出するステップと、1つ以上の帳票の書式として外形枠及び内部構造特徴を予め登録した枠構造参照テーブルと、前記検出された外形枠構造特徴と前記枠構造参照テーブルを検索し帳票の候補を決め、決められた候補に対して前記検出された内部構造特徴と照合することにより帳票の種別を特定することにより帳票の種別を認識するステップとを具備するもので、帳票内の外形枠の構造に基づき帳票の書式カテゴリを判定し、さらに個々の外形枠毎に予め参照テーブルに登録した見本となる枠罫線構造と照合するため、正確に帳票の種別を特定できるという作用を有する。
【0012】
以下、本発明の実施の形態について、図1から図21を用いて説明する。
(実施の形態1)
図1は帳票認識装置のブロック構成図を示し、1は帳票を読み取り2値画像を得る画像入力手段、2は前記2値画像を記憶する画像メモリ、3は2値画像の水平及び垂直方向の罫線を抽出する罫線抽出手段、4は2値図形のコーナーを検出するコーナー検出手段、5はコーナー形状の組み合わせから罫線の屈曲や交差によるL字要素、T字要素、十字要素を検出する構成要素検出手段、6は構成要素どうしを連結し、連結形態を枠構造情報として出力する矩形検出手段と、7は帳票内の矩形構造を含む最外郭の外形枠を検出し、帳票の大局的な枠構造特徴を外形枠構造特徴として抽出する外形枠検出手段、8は個々の外形枠に囲まれた内部の枠の数、位置、幅、高さ等の特徴を内部構造特徴として抽出する特徴抽出手段、9は外形枠の大局的な特徴である外形枠構造特徴に基づき帳票を分類し、個々の外形枠の構造特徴として前記外形枠構造特徴及び前記内部構造特徴を登録する枠構造参照テーブル、10は枠構造参照テーブル上の枠構造特徴との照合により帳票の種別を認識し文字読み取り対象枠を検出する枠構造照合手段、11は読み取り対象枠の文字領域を切り出す文字切り出し手段、12は切り出された文字を認識する文字認識手段である。
【0013】
以上のように構成された帳票認識装置について、その動作を説明する。
画像入力手段1により帳票を読み取り、文字部が1、背景が0の値をもつ2値画像に変換し画像メモリ2に記憶し、罫線抽出手段3により2値画像を水平及び垂直方向に走査し所定長以上に値”1”が連続する線を抽出し、コーナー検出手段4により水平及び垂直の罫線からなるパターンのコーナーを検出し、構成要素検出手段5によりコーナー形状の組み合わせから罫線の屈曲部や交差部のL字、T字、及び十字の構成要素を検出し、矩形検出手段6により構成要素どうしを連結しその連結形態を検出し、外形枠検出手段7により帳票内の矩形構造を含む最外郭の外形枠を検出し、外形枠の総数、位置、形状等の大局的な特徴を抽出し、特徴抽出手段8により個々の外形枠に囲まれた内部の枠の数、位置、幅、高さ等の特徴を抽出し、枠構造参照テーブル9に予め見本となる帳票の外形枠の構造及び個々の外形枠の内部の特徴を登録しておき、枠構造照合手段10により対象とする帳票の枠構造情報と枠構造参照テーブル9上の見本となる枠構造と照合し帳票を特定し、その帳票における読み取り対象枠を認識し頂点の座標を検出し、文字切り出し手段11により読み取り対象枠の4頂点の座標に基づき文字領域を切り出し、文字認識手段12により切り出された文字を認識するものである。
【0014】
次に図1における各構成要素の動作を詳細に説明する。帳票を読み取り2値画像を出力する画像入力手段1は、読み取り線密度を約400dpi程度とし、原稿である帳票にLED(発光ダイオード)等で照明しその反射光を一次元のCCDカメラで読み取り、任意の閾値で2値化して文字部が値1、背景が値0の2値画像を出力するものである。また、照明は原稿である帳票の枠線や記入された文字の色によって異なるが、例えば青・黒および赤等の枠線に対して、黒や青等で数字や記号および文字が記入された場合、緑あるいは黄緑の波長(550〜570nm付近)のLEDを用いることが多い。2値化処理においては、固定閾値法や浮動閾値法(森、大津:”認識問題としての二値化と各種方法の検討”、情報処理学会、イメージプロセッシング15−1, Nov. 1977)が良く知られている2値化処理法であり、原稿に合わせて任意の2値化処理法を選択すればよい。
【0015】
このように2値化された画像データは画像メモリ2に格納され、メモリ上の画像データに対し以降に説明する罫線抽出と文字切り出しを行う。
【0016】
次に罫線抽出手段3について図2を用いて説明する。図2は罫線抽出手段3における画像処理のブロック構成図を示し、20は画像メモリ2からの2値画像、21は水平方向にパターンを縮める水平方向収縮手段、22は水平方向にパターンを延長する水平方向延長手段、23は垂直方向にパターンを縮める垂直方向収縮手段、24は垂直方向にパターンを延長する垂直方向延長手段、25は水平方向延長手段22と垂直方向延長手段24の出力のNOR演算を行うNOR回路である。画像メモリ2の2値画像に対し、水平方向収縮手段21において水平方向にh画素縮めることにより、水平方向にh画素以下の幅の線や文字が消滅し、続く水平方向延長手段22において水平方向にh画素延長することによりh画素より長い水平線分が抽出される。同様に垂直方向収縮手段23において垂直方向にv画素縮めることにより、垂直方向にv画素以下の幅の線や文字が消滅し、続く垂直方向延長手段24において垂直方向にv画素延長することによりv画素より長い垂直線分が抽出される。NOR回路25により水平方向延長手段22と垂直方向延長手段24の出力のNOR演算を行うと、文字が消去され枠罫線のみが残る2値画像が得られ、枠罫線及び背景がそれぞれ”0”及び”1”の値をもつ。
【0017】
図2における水平及び垂直方向の収縮及び延長処理について図3及び図4を用いてさらに詳細に説明する。
【0018】
図3は水平及び垂直方向収縮手段21及び23の動作を示すフロー図を示しており、2値画像を水平方向または垂直方向に1ラインずつ順次走査し終了ラインまで処理し、各ライン毎にn画素の収縮処理をおこなうとき、ランレングスのカウント値をCとすると、ステップ31において各ラインの走査開始時にカウント値Cに0を設定し、ステップ32において1画素データを読み込み、ステップ33において画素の値が0(白)か1(黒)かを判定し、0のときステップ34へ進みカウント値Cに0を設定し、さらにステップ35へ進み黒ランではないので値0を出力する。ステップ33の判定で値が1のときはステップ36へ進みカウント値Cがn以上かどうかの判定を行い、n未満のときステップ37へ進みカウント値Cをインクリメントし、さらにステップ35へ進みその走査位置までに所定の黒ランが存在しないので値0を出力する。ステップ36の判定でカウント値Cがn以上のときステップ38へ進みその走査位置までにn画素以上のランレングスをもつ黒ランが存在するので値1を出力する。以上の処理を1ラインの終了まで行うことにより、そのライン上の黒ランがn画素縮められる。次のラインを処理するときは再びステップ31から同様の処理を繰り返す。このようにして全画面の走査が終了すると、水平または垂直方向にn画素以上のランレングスをもつ線分が抽出される。
【0019】
同様に図4は水平及び垂直方向延長手段22及び24の動作を示すフロー図を示しており、2値画像を水平方向または垂直方向に1ラインずつ順次走査し終了ラインまで処理し、各ライン毎にn画素の延長処理をおこなうとき、ランレングスのカウント値をCとすると、ステップ41において各ラインの走査開始時にカウント値Cにnを設定し、ステップ42において1画素データを読み込み、ステップ43において画素の値が0(白)か1(黒)かを判定し、1のときステップ44へ進みカウント値Cにnを設定し、さらにステップ45へ進み黒ラン上にあるので値1を出力する。ステップ43の判定で値が0のときはステップ46へ進みカウント値Cが0以下かどうかの判定を行い、0より大きい場合ステップ47へ進みカウント値Cをデクリメントし、さらにステップ45へ進みその走査位置は黒ランからn画素以内の距離にあるので値1を出力する。ステップ46の判定でカウント値Cが0以下のときステップ48へ進みその走査位置は黒ランからn画素より大きく離れているので値0を出力する。以上の処理を1ラインの終了まで行うことにより、そのライン上の黒ランがn画素延長される。次のラインを処理するときは再びステップ41から同様の処理を繰り返す。このようにして全画面の走査が終了すると、水平または垂直方向にランレングスがn画素延長される。
【0020】
次にコーナー検出手段4、構成要素検出手段5、及び矩形検出手段6における一連の処理について説明するが、これらの内容は同一出願人による特願平7−016862号公報に記載されており詳細な説明は省略し、その動作を簡単に説明する。
【0021】
まずコーナー検出手段4について図5から図7を用いて説明する。図5はコーナーを検出するための前処理として、入力画像を方向コード化画像に変換した結果を示す図、図6は方向コード1〜8と実際の方向の対応関係を示す図、図7が検出するコーナーの具体例を示す図である。図5において51は枠罫線の画素、52は背景の画素、数字は輪郭点に付与された方向コードをそれぞれ示しており、この場合背景パターンに対し時計回りに輪郭を追跡するときの追跡の方向を、方向コード1〜8として割り当てる。このように方向コード化された画像から方向コードの変化点、すなわちコーナーを検出する。このために3×3近傍において注目位置(中央画素)コードが指示する方向に、注目画素と同一方向コードでない位置を検出する。図5において丸で囲まれた位置は方向コードの変化点を示しているが、例えば53の位置では図7(a)に示す画素配置となっており、注目画素の指示する方向”3”の位置の方向コードは”1”となっており、輪郭の方向が”3”から”1”へ変化することを意味するので”31”というコードで表記し、座標と変化する方向コード(以下方向変化コードとよぶ)を1組として検出する。同様に画素位置54、55、56は図7の(b)、(c)、(d)に対応しており、それぞれ”17”、”75”、”53”という方向変化コードが与えられ、これらのコーナー点は、x座標、y座標、方向変化コードを1組の特徴情報として構成要素検出手段5へ通知する。
【0022】
次に構成要素検出手段5について図8と図9を用いて説明する。図8はコーナー点の組み合わせから構成要素を検出するための判定条件を示す図、図9は構成要素の記述形式を示す図である。図8において(a)(b)(c)(d)はL字要素の検出例、(e)(f)(g)(h)はT字要素の検出例、(h)は十字要素の検出例を示しており、コーナー検出手段4からのコーナー点の特徴情報を用いて、x,y座標が所定の距離以内にある複数のコーナー点をグループ化し、グループのメンバーであるコーナー点の方向変化コードの組み合わせから、構成要素の種類が対応付けられる。このようにして検出された構成要素の形状は、図9(a)に示すように4ビットのコード(以下形状コードとよぶ)で記述され、各ビットは上位から図9(b)のS、W、N、Eのいずれの方向に腕が存在するかを示している。例えば図8(a)に示すL字要素はS方向とE方向に腕を有しているので、”1001”のビットパターンで記述される。構成要素のx座標及びy座標は、グループのメンバーであるコーナー点のx座標及びy座標の平均値を与えるものとし、構成要素検出手段5はこのx座標、y座標、及び前記構成要素の形状コードを特徴情報として、矩形検出手段6に通知する。
【0023】
次に矩形検出手段6について図10を用いて説明する。図10は構成要素どうし連結関係を示す図である。図10(a)は構成要素検出手段5において検出されたL字要素、T字要素、十字要素の一例を示すもので、矩形検出手段6は矩形情報としてこれら構成要素の連結関係を記述した連結テーブルを生成出力する。まず各構成要素に対し識別ラベルe1からe20を付与し、次に前記構成要素検出手段5からの特徴情報(x座標、y座標、形状コード)に基づき、形状コードの示す腕についてx方向とy方向を探索し、連結可能な腕をもつ構成要素のうち最短距離にあるものを検出する。同図(b)は構成要素の連結関係を示す連結テーブルを示すもので、各構成要素についてどの要素と連結するかをN、S、E、Wの各方向について記述する。例えばL字要素e1の場合は、腕S及びEに対応する構成要素としてe15及びe2が存在し、T字要素e2の場合は腕S、W、及びEに対応する構成要素としてe8、e1、及びe3が存在することになる。同図(b)の属性フラグは特徴抽出手段8において使用するパラメータであり具体的内容は後述する。
【0024】
次に外形枠検出手段7について図11及び12を参照しながら説明する。図11(a)は外形枠の一例を示す図、図11(b)は時計回りに外形枠を追跡し再び始点に戻るまでの経路を示す図、図12は外形枠を検出する処理のフロー図である。図11(a)において太線で示される矩形62、63、及び64が外形枠であり、帳票61において閉じた枠構造の最も外側の罫線で構成される。例えば外形枠62について、始点要素f1から時計回りに外形枠を追跡し再び始点に戻るまでの経路である追跡経路は図6(b)に示すように、f1、f2、f6、f10、f12、f11、f9、f5、f1となり、外形枠の頂点は丸印で示すように追跡の方向が変化する構成要素となりf1、f2、f12、f11、f1であり、これらを頂点経路と呼ぶ。以下追跡経路は[・・・]、頂点経路は{・・・}というように表記すると、外形枠63については追跡経路は[f3 f4 f8 f14 f13 f7 f3]となり、頂点経路は{f3 f4 f14 f13 f3}であり、外形枠64については追跡経路は[f15 f16 f17 f20 f24 f29 f33 f32 f31 f30 f25 f21 f18 f15]であり、頂点は{f15 f17 f33 f32f31 f30 f15}である。したがって図11(a)に示す帳票の例では外形枠の総数Nは3となる。次にこれらの外形枠を抽出するための処理について図12を参照しながら説明する。まずフロー図で用いる変数について説明する。入力変数は、図10(b)に示した構成要素連結テーブルで、テーブル上のi番目の構成要素に関して、識別ラベルをei、x座標をx(ei)、y座標をy(ei)、形状コードをcode(ei)、方向ポインタをdk(ei)とし、S、W、N、Eの各方向に対しk=0、1、2、3が対応する。iはテーブル上の構成要素の総数をMとすると、0から(M−1)の値をとるものとする。次に出力変数は、外形枠の総数をN、j番目の外形枠に関して、追跡経路をBj=[bj(0)bj(1)・・・]、頂点経路をCj={cj(0)cj(1)・・・}とする。ただしjは0から(N−1)の値をとるものとする。また制御変数として、外形枠の追跡を開始した構成要素ポインタsp、次を追跡するための構成要素ポインタnp、現在の追跡している方向を示す変数dir、外形枠の追跡フラグfとする。まず71において外形枠総数Nに0を設定し、72において外形枠を追跡中かどうかを示すフラグfに0を設定し、更に73において制御変数i及びjに0を設定する。以下、構成要素連結テーブルを参照しながら、個々の外形枠を時計回りに追跡する。74において制御変数iが構成要素の総数M以上の場合処理は終了し、そうでない場合には75に進む。75においてフラグの値から現在外形枠を追跡中かどうかを判定し、フラグの値が0、すなわち外形枠の始点を探索中であるとき76の判定に進み、フラグの値が1、すなわち外形枠を追跡中であるとき84の判定に進む。76の判定は現在注目している構成要素が外形枠追跡の始点であるかどうかを判定するもので、外形枠の左肩の要素、すなわちS方向及びE方向に腕をもつ構成要素かどうかを判定し、該当する場合は78へ進み追跡フラグfをセットし、該当しない場合は77へ進み制御変数iを更新し、次の構成要素をチェックする。79及び80は制御変数に初期値を与えるステップであり、79において始点ポインタを設定し、80において制御変数kkと現在の追跡方向を示す変数dirに、方向Eを示す値3を設定する。次に81及び82において、現在注目している構成要素の識別コードeiを追跡経路Bj及びCjに登録する。そして83において次点ポインタnpに現在着目している構成要素のE方向ポインタの値をセットする。次に再び判定75へ戻り、今回は追跡フラグfがセットされているので判定84へ進む。84は次点ポインタnpと始点ポインタspの一致判定を行うもので、一致した場合は外形枠としてクローズしたことを意味し、94へ進み外形枠の総数Nをインクリメントし、次に95において制御変数jをインクリメントし、更に96において追跡フラグfをリセットし、77において制御変数iを更新し再び74の判定を行う。84の判定において次点ポインタと始点ポインタが一致しないとき、次点ポインタnpの指す構成要素においてS、W、N、Eの各方向のポインタを検索し、次のnpを決める。85は上記S、W、N、Eの方向を検索する際、どの方向から検索するかを決める処理で、式中の%はモジュロ演算を示す。すなわち現在の方向kkに3を加えモジュロ演算を行うことにより、現在の方向に対し時計回りにみてすぐ隣の方向から、時計回り順にチェックしていく。このとき86の判定において、該方向に腕を有するかどうかの判定を行い、腕を有さない場合は、87でkkの値を更新し再び85へ進み、腕を有する場合は判定88へ進む。88は腕の方向が現在の追跡方向と一致しているかどうかの判定を行うもので、一致しない場合は追跡方向が変わるため、90において変数dirに新たな追跡方向を設定し、91において注目している構成要素が方向変化点、すなわち頂点であるとして、頂点経路Cjに登録し、さらに89において追跡経路Bjにも登録する。88の判定において追跡方向が変化しない場合は追跡経路Bjにのみ登録する。続いて次点ポインタnpに求められた方向kの構成要素の識別コードをセットし、現在の方向を示す制御変数kkにkの値をセットし、再び75以下の判定を繰り返す。以上の処理を終了まで実行することにより、帳票内の全ての外形枠が検出され、総数N、追跡経路Bj、及び頂点経路Cjが求められる。
【0025】
次に特徴抽出手段8について図13から図15を用いて説明する。図13及び図14は構成要素の外形枠への属性を検出するフロー図、図15は前記構成要素連結テーブルから各外形枠の内部枠を検出するフロー図である。まず図13のフロー図で用いられる変数について説明する。入力となるデータは図10(b)で示した構成要素連結テーブルと図12の処理で得られた追跡経路Bj(j=0〜N−1)であり、識別ラベル、形状コード、方向ポインタは図12と同様の表記とする。
また追跡経路Bjに属する要素bj(h)の総数をpjと表記する。これに対し出力データとしては、各構成要素がどの外形枠に所属するかを示す属性フラグg(ei)である。すなわち図10(b)に示した構成要素がどの外形枠に所属するかを判定するものである。判定に先立ち、あらかじめ全ての構成要素の属性フラグg(ei)に−1がセットされているものとする。図13において、まず101から104において制御変数j、h、i、kに0を設定し、109の判定において注目している構成要素の腕の方向ポインタの位置に、追跡経路上の構成要素と一致するかどうかを判定する。一致する場合は114へ進み属性フラグg(ei)にjの値すなわち所属する外形枠の番号を設定する。これに対し一致しない場合は111以下の判定へ進み、条件を満たすときは方向の制御変数kを更新し再び109の判定を行う。111では制御変数iがM−1まで進んだかどうかを判定するもので、条件を満たすときは104からの処理を繰り返し、満たさない場合は112以下の判定に進む。112では制御変数hが追跡経路Bjの要素数pjまで進んだかどうかを判定するもので、条件を満たすときは103からの処理を繰り返し、満たさない場合は113の判定に進む。113では制御変数jがN−1まで進んだかどうかを判定するもので、条件を満たすときは102からの処理を繰り返し、満たさない場合は図14に示す処理へ進む。以上の処理により各外形枠上の構成要素の属性フラグg(ei)が設定されたことになる。図14で示すプロセスは、構成要素連結テーブル自身を参照し、まだ属性の決まっていない要素に対し、既に属性のきまっている構成要素の方向ポインタとの一致判定を行い、一致する場合は同一の属性フラグを与える処理である。まず121で制御変数iに0、フラグfに0をそれぞれ設定し、次に128において構成要素eiの属性が決まっているかどうかを判定し、決まっている場合は133へ進み制御変数iがM−1まで進んでいなければiを更新し再び128の判定を行う。属性が決まっていない場合は122へ進みフラグに1をセットし、123へ進み制御変数sに0を設定し、続く129で既に属性の決まっている構成要素を探索する。未だ属性が決まってない場合は131の判定へ進み制御変数sがM−1まで進んでいなければsを更新し再び129の判定を行う。属性の決まっている構成要素があった場合、124で制御変数rに0を設定し、130において方向ポインタの中に、注目している構成要素eiが存在するかどうかを判定し、存在する場合は135へ進み属性フラグg(ei)にg(es)を設定する。130の条件を満たさない場合は125においてrをインクリメントし他の方向ポインタを見る。133において制御変数iがM−1まで進んだときは134へ進み、フラグfの値を検査し値が0でない場合は再び121から処理を繰り返す。134の判定でフラグの値が0のままであれば、全ての構成要素の属性が与えられたことになり、終了する。次に構成要素連結テーブルから各外形枠の内部の枠を検出する処理フローについて図15を参照しながら説明する。まず図15で用いられる変数について説明する。入力となるデータは図10(b)で示した構成要素連結テーブルであり、識別ラベル、方向ポインタ、所属フラグは図13及び図14と同様の表記とする。これに対し出力データとしては、各外形枠ごとの内部枠構造テーブルRjと各外形枠毎の内部枠の総数tjである。ただしjは0から(N−1)の値をとるもの
とする。
【0026】
枠の4頂点のうち左上の点を始点と定めると、内部枠構造テーブルRjは、個々の枠の識別番号、始点のx座標及びy座標、枠の幅wと高さhを要素としてもつものとする。まず141から143において制御変数i及びjと内部枠の総数tjに0を設定する。145の判定で対象とする構成要素が注目している外形枠に所属するかどうかを判定し、所属しない場合は判定159へ進み、所属する場合は判定146へ進む。146は対象としている構成要素が枠の始点であるかどうかを判定するもので、E方向及びS方向のポインタに連結の相手となる構成要素が存在するかどうかが判定条件である。始点である場合147以下の処理に進むが、始点から枠として認識する方法は、基本的に始点からE→S→W→Nと右回りに連結線をたどり、行き止まりになれば前の要素に戻り新しい構成要素を選択して探索を繰り返し、最後に始点に戻ることのできる構成要素の集まりを1つの枠とするものである。まず147において対象点のE方向に構成要素が連結しているがどうか調べ、noならば159へ進み、yesならば148へ進み連結しているE方向の構成要素を対象点にする。次に149において対象点のS方向に構成要素が連結しているがどうか調べ、noならば147に戻り、yesならば150へ進み連結しているS方向の構成要素を対象点にする。続いて151において対象点のW方向に構成要素が連結しているがどうか調べ、noならば149に戻り、yesならば152へ進み連結しているW方向の構成要素を対象点にする。続いて153において対象点のN方向に構成要素が連結しているがどうか調べ、noならば151へ戻り、yesならば154へ進み連結しているN方向の構成要素を対象点にする。続いて155において154の対象点が始点と一致するかどうか調べ、noならば153に戻り、yesならば1つの枠を検出したので156へ進む。156では始点のx座標とE方向の構成要素のx座標の差から枠の幅wを算出し、また始点のy座標とS方向の構成要素のy座標の差から枠の高さhを算出する。次に157において内部枠構造テーブルRjに該枠の始点のx座標、y座標、幅w、高さhを登録し、158において内部枠の総数tjをインクリメントする。その後159へ進み制御変数iの判定を行い、iが構成要素の総数M−1まで進んでいないとき160へ進みiをインクリメントし再び145の判定に進み、iがM以上の場合は161へ進む。161では制御変数jの判定を行い、jが外形枠の総数N−1まで進んでいないとき162へ進みjをインクリメントし再び142に戻り、jがN以上の場合は終了となる。以上図12から図15を用いて説明した外形枠検出手段7及び特徴抽出手段8により、帳票の外形枠構造特徴として外形枠の総数、頂点位置及び個々の外形枠の内部構造特徴として内部枠の総数、枠の始点位置、幅、高さが検出され、次の枠構造照合手段10において枠構造参照テーブル9に登録されている帳票の枠構造と照合し、帳票を特定し文字読み取り領域を決定する。
【0027】
以下枠構造参照テーブル9と枠構造照合手段10について図16と図17を用いて説明する。図16は枠構造参照テーブル9に登録してある帳票の具体例、図17は枠構造参照テーブル9の構造を示す図である。図16(a)に示す帳票は3個の外形枠211、212、213が存在し、個々の外形枠には13個の内部枠が存在し、それぞれ(1)から(13)の識別番号が与えられている。また同図(b)に示す帳票は2個の外形枠221、222が存在し、個々の外形枠には11個の内部枠が存在し、それぞれ(1)から(11)の識別番号が与えられている。また同図(c)に示す帳票は1個の外形枠231が存在し、11個の内部枠が存在しそれぞれ(1)から(11)の識別番号が与えられている。さらに同図(d)に示す帳票は1個の外形枠241が存在し、13個の内部枠が存在しそれぞれ(1)から(13)の識別番号が与えられている。これらの帳票の枠構造の特徴は図17(a)(b)に示すテーブルに登録されている。図17において(a)は外形枠構造を登録するテーブル、(b)は内部枠構造を登録するテーブルを示す。同図(a)においてテーブルに登録する要素としては、外形枠の総数、頂点数、個々の外形枠における内部枠の総数、外形枠の識別番号、外形枠の頂点座標があり、入力された帳票におけるこれらの特徴をパラメータとしてテーブルを検索することにより、帳票の候補が決まる。次に候補として挙げられた帳票に対し、今度は同図(b)に示す内部の枠の詳細構造を順次照合する。すなわち個々の枠について始点座標、幅、及び高さの一致判定を行い一致したとき帳票が特定できたとみなし、読み取り対象枠の識別番号に対応する入力帳票の枠の始点座標、幅、高さを文字切り出し手段11に通知する。例えば図16(d)に示す帳票の場合、読み取り対象枠は(6)及び(7)となりそれぞれの枠の始点、幅、高さが文字切り出し手段11に通知される。
【0028】
次に、文字切り出し手段11について説明する。文字切り出し手段11は、画像メモリ2から実際の文字の2値イメージを切り出して文字認識手段12に送るもので、その処理について図18を用いて説明する。図18は、帳票の枠の中に文字が描かれている2値イメージを示している。ここで、251は読み取り対象枠の始点(xs,ys)、252は文字読み取り領域、253は文字切り出し領域を示す。枠構造照合手段10より通知された始点(xs,ys)、幅w、高さhに基づき、マージンdxとdyを見込んで、始点254(xs+dx,ys+dy)から幅(w−2dx)、高さ(h−2・dy)の領域を読み取り領域254として決定する。個々の文字の切り出し領域は、この読み取り領域において水平方向及び垂直方向のプロジェクションをとることにより決定され、水平及び垂直方向において所定の度数以上の領域を文字切り出し領域253とする。プロジェクションを用いた文字切り出しは一般的な技術であるので詳細な説明は省略する。このように切り出された個々の文字を後段の文字認識手段12に転送し、指定された枠内の文字列を認識する事ができる。
【0029】
【発明の効果】
以上のように本発明によれば、画像入力手段により読み取られたの帳票の2値画像に対して、罫線を抽出し罫線の交点である構成要素を検出し、各構成要素どうしを連結し枠構造を生成し、枠構造の外形枠を検出しその特徴から帳票を分類し、さらに各外形枠の内部の枠構造を見本と照合して帳票の種類を特定し、読み取り対象枠を検出することにより、多種多様な書式の帳票が混在する場合でも帳票を識別し、帳票毎の個別の文字読み取り領域を正確に検出でき、信頼性の高い文字認識が行えるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における帳票認識装置のブロック結線を示す図
【図2】同実施の形態の帳票認識装置における罫線抽出手段でのブロック結線を示す図
【図3】同実施の形態の帳票認識装置における線分収縮手段での処理の手順を示すフローチャート
【図4】同実施の形態の帳票認識装置における線分延長手段での処理の手順を示すフローチャート
【図5】同実施の形態の帳票認識装置におけるコーナー検出手段での方向コード化と方向コード変化点検出について説明する図
【図6】同実施の形態の帳票認識装置におけるコーナー検出手段での方向コードと実際の方向との対応関係を示す図
【図7】同実施の形態の帳票認識装置におけるコーナー検出手段での方向変化コードの具体例を示す図
【図8】同実施の形態の帳票認識装置における構成要素検出手段でのコーナー点の組み合わせによる構成要素の具体例を示す図
【図9】同実施の形態の帳票認識装置における構成要素抽出手段での構成要素の形態の記述について説明する図
【図10】同実施の形態の帳票認識装置における矩形検出手段での構成要素どうしの連結関係を示す概念図
【図11】同実施の形態の帳票認識装置における外形枠検出手段での外形枠検出の一例を示す図
【図12】同実施の形態の帳票認識装置における外形枠検出手段での外形枠検出の処理の手順を示すフローチャート
【図13】同実施の形態の帳票認識装置における特徴抽出手段での構成要素の属性を検出する処理の手順を示すフローチャート
【図14】同実施の形態の帳票認識装置における特徴抽出手段での構成要素の属性を検出する処理の手順を示すフローチャート
【図15】同実施の形態の帳票認識装置における特徴抽出手段での内部枠構造を検出する処理の手順を示すフローチャート
【図16】同実施の形態の帳票認識装置における枠構造参照テーブルに登録されている帳票の具体例を示す図
【図17】同実施の形態の帳票認識装置における枠構造参照テーブルでのテーブルの構造を示す図
【図18】同実施の形態の帳票認識装置における文字切り出し手段の処理を示す図
【図19】従来の帳票認識装置の処理動作を示す図
【図20】従来の帳票認識装置の処理動作を示す図
【図21】従来の帳票認識装置の処理動作を示す図
【符号の説明】
1 画像入力手段
2 画像メモリ
3 罫線抽出手段
4 コーナー検出手段
5 構成要素検出手段
6 矩形検出手段
7 外形枠検出手段
8 特徴抽出手段
9 枠構造参照テーブル
10 枠構造照合手段
11 文字切り出し手段
12 文字認識手段
20 2値画像
21 水平方向収縮手段
22 水平方向延長手段
23 垂直方向収縮手段
24 垂直方向延長手段
25 NOR回路
51 枠罫線の画素
52 背景の画素
53〜56 コーナー点
61 帳票
62〜64 外形枠
210 帳票A
211〜213 外形枠
220 帳票B
221〜222 外形枠
230 帳票C
231 外形枠
240 帳票D
241 外形枠
251 枠の始点
252 文字読み取り領域
253 文字切り出し領域
254 文字読み取り領域の始点
Claims (8)
- 2値画像から枠罫線のコーナーを検出するコーナー検出手段と、前記検出された枠罫線のコーナーの形状の組み合わせから枠罫線の構成要素を検出する構成要素検出手段と、前記構成要素どうしを連結し、枠構造情報として出力する矩形検出手段と、前記枠構造情報をもとに最外郭の外形枠を検出し、外形枠の構造の特徴を外形枠構造特徴として抽出する外形枠検出手段と、抽出された外形枠毎に内部の構造特徴を内部構造特徴として抽出する特徴抽出手段と、1つ以上の帳票の書式として外形枠及び内部構造特徴を予め登録した枠構造参照テーブルと、前記検出された外形枠構造特徴と前記枠構造参照テーブルを検索し帳票の候補を決め、決められた候補に対して前記検出された内部構造特徴と照合することにより帳票の種別を特定する枠構造照合手段とを具備する帳票認識装置。
- 更に、枠罫線と文字を含む2値画像から水平及び垂直方向の所定長以上のランを検出することにより枠罫線を抽出する罫線抽出手段を有し、前記抽出した枠罫線からなるパターンのコーナーを検出することを特徴とする請求項1記載の帳票認識装置。
- 構成要素検出手段は、前記コーナーの形状の組み合わせから罫線の屈曲や交差による構成要素としてL字要素、T字要素及び十字要素の構成要素を検出することを特徴とする請求項1また2記載の帳票認識装置。
- 外形枠検出手段は、頂点座標を連結させて、独立した外形枠毎に外形枠構造特徴として抽出することを特徴とする請求項1記載の帳票認識装置。
- 外形枠構造特徴は、対象帳票内の外形枠の総数、位置及び形状を抽出することを特徴とする請求項4記載の帳票認識装置。
- 特徴抽出手段は、各外形枠毎に内部構造特徴として内部の枠の数、位置、幅及び高さを抽出することを特徴とする請求項1記載の帳票認識装置。
- さらに、枠罫線を含む2値画像を記憶する画像メモリと、前記検出された外形枠構造特徴及び内部構造特徴から文字読み取り対象領域の座標に基づき前記画像メモリから文字領域を切り出す文字切り出し手段と、切り出された文字を認識する文字認識手段とを有することを特徴とする請求項1乃至6のいずれかに記載の帳票認識装置。
- 2値画像から枠罫線のコーナーを検出するステップと、前記検出された枠罫線のコーナーの形状の組み合わせから枠罫線の構成要素を検出するステップと、前記構成要素どうしを連結し、枠構造情報として出力するステップと、枠構造情報をもとに最外郭の外形枠を検出し、外形枠の構造の特徴を外形枠構造特徴として抽出するステップと
、抽出された外形枠毎に内部の構造特徴を内部構造特徴として抽出するステップと、1つ以上の帳票の書式として外形枠及び内部構造特徴を予め登録した枠構造参照テーブルと、前記検出された外形枠構造特徴と前記枠構造参照テーブルを検索し帳票の候補を決め、決められた候補に対して前記検出された内部構造特徴と照合することにより帳票の種別を特定することにより帳票の種別を認識するステップとを具備する帳票認識方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29803995A JP3586949B2 (ja) | 1995-11-16 | 1995-11-16 | 帳票認識装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29803995A JP3586949B2 (ja) | 1995-11-16 | 1995-11-16 | 帳票認識装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09138837A JPH09138837A (ja) | 1997-05-27 |
JP3586949B2 true JP3586949B2 (ja) | 2004-11-10 |
Family
ID=17854339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29803995A Expired - Fee Related JP3586949B2 (ja) | 1995-11-16 | 1995-11-16 | 帳票認識装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3586949B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3411472B2 (ja) | 1997-05-30 | 2003-06-03 | 富士通株式会社 | パターン抽出装置 |
JPH11143986A (ja) | 1997-10-17 | 1999-05-28 | Internatl Business Mach Corp <Ibm> | ビットマップイメージの処理方法及び処理装置、ビットマップイメージの処理を行うイメージ処理プログラムを格納した記憶媒体 |
JP3022459B2 (ja) | 1997-12-24 | 2000-03-21 | 日本電気株式会社 | 帳票識別登録装置 |
DE60204066T2 (de) * | 2001-02-22 | 2006-02-02 | Oce Print Logic Technologies S.A. | Automatische Lokalisierung von Tabellen in Dokumenten |
JP5661393B2 (ja) * | 2010-09-17 | 2015-01-28 | グローリー株式会社 | 枠線認識方法および枠線認識装置 |
JP6780271B2 (ja) | 2016-03-23 | 2020-11-04 | 富士ゼロックス株式会社 | 画像処理装置及び画像処理プログラム |
-
1995
- 1995-11-16 JP JP29803995A patent/JP3586949B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09138837A (ja) | 1997-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5467411A (en) | System with approximation mechanism for recognizing graphical elements in a drawing | |
EP1497787B1 (en) | System and method for identifying and extracting character strings from captured image data | |
US6104833A (en) | Pattern recognizing apparatus and method | |
US5515455A (en) | System for recognizing handwritten words of cursive script | |
CN110180186B (zh) | 一种地形图转换方法及系统 | |
JPH08255236A (ja) | 画像のファイリング装置及びファイリング方法 | |
JPH08305796A (ja) | パターン抽出装置、パターン再認識用テーブル作成装置及びパターン認識装置 | |
JPH09259219A (ja) | 文字認識方法 | |
US6947596B2 (en) | Character recognition method, program and recording medium | |
JP4275866B2 (ja) | カラー画像から文字列パターンを抽出する装置および方法 | |
JP3586949B2 (ja) | 帳票認識装置 | |
US7095891B1 (en) | Pattern segmentation apparatus and pattern recognition apparatus | |
Ablameyko et al. | A complete system for interpretation of color maps | |
JP4046941B2 (ja) | 文書書式識別装置および識別方法 | |
JP3622347B2 (ja) | 帳票認識装置 | |
JP3586911B2 (ja) | 枠線認識装置 | |
JP2004334913A (ja) | 帳票認識装置及び帳票認識方法 | |
Bushofa et al. | Segmentation and Recognition of Printed Arabic Characters. | |
JP4810853B2 (ja) | 文字画像切出装置、文字画像切出方法およびプログラム | |
JPH06111070A (ja) | 文字認識装置 | |
JPH0877293A (ja) | 文字認識装置および文字認識用辞書作成方法 | |
JPH06337929A (ja) | 図面管理方法および装置 | |
JP2023130540A (ja) | 情報処理システム | |
JPH0434652A (ja) | 図面入力装置 | |
JP2004013188A (ja) | 帳票読取り装置および帳票読取り方法ならびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070820 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110820 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |