[go: up one dir, main page]

JP3577843B2 - Inductively coupled plasma device - Google Patents

Inductively coupled plasma device Download PDF

Info

Publication number
JP3577843B2
JP3577843B2 JP17192096A JP17192096A JP3577843B2 JP 3577843 B2 JP3577843 B2 JP 3577843B2 JP 17192096 A JP17192096 A JP 17192096A JP 17192096 A JP17192096 A JP 17192096A JP 3577843 B2 JP3577843 B2 JP 3577843B2
Authority
JP
Japan
Prior art keywords
frequency
current
frequency current
inductively coupled
coupled plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17192096A
Other languages
Japanese (ja)
Other versions
JPH1022096A (en
Inventor
源一 片桐
信 虎口
明夫 清水
康史 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP17192096A priority Critical patent/JP3577843B2/en
Publication of JPH1022096A publication Critical patent/JPH1022096A/en
Application granted granted Critical
Publication of JP3577843B2 publication Critical patent/JP3577843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波誘導結合を用いて熱プラズマを発生する誘導結合プラズマ装置に係わり、特にプラズマ出力の効率が高く、寿命の長い構成に関する。
【0002】
【従来の技術】
誘導結合プラズマ(Inductively Coupled Plasma,以下ICPと略記する)装置は、電気絶縁管に同軸に高周波誘導コイルを巻装し、高周波誘導コイルに高周波電流を通電して電気絶縁管の内部に導入したガスをプラズマ化して用いる装置である。
【0003】
図5は、従来より用いられている誘導結合プラズマ装置(ICP装置)の基本構成図である。図において、1は円筒状の電気絶縁管である。2は電気絶縁管1に同軸状に巻かれた高周波誘導コイルで、通常3〜4ターン巻装して構成されている。また、3は高周波電源、4はインピーダンス調整器、5は電流輸送導体である。本構成において、電気絶縁管1の一端よりプラズマガスを導入し、高周波電源3の出力電流をインピーダンス調整器4により調整して得られる高周波電流を、電流輸送導体5を通して高周波誘導コイル2に通電し、高周波磁界を発生させる。電気絶縁管1に導入されたプラズマガスは、発生した高周波磁界の電磁誘導で生じる電界によりプラズマ化される。得られるプラズマ出力10は、電界の強さと形状、ならびに電気絶縁管1に導入されるプラズマガスの径方向および周方向流量を制御することにより、発散形状や絞られたフレア状に形成される。
【0004】
なお、ICP装置は、DCトーチと組み合わせてハイブリッド型トーチとして利用したり(特開昭62−29880 号参照)、安定化し長寿命化するために多段に組み合わせて用いられる例(特開昭61−161138号参照)もある。
【0005】
【発明が解決しようとする課題】
上記のごとく、ICP装置では、電気絶縁管に同軸に高周波誘導コイルを巻装し、高周波電流を通電して高周波磁界を発生させ、発生した磁界の電磁誘導作用により形成される電界を用いて電気絶縁管に導入したガスをプラズマ化して用いている。したがって、得られるプラズマの形状は電界を生じる高周波磁界の形状、すなわち高周波誘導コイルの形状によって左右される。
【0006】
これに対して従来のICP装置においては、図5に示したごとく高周波誘導コイル1が3〜4ターンの複数巻きのコイルにより形成されているので、高周波誘導コイル2を電気絶縁管1に同軸に配しても、高周波誘導コイル2の導体は螺旋状に巻装され、電気絶縁管1の横断面に対して傾斜を持つこととなり、この導体を流れる高周波電流により生じる高周波磁界は電気絶縁管1の軸方向に対して傾斜を持つこととなる。さらにこのような複数巻きのコイルでは、巻き始めと巻き終わりが上端と下端に配されるので、この部分を流れる電流により生じる磁界は非対象に傾いて形成される。したがって、この高周波磁界の電磁誘導で生じるプラズマ生成用の電界が歪んだり、傾いたりすることとなり、特に下端部での磁界の傾きは電界の形状の偏りに大きな影響を及ぼす。このため、従来のICP装置では、生成したプラズマ形状が同軸状にならず電気絶縁管1に偏って生成され、壁面での損失が大きくなってプラズマ出力の効率が低下する事態が生じたり、あるいは、プラズマ出力を上昇させるために高周波電流を増大させると、偏ったプラズマのエネルギーが増大して電気絶縁管1や周辺の構成部品が破損してしまう事態に至る危険性がある。
【0007】
本発明の目的は、上記のごとき従来の難点を解消し、プラズマ生成電界の歪みが抑制され、絶縁管等の構成部品の損傷の恐れがなく、高効率で、高出力の運転が可能な誘導結合プラズマ装置(ICP装置)を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
高周波誘導コイルを巻装した電気絶縁管の内部にプラズマガスを導入し、高周波誘導コイルに高周波電流を通電して前記ガスをプラズマ化して用いるIPC装置において、
(1)高周波誘導コイルを複数の単巻きコイルから形成し、かつこれらの単巻きコイルにそれぞれ独立に高周波電流を通電する高周波電流通電手段を備えることとする。
【0009】
(2)さらに、(1)の高周波電流通電手段を、1台の高周波電源と、該高周波電源で得られる高周波電流を複数の単巻きコイルに分配する高周波電流分配器と、高周波電流分配器により分配して得られた高周波電流を各単巻きコイルに送る複数の電流輸送導体と、高周波電流の供給量を制御するインピーダンス調整器とから構成することとする。
【0010】
(3)あるいは、(1)の高周波電流通電手段を、複数の単巻きコイルに対してそれぞれ独立して設けられた複数の高周波電源と、各高周波電源と各単巻きコイルとを連結する複数の電流輸送導体と、高周波電流の供給量を制御するインピーダンス調整器と、複数の高周波電源の発振を調整する発振位相調整器とから構成することとする。
【0011】
(4)さらに、(2)または(3)のICP装置において、電流輸送導体に切り欠きを設けて、インピーダンス調整器とする。
上記(1)のごとく、ICP装置の高周波誘導コイルを複数の単巻きコイルから形成することとすれば、各単巻きコイルは、導体を電気絶縁管の横断面に平行に配して設置することができるので、電流ループの偏りや傾きが無くなり、発生する磁界の中心軸を電気絶縁管の中心軸に一致させて配することができる。特に、単巻きコイルでは導体の巻き始めと巻き終わりを電気絶縁管の横断面に平行な同一面内に配することができるので、従来の複数巻きのコイルのごとき巻き始めと巻き終わり部での発生磁界の偏りを生じることなく対象性に優れた磁界が得られる。したがって、高周波電流通電手段により複数の単巻きコイルのそれぞれに独立して高周波電流を通電することにより、所定の強度と形状を持ち、かつ偏りのない高周波磁界が形成されることとなり、さらに電磁誘導作用で生じる電界により偏りのないプラズマ出力が得られることとなる。
【0012】
さらに、上記の(2)のごとくとすれば、高周波電流分配器により分配され電流輸送導体を通して各単巻きコイルに送られる高周波電流が、インピーダンス調整器により分配量を制御されるので、系統およびプラズマ負荷によって生じる電流バランスの崩れが防止され、1台の高周波電源で複数の単巻きコイルを効果的に駆動できることとなる。
【0013】
また、上記の(3)のごとくとすれば、複数の単巻きコイルを駆動するそれぞれ専用の高周波電源が、発振位相調整器によって互いに発振協調・安定化されて駆動されるので、複数の高周波電源で複数の単巻きコイルが効果的に駆動されることとなる。
また、上記の(4)のごとくとすれば、コンダクタンスとインダクタンスの調整が容易にでき、複数の単巻きコイルに通電する高周波電流の調整をより効果的に行うことができる。
【0014】
【発明の実施の形態】
図1は、本発明によるICP装置の第1の実施例を示す概略構成図で、(a)はICP装置本体と高周波電流供給系の構成を示す基本構成図、(b)は(a)のX−X面におけるICP装置本体の断面図である。
本実施例のICP装置本体は、図に見られるように、円筒状の電気絶縁管1に3個の単巻きの高周波誘導コイル2A,2B,2Cを同心状に巻装して構成されている。電気絶縁管1には石英ガラス製の二重円筒が用いられており、二重円筒の中間層に冷却水を通して冷却する構成である。高周波誘導コイル2A,2B,2Cのコイル導体には、いずれも中空銅管が用いられており、内部に冷却水を通流し冷却して使用される。各コイルは、図示しない治具により、平面を電気絶縁管1の横断面に、また軸心を電気絶縁管1の軸心に一致させるよう調整して固定される。
【0015】
また、本実施例においては、3個の単巻きの高周波誘導コイル2A,2B,2Cを1台の高周波電源3により駆動する方式が採られており、高周波電流を高周波電流分配器6により分配し、中空銅管製の電流輸送導体5によって各コイルに供給している。各コイルの電流バランスは、各系統に設けられたインピーダンス調整器4A,4B,4Cの可変静電容量を調整することにより調整され、最適化される。すなわち、本方式を用いれば、利用効率を高めて1台の高周波電源で駆動できることとなる。なお、インピーダンスの調整にはインダクタンスを用いても良いが、負荷を含めた高周波系統全体のバランスから最適なインピーダンス調整素子を選択すればよい。
【0016】
上記のごとく構成したICP装置において、電気絶縁管1の一端からプラズマガスを導入して径方向と周方向に供給し、同時に高周波誘導コイル2A,2B,2Cに高周波電流を通電すると、生じる高周波磁界、したがって高周波磁界の電磁誘導により生じる電界が、電気絶縁管1と同軸に、かつ偏りを生じることなく形成され、プラズマ出力10は電気絶縁管1の内部に同軸状に形成されるので、壁面での損失あるいは壁面の損傷等の恐れがなく、高効率でプラズマが生成されることとなる。
【0017】
図2は、本発明によるICP装置の第2の実施例を示す基本構成図である。
本実施例のICP装置本体の構成は、図1に示した第1の実施例のICP装置本体の構成と同一であり、本実施例の第1の実施例との差異は、3個の単巻きの高周波誘導コイル2A,2B,2Cの駆動方式にある。すなわち、本実施例では、3個のコイルを3個の高周波電源3A,3B,3Cにより駆動する方式を採っており、各電源より供給される高周波電流は、各系統に設けられたインピーダンス調整器4A,4B,4Cにより調整される。また、複数の電源での駆動を効率よく行うために、発振位相調整器7によって電源の発振協調、安定化が図られている。
【0018】
したがって、本構成のICP装置においては、高周波電源3A,3B,3Cが小型化でき、技術的難度の高いMHz域の大電流の供給が可能となり、誘導電流の大きさと周波数に比例するICP装置の電界を大きくできるので、高出力のICP装置が得られることとなる。
図3および図4は、本発明によるICP装置の高周波電流供給系に用いられるインピーダンス調整器の実施例を示す外形図で、このうち、図3は板状の電流輸送導体5Aに、切り欠き9Aを設けてインピーダンス調整器としたもの、図4は管状の電流輸送導体5Bに、切り欠き9Bを設けてインピーダンス調整器としたものである。
【0019】
このように切り欠き9A,9Bを形成すれば、主に回路中のインダクタンスが増加され、特別な回路素子やこれを収めるシールドケースを設けることなく、簡単な構成により容易にプラズマ負荷に対する電力効率を上げることができることとなる。
【0020】
【発明の効果】
上述のごとく、本発明によれば、
(1)ICP装置を請求項1に記載のごとくに構成することとしたので、高周波誘導コイルの電流ループをプラズマ生成空間の横断面に一致して配することが可能となり、プラズマ生成電界の歪みが抑制されることとなったので、絶縁管等の構成部品の損傷の恐れがなく、高効率で、高出力の運転が可能なICP装置が得られることとなった。
【0021】
(2)さらに、請求項2に記載のごとくに構成することとすれば、複数の高周波誘導コイルを、利用効率を高めて1台の高周波電源で駆動できるので、構成部品の損傷の恐れがなく、高効率で、高出力の運転が可能なICP装置として好適である。
(3)また、請求項3に記載のごとくに構成することとすれば、各電源が小型化でき、MHz域の大電流の供給が可能となり、高出力のICP装置が得られることとなる。
【0022】
(4)また、請求項4に記載のごとくとすれば、容易にインピーダンスが調整され、簡単な構成により容易にプラズマ負荷に対する電力効率を上げることができる。
【図面の簡単な説明】
【図1】本発明によるICP装置の第1の実施例を示す概略構成図で、(a)はICP装置本体と高周波電流供給系の構成を示す基本構成図、(b)は(a)のX−X面におけるICP装置本体の断面図
【図2】本発明によるICP装置の第2の実施例を示す基本構成図
【図3】本発明によるICP装置の高周波電流供給系に用いられるインピーダンス調整器の実施例を示す外形図
【図4】本発明によるICP装置の高周波電流供給系に用いられるインピーダンス調整器の他の実施例を示す外形図
【図5】従来より用いられているICP装置の基本構成図
【符号の説明】
1 電気絶縁管
2 高周波誘導コイル
2A 高周波誘導コイル
2B 高周波誘導コイル
2C 高周波誘導コイル
3 高周波電源
3A 高周波電源
3B 高周波電源
3C 高周波電源
4 インピーダンス調整器
4A インピーダンス調整器
4B インピーダンス調整器
4C インピーダンス調整器
5 電流輸送導体
5A 電流輸送導体
5B 電流輸送導体
6 高周波電流分配器
7 発振位相調整器
9A 切り欠き
9B 切り欠き
10 プラズマ出力
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inductively coupled plasma apparatus that generates thermal plasma using high-frequency inductive coupling, and more particularly to a configuration having a high plasma output efficiency and a long life.
[0002]
[Prior art]
An inductively coupled plasma (hereinafter, abbreviated as ICP) device has a high-frequency induction coil wound coaxially around an electrically insulating tube, and a high-frequency current is applied to the high-frequency induction coil to introduce a gas introduced into the inside of the electrically insulating tube. This is an apparatus that is used by converting it into plasma.
[0003]
FIG. 5 is a basic configuration diagram of an inductively coupled plasma device (ICP device) conventionally used. In the figure, reference numeral 1 denotes a cylindrical electric insulating tube. Reference numeral 2 denotes a high-frequency induction coil wound coaxially around the electric insulating tube 1 and is usually wound three to four turns. Reference numeral 3 is a high-frequency power supply, 4 is an impedance adjuster, and 5 is a current transport conductor. In this configuration, a plasma gas is introduced from one end of the electric insulating tube 1, and a high-frequency current obtained by adjusting an output current of the high-frequency power supply 3 by the impedance adjuster 4 is supplied to the high-frequency induction coil 2 through the current transport conductor 5. And generate a high-frequency magnetic field. The plasma gas introduced into the electric insulating tube 1 is turned into plasma by an electric field generated by electromagnetic induction of the generated high-frequency magnetic field. The obtained plasma output 10 is formed in a divergent shape or a narrowed flare shape by controlling the strength and shape of the electric field and the radial and circumferential flow rates of the plasma gas introduced into the electric insulating tube 1.
[0004]
The ICP device may be used as a hybrid torch in combination with a DC torch (see JP-A-62-29880), or may be used in multiple stages to stabilize and extend the service life (see JP-A-61-1986). 161138).
[0005]
[Problems to be solved by the invention]
As described above, in an ICP device, a high-frequency induction coil is coaxially wound around an electric insulating tube, a high-frequency current is applied to generate a high-frequency magnetic field, and the electric field is generated using an electric field formed by an electromagnetic induction action of the generated magnetic field. The gas introduced into the insulating tube is used as a plasma. Therefore, the shape of the obtained plasma depends on the shape of the high-frequency magnetic field that generates the electric field, that is, the shape of the high-frequency induction coil.
[0006]
On the other hand, in the conventional ICP device, as shown in FIG. 5, the high-frequency induction coil 1 is formed by a coil having a plurality of turns of 3 to 4 turns. Even if it is arranged, the conductor of the high-frequency induction coil 2 is spirally wound and has an inclination with respect to the cross section of the electric insulating tube 1. Has an inclination with respect to the axial direction. Further, in such a multi-turn coil, the start and end of the winding are arranged at the upper end and the lower end, so that the magnetic field generated by the current flowing through this portion is formed to be asymmetrically inclined. Therefore, the electric field for plasma generation generated by the electromagnetic induction of the high-frequency magnetic field is distorted or tilted. In particular, the tilt of the magnetic field at the lower end greatly affects the deviation of the shape of the electric field. For this reason, in the conventional ICP device, the generated plasma shape is not coaxial and is generated unevenly in the electric insulating tube 1, and the loss on the wall surface increases, and the efficiency of the plasma output decreases, or If the high-frequency current is increased to increase the plasma output, the energy of the biased plasma increases, and there is a risk that the electric insulating tube 1 and the surrounding components may be damaged.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional drawbacks, suppress distortion of a plasma-generating electric field, eliminate the possibility of damage to components such as an insulating tube, and provide a high-efficiency, high-output operation guide. An object of the present invention is to provide a coupled plasma device (ICP device).
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
In an IPC device that introduces a plasma gas into an electric insulating tube around which a high-frequency induction coil is wound and passes a high-frequency current to the high-frequency induction coil to convert the gas into plasma,
(1) The high-frequency induction coil is formed from a plurality of single-turn coils, and high-frequency current applying means for applying a high-frequency current to each of the single-turn coils independently is provided.
[0009]
(2) Further, the high-frequency current supply means of (1) is provided by one high-frequency power supply, a high-frequency current distributor that distributes a high-frequency current obtained by the high-frequency power supply to a plurality of single-turn coils, and a high-frequency current distributor. A plurality of current transport conductors for sending the distributed high-frequency current to each of the single-turn coils, and an impedance adjuster for controlling the supply of the high-frequency current are provided.
[0010]
(3) Alternatively, the high-frequency current supply means of (1) may include a plurality of high-frequency power supplies independently provided for the plurality of single-turn coils, and a plurality of high-frequency power supplies and the single-turn coils connected to each other. It comprises a current transport conductor, an impedance adjuster for controlling the supply amount of the high-frequency current, and an oscillation phase adjuster for adjusting the oscillation of a plurality of high-frequency power supplies.
[0011]
(4) Further, in the ICP device of (2) or (3), a notch is provided in the current transport conductor to form an impedance adjuster.
If the high-frequency induction coil of the ICP device is formed of a plurality of single-turn coils as described in (1) above, each of the single-turn coils should be provided with a conductor arranged in parallel with the cross section of the electric insulating tube. Therefore, the bias and the inclination of the current loop are eliminated, and the center axis of the generated magnetic field can be arranged so as to coincide with the center axis of the electric insulating tube. In particular, in the case of a single-turn coil, the start and end of winding of the conductor can be arranged in the same plane parallel to the cross section of the electrical insulating tube. A magnetic field with excellent symmetry can be obtained without generating a bias in the generated magnetic field. Accordingly, the high-frequency current is supplied to each of the plurality of single-turn coils independently by the high-frequency current supplying means, whereby a high-frequency magnetic field having a predetermined strength and shape and having no bias is formed. An unbiased plasma output is obtained by the electric field generated by the action.
[0012]
Further, according to the above (2), the distribution amount of the high-frequency current distributed by the high-frequency current distributor and sent to each single-turn coil through the current transport conductor is controlled by the impedance adjuster. Disruption of the current balance caused by the load is prevented, and a single high-frequency power supply can effectively drive a plurality of single-turn coils.
[0013]
Further, according to the above (3), the dedicated high-frequency power supplies for driving the plurality of single-turn coils are driven while being oscillated and coordinated with each other by the oscillation phase adjuster. Thus, a plurality of single-turn coils are effectively driven.
In addition, by adopting the above (4), the conductance and the inductance can be easily adjusted, and the adjustment of the high-frequency current supplied to the plurality of single-turn coils can be more effectively performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic configuration diagram showing a first embodiment of an ICP device according to the present invention, in which (a) is a basic configuration diagram showing a configuration of an ICP device main body and a high-frequency current supply system, and (b) is a configuration diagram of (a). It is sectional drawing of the ICP apparatus main body in XX plane.
As shown in the figure, the main body of the ICP device of this embodiment is configured by winding three single-turn high-frequency induction coils 2A, 2B, and 2C concentrically around a cylindrical electric insulating tube 1. . A double cylinder made of quartz glass is used for the electric insulating tube 1, and cooling water is passed through an intermediate layer of the double cylinder to cool it. Hollow copper tubes are used for the coil conductors of the high-frequency induction coils 2A, 2B, and 2C. Each coil is adjusted and fixed by a jig (not shown) so that the plane is aligned with the cross section of the electrical insulating tube 1 and the axis is aligned with the axis of the electrical insulating tube 1.
[0015]
Further, in the present embodiment, a method is adopted in which three single-turn high-frequency induction coils 2A, 2B, and 2C are driven by one high-frequency power supply 3, and a high-frequency current is distributed by a high-frequency current distributor 6. Are supplied to each coil by a current transport conductor 5 made of a hollow copper tube. The current balance of each coil is adjusted and optimized by adjusting the variable capacitance of the impedance adjusters 4A, 4B, 4C provided in each system. That is, if this method is used, the use efficiency can be increased and the device can be driven by one high-frequency power supply. Note that the impedance may be adjusted using an inductance, but an optimum impedance adjustment element may be selected from the balance of the entire high-frequency system including the load.
[0016]
In the ICP device configured as described above, when a plasma gas is introduced from one end of the electric insulating tube 1 and supplied in the radial direction and the circumferential direction, and a high-frequency current is applied to the high-frequency induction coils 2A, 2B, and 2C at the same time, a high-frequency magnetic field is generated. Therefore, an electric field generated by the electromagnetic induction of the high-frequency magnetic field is formed coaxially with the electric insulating tube 1 without any deviation, and the plasma output 10 is formed coaxially inside the electric insulating tube 1. The plasma is generated with high efficiency without the risk of loss or damage to the wall surface.
[0017]
FIG. 2 is a basic configuration diagram showing a second embodiment of the ICP apparatus according to the present invention.
The configuration of the ICP device main body of the present embodiment is the same as the configuration of the ICP device main body of the first embodiment shown in FIG. 1, and the difference from the first embodiment of the present embodiment is that three single There is a driving method of the wound high frequency induction coils 2A, 2B, 2C. That is, in this embodiment, three coils are driven by three high-frequency power supplies 3A, 3B, and 3C, and a high-frequency current supplied from each power supply is supplied to an impedance adjuster provided in each system. It is adjusted by 4A, 4B, 4C. In addition, in order to drive efficiently with a plurality of power supplies, oscillation coordination and stabilization of the power supplies are achieved by the oscillation phase adjuster 7.
[0018]
Therefore, in the ICP device having this configuration, the high-frequency power supplies 3A, 3B, and 3C can be reduced in size, can supply a large current in the MHz range where technical difficulty is high, and can be used in an ICP device that is proportional to the magnitude and frequency of the induced current. Since the electric field can be increased, a high-output ICP device can be obtained.
3 and 4 are external views showing an embodiment of an impedance adjuster used in a high-frequency current supply system of an ICP device according to the present invention. FIG. 3 shows a plate-like current transport conductor 5A and a cutout 9A. FIG. 4 shows a configuration in which a notch 9B is provided in a tubular current carrying conductor 5B to form an impedance adjuster.
[0019]
By forming the cutouts 9A and 9B in this way, the inductance in the circuit is mainly increased, and the power efficiency with respect to the plasma load can be easily increased by a simple configuration without providing a special circuit element or a shield case for accommodating the circuit element. Can be raised.
[0020]
【The invention's effect】
As described above, according to the present invention,
(1) Since the ICP device is configured as described in claim 1, the current loop of the high-frequency induction coil can be arranged in conformity with the cross section of the plasma generation space, and the distortion of the plasma generation electric field can be improved. Therefore, an ICP device capable of high-efficiency, high-output operation without a risk of damage to components such as an insulating tube can be obtained.
[0021]
(2) Further, according to the second aspect of the present invention, since a plurality of high-frequency induction coils can be driven by one high-frequency power source with high utilization efficiency, there is no possibility of damage to components. It is suitable as an ICP device that can operate with high efficiency and high output.
(3) Further, if the configuration is made as described in claim 3, each power supply can be reduced in size, a large current in the MHz range can be supplied, and a high-output ICP device can be obtained.
[0022]
(4) According to the fourth aspect, the impedance can be easily adjusted, and the power efficiency with respect to the plasma load can be easily increased with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of an ICP device according to the present invention, in which (a) is a basic configuration diagram showing a configuration of an ICP device main body and a high-frequency current supply system, and (b) is a configuration diagram of (a). FIG. 2 is a cross-sectional view of the ICP device main body in the XX plane. FIG. 2 is a basic configuration diagram showing a second embodiment of the ICP device according to the present invention. FIG. 3 is an impedance adjustment used in a high-frequency current supply system of the ICP device according to the present invention. FIG. 4 is an external view showing another embodiment of the impedance adjuster used in the high-frequency current supply system of the ICP apparatus according to the present invention. FIG. 5 is a view showing the conventional ICP apparatus. Basic configuration diagram [Description of reference numerals]
REFERENCE SIGNS LIST 1 electric insulating tube 2 high-frequency induction coil 2A high-frequency induction coil 2B high-frequency induction coil 2C high-frequency induction coil 3 high-frequency power supply 3A high-frequency power supply 3B high-frequency power supply 3C high-frequency power supply 4 impedance adjuster 4A impedance adjuster 4B impedance adjuster 4C impedance adjuster 5 current Transport conductor 5A Current transport conductor 5B Current transport conductor 6 High-frequency current distributor 7 Oscillation phase adjuster 9A Notch 9B Notch 10 Plasma output

Claims (4)

高周波誘導コイルを巻装した電気絶縁管の内部にプラズマガスを導入し、高周波誘導コイルに高周波電流を通電して前記ガスをプラズマ化して用いる誘導結合プラズマ装置において、
高周波誘導コイルが複数の単巻きコイルからなり、かつこれらの単巻きコイルにそれぞれ独立に高周波電流を通電する高周波電流通電手段を備えてなることを特徴とする誘導結合プラズマ装置。
A plasma gas is introduced into an electric insulating tube around which a high-frequency induction coil is wound, and a high-frequency current is applied to the high-frequency induction coil to convert the gas into plasma.
An inductively coupled plasma apparatus, wherein the high-frequency induction coil comprises a plurality of single-turn coils and high-frequency current applying means for applying a high-frequency current to each of the single-turn coils independently.
請求項1に記載の誘導結合プラズマ装置において、前記高周波電流通電手段が、1台の高周波電源と、該高周波電源で得られる高周波電流を複数の単巻きコイルに分配する高周波電流分配器と、高周波電流分配器により分配して得られた高周波電流を各単巻きコイルに送る複数の電流輸送導体と、高周波電流の供給量を制御するインピーダンス調整器とからなることを特徴とする誘導結合プラズマ装置。2. The inductively coupled plasma apparatus according to claim 1, wherein the high-frequency current supply means distributes a high-frequency current obtained by the high-frequency power supply to a plurality of single-turn coils. An inductively coupled plasma device comprising: a plurality of current transport conductors for sending a high-frequency current obtained by distribution by a current distributor to each single-turn coil; and an impedance adjuster for controlling a supply amount of the high-frequency current. 請求項1に記載の誘導結合プラズマ装置において、前記高周波電流通電手段が、複数の単巻きコイルに対してそれぞれ独立して設けられた複数の高周波電源と、各高周波電源と各単巻きコイルとを連結する複数の電流輸送導体と、高周波電流の供給量を制御するインピーダンス調整器と、複数の高周波電源の発振を調整する発振位相調整器とからなることを特徴とする誘導結合プラズマ装置。2. The inductively coupled plasma device according to claim 1, wherein the high-frequency current supply means includes a plurality of high-frequency power supplies provided independently for the plurality of single-turn coils, each high-frequency power supply and each single-turn coil. An inductively coupled plasma device comprising: a plurality of current transport conductors connected to each other; an impedance adjuster for controlling a supply amount of a high-frequency current; and an oscillation phase adjuster for adjusting oscillation of a plurality of high-frequency power supplies. 請求項2または3に記載の誘導結合プラズマ装置において、前記のインピーダンス調整器が、電流輸送導体に設けられた切り欠きよりなることを特徴とする誘導結合プラズマ装置。4. The inductively coupled plasma device according to claim 2, wherein the impedance adjuster comprises a cutout provided in the current transport conductor.
JP17192096A 1996-07-02 1996-07-02 Inductively coupled plasma device Expired - Fee Related JP3577843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17192096A JP3577843B2 (en) 1996-07-02 1996-07-02 Inductively coupled plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17192096A JP3577843B2 (en) 1996-07-02 1996-07-02 Inductively coupled plasma device

Publications (2)

Publication Number Publication Date
JPH1022096A JPH1022096A (en) 1998-01-23
JP3577843B2 true JP3577843B2 (en) 2004-10-20

Family

ID=15932304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17192096A Expired - Fee Related JP3577843B2 (en) 1996-07-02 1996-07-02 Inductively coupled plasma device

Country Status (1)

Country Link
JP (1) JP3577843B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511246B2 (en) * 2002-12-12 2009-03-31 Perkinelmer Las Inc. Induction device for generating a plasma
US7742167B2 (en) 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
CN205166151U (en) 2012-07-13 2016-04-20 魄金莱默保健科学有限公司 Torch and system for sustaining an atomization source

Also Published As

Publication number Publication date
JPH1022096A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US4849675A (en) Inductively excited ion source
CA2144834C (en) Method and apparatus for generating induced plasma
US5886472A (en) Electrodeless lamp having compensation loop for suppression of magnetic interference
KR100513163B1 (en) Icp antenna and plasma generating apparatus using the same
JPH088095A (en) High-frequency induction plasma source device for plasma treatment
KR19980071217A (en) Plasma Sources for HDP-CVD Chambers
JP4541557B2 (en) Plasma etching equipment
JP2007157696A (en) Independent control of ion density, ion energy distribution and ion dissociation in plasma reactor
KR20050033515A (en) Multi-coil induction plasma torch for solid state power supply
KR102398974B1 (en) Improvements to an inductively coupled plasma source
KR0142041B1 (en) Plasma generating apparatus and method
JP3577843B2 (en) Inductively coupled plasma device
KR20230006780A (en) Plasma reforming apparatus for a target gas under atmospheric pressure
KR20240150405A (en) The Plasma Generation Apparatus And The Operational Method Of The Same
JP2004047192A (en) Transformer discharge type plasma generating device by magnet-permeating core
JP2000278962A (en) High-frequency and high-voltage power source
JP2002124399A (en) Plasma generation device
KR102486653B1 (en) Atmospheric Pressure Plasma Generation Apparatus
KR101028215B1 (en) Plasma generator
JP3164606B2 (en) Beam straight type microwave tube device
KR102479772B1 (en) Atmospheric Pressure Plasma Generation Apparatus
JPH10241890A (en) Inductively coupled plasma device
JP2004206936A (en) High frequency heating device
JP2836509B2 (en) Magnetron drive power supply and plasma generator having the same
JP2000077200A (en) High frequency accelerating device and annular accelerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees