[go: up one dir, main page]

JP3567564B2 - Current source simulator - Google Patents

Current source simulator Download PDF

Info

Publication number
JP3567564B2
JP3567564B2 JP31076795A JP31076795A JP3567564B2 JP 3567564 B2 JP3567564 B2 JP 3567564B2 JP 31076795 A JP31076795 A JP 31076795A JP 31076795 A JP31076795 A JP 31076795A JP 3567564 B2 JP3567564 B2 JP 3567564B2
Authority
JP
Japan
Prior art keywords
current
current source
electrodes
pair
phantom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31076795A
Other languages
Japanese (ja)
Other versions
JPH09140675A (en
Inventor
司 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31076795A priority Critical patent/JP3567564B2/en
Publication of JPH09140675A publication Critical patent/JPH09140675A/en
Application granted granted Critical
Publication of JP3567564B2 publication Critical patent/JP3567564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検体内の生体活動電流源に伴って発生する微小磁界を計測する生体磁気計測装置において電流源推定用テストデータ採取のために用いられる電流源シミュレータに関する。
【0002】
【従来の技術】
生体に刺激を加えると、細胞膜をはさんで形成されている分極が一時的に壊れ、活動電流が流れるが、このような活動電流は、特に、脳、心臓、骨格筋、網膜などにみられ、かかる生体内での活動電流により生じる磁場は、それぞれ脳磁図、心磁図、筋磁図、網膜磁図として記録され、広く病変部など診断に利用されている。
【0003】
かかる活動電流により生じる磁界を計測する装置として、近年の超伝導デバイス技術の発展に伴い、SQUID(Superconducting QUantum Interference Device)と呼ばれる高感度な磁束計を利用した生体磁気計測装置が、医療診断装置の一つとして実用化されつつあり、脳機能の解明や循環器疾患の診断に役立つものと期待されている。
【0004】
この生体磁気計測装置では、計測した生体磁場データに基づき、例えば、最小自乗法や最小ノルム法等によって、磁束計を基準とした座標系における生体活動電流源の位置、向き、大きさなどの推定がなされる(Jukka Sarvas ”Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem” , Phys. Med. Biol., 1987, vol.32, No.1, 11−22, Printed by the UK)。
【0005】
また、SQUIDは超伝導状態を維持するため液体ヘリウム等を用いて冷却する必要があり、通常デュワと呼ばれる容器内に満たされた液体ヘリウム中に浸されている。そして、デュワの底面近くに検出コイルが配置され、これら検出コイル及びSQUIDユニットは、常に液体ヘリウムに浸漬するように配設される。マルチチャンネルSQUIDセンサでは、検出コイルとSQUIDユニットを組み合わせたものが多数配置されており、この多数の検出コイルは底面付近に配置されて底面が検出面となっている。
【0006】
従来、この生体磁気計測装置において、生体活動電流源としてのテストデータの採取は、図3に示される電流双極子用シミュレータを用いて行われていた。すなわち、生理食塩水31で満たされたファントム32の中には、電気絶縁被覆された2本の被覆導線34a、34bが配設され、その被覆導線34a、34bの先端部には、それぞれ被覆層が除去されて導体が露出され水平な一直線状に延びる水平部分35a、35bが形成されている。
【0007】
そして、ファントム32の外部に設置した電流源駆動制御装置37から供給された電流は、被覆導線34b、その水平部分35bを通り、生理食塩水31内を帰還電流39として流れ、被覆導線34aの水平部分35aを介して電流源駆動制御装置37に戻り、これにより、ファントム32内に電流双極子部分38と帰還電流37とからなる所望の電流源が実現されることとなる。
【0008】
【発明が解決しようとする課題】
しかしながら、かかる従来の電流源シミュレータでは、電流双極子部分38は被覆導線34a,34bの水平部分35a,35b、即ち、被覆が除去された導線部分を流れる電流により構成されるため、発生させることが出来る電流源は、有限な広がりを持たない線状のものとなる。これに対して、実際に生体で発生する活動電流は有限な広がりを持ち、特にてんかんで等の症状では数cm程度の広がりをもつものと考えられているため、従来の電流源シミュレータでは、このような広がりをもつ電流源を作ることはできず、このため、実際に生体で発生する活動電流源と同様な電流源を発生させることが出来ないという問題があった。本発明は、簡単な構成で、実際に生体で発生する活動電流源と同様な電流源を発生させることができる電流源シミュレータを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかる電流源シミュレータは、非磁性体で形成され電導性の液体が封入されたファントムと、このファントム内の所定位置に配設された一対の電極と、それぞれ一対の電極の一端面を除く全面を覆う絶縁体と、前記それぞれの電極に接続された一対の被覆導線と、前記一対の被覆導線間に所定の電流を供給する電流制御手段と、を備えたことを特徴とする。
【0010】
前記ファントムに封入する導電性の液体は、生理食塩水を用いれば良く、また、前記ファントムを形成する非磁性体材料は、プラスチック,アクリル樹脂等を用いればよい。
【0011】
前記一対の電極は、それぞれ腐食性の優れた材料、例えば、白金や金により形成すればよい。
【0012】
また、前記一対の電極は、例えば、直円筒状、直方体状等のように、一直線状の軸線を有し軸直交断面が一様となるように形成すればよい。
【0013】
前記被覆導線の被覆材とし、電気絶縁性であってかつ液体を透過しない材料、例えば、塩化ビニル等の合成樹脂を用いることが出来る。
【0014】
前記絶縁体は、電気絶縁性があり液体を透過しない材料、例えば、塩化ビニルにより形成することができる。
【0015】
【発明の実施の形態】
本発明の一実施例を図1及び図2に基づいて説明する。図1に示されるように、生理食塩水11で満たされたファントム12は全体としてプラスチックなどの非磁性体で形成されており、少なくともその一つの面(図では上面)がSQUIDセンサのデュワ底面に密着するよう、その底面に沿った形状、この図では凸状の球面となっている。
【0016】
そして、ファントム12内部のいくつかの所定位置(予め分かっている位置)に非磁性体のネジなどにより固定された一又は二以上の電極部13が配設されており、電流制御装置14によって、選択的に所望とする電流が供給されるよう制御される。
【0017】
図2は、電極部13を拡大して示した斜視図であり、電極部13は、基本的に一対の電極21a、21bと、これらの電極に電気的に結合された一対の被覆導線22a、22bと、前記電極21a、21bの端面27a、27bを除く他の面を覆う絶縁体23から形成されている。
【0018】
電極21a、21bは腐食性に優れた金属材料、例えば白金などから成り、軸直交断面が一様となるよう、直円筒状に形成されている。被覆導線22a、22bは電気絶縁性であってかつ液体を透過しない材料、たとえば塩化ビニルなどの合成樹脂で被覆されており、一端が電極21a、21bとの接合点24a、24bに他端が電流制御装置25との接合点26a、26bに電気的に接続されている。
【0019】
絶縁体23は、電気絶縁性であってかつ液体を透過しない材料、たとえば塩化ビニルなどの合成樹脂から成り、電極21a、21bの端面27a、27bを除く他の面を全て覆うように形成されている。
【0020】
次に、本発明の動作を説明すると、電流制御装置14から供給され被覆導線22aを経て電極21aとの接合点24aに達した電流は、電極21aの内部を一様に分布した電流28aとなって流れ、絶縁体23に覆われていない電極21aの端面27aに達する。この端面27aに達した電流は、生理食塩水11中を帰還電流29となってもう片側の絶縁体23に覆われていない電極21bの端面27bに達し、電極21bの内部を再び一様に分布した電流28bとなって流れ、被覆導線22bを経て電流制御装置14に戻る。
【0021】
これによって、電極21a、21b中には一様に分布した電流28a、28bが流れることになり、この電極21a、21bの直径を適宜設定することで、実際に生体内で発生するような広がりをもつ電流源を形成することができる。
【0022】
また、本実施例の様に、直線状の軸線を有し軸直交断面が一様である電極を用いることで、電流が電極中ををほぼ均一に分布して流れるため、生体活動電流源としてのテストデータが容易に得られるという利点が生じる。
【0023】
なお、以上の実施例では、電極の形状を直円筒状であるとして説明したが、直方体状や、板状等、直線状の軸線を有し軸直交断面が一様である電極であれば何でもよい。
【0024】
【発明の効果】
本発明にかかる電流源シミュレータよれば、電流形成部分に一対の電極を用いたため、実際に生体内で発生するような広がりをもつ電流源を発生させることが出来るを形成することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例である電流源シミュレータの全体概略図である。
【図2】本発明にかかる電流源シミュレータの電極部分の拡大図を示す図である。
【図3】従来の電流源シミュレータを示す図である。
【符号の説明】
11・・・・・・・生理食塩水
12・・・・・・・ファントム
13・・・・・・・電流源シミュレータ
14・・・・・・・電流制御装置
21a,21b・・電極
22a,22b・・被覆導線
23・・・・・・・絶縁体
24a,24b・・電極と導線の接合点
26a,26b・・選択駆動制御装置と導線の接合点
27a,27b・・電極の絶縁されていない端面
28a,28b・・電極内の一様に分布した電流
29・・・・・・・帰還電流
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current source simulator used for collecting test data for estimating a current source in a biomagnetism measuring device that measures a minute magnetic field generated with a biological activity current source in a subject.
[0002]
[Prior art]
When a stimulus is applied to a living body, the polarization formed across the cell membrane is temporarily broken, causing an active current to flow.Such an active current is particularly found in the brain, heart, skeletal muscle, retina, and the like. The magnetic field generated by such an in-vivo active current is recorded as a magnetoencephalogram, a magnetocardiogram, a myocardium, and a retinal magnetogram, respectively, and is widely used for diagnosis of a lesion or the like.
[0003]
As a device for measuring a magnetic field generated by such an active current, a biomagnetic measurement device using a high-sensitivity magnetometer called SQUID (Superconducting Quantum Interference Device) has been developed for medical diagnostic devices with the development of superconducting device technology in recent years. It is being put to practical use as one, and is expected to be useful for elucidation of brain function and diagnosis of cardiovascular disease.
[0004]
In this biomagnetism measuring device, based on the measured biomagnetic field data, for example, the least square method or the least norm method is used to estimate the position, direction, size, etc. of the bioactive current source in a coordinate system based on the magnetometer. (Jukka Sarvas, "Basic mathematical and electromagnetic concepts of the biomagnetic inverse probe,", Phys. Med. Biol., No. 32, Vol.
[0005]
Further, the SQUID needs to be cooled using liquid helium or the like in order to maintain the superconducting state, and is usually immersed in liquid helium filled in a container called a dewar. A detection coil is disposed near the bottom of the dewar, and the detection coil and the SQUID unit are disposed so as to be constantly immersed in liquid helium. In the multi-channel SQUID sensor, a large number of combinations of detection coils and SQUID units are arranged, and the large number of detection coils are arranged near the bottom surface, and the bottom surface is a detection surface.
[0006]
Conventionally, in this biomagnetism measurement apparatus, the collection of test data as a biological activity current source has been performed using a current dipole simulator shown in FIG. That is, in the phantom 32 filled with the physiological saline solution 31, two covered wires 34a and 34b which are electrically insulated are disposed, and the leading ends of the covered wires 34a and 34b are respectively provided with covering layers. Are removed to expose the conductor, and horizontal portions 35a and 35b extending in a horizontal straight line are formed.
[0007]
Then, the current supplied from the current source drive control device 37 installed outside the phantom 32 passes through the covered conductor 34b and the horizontal portion 35b thereof, flows through the saline solution 31 as a feedback current 39, and flows horizontally through the covered conductor 34a. Returning to the current source drive control device 37 via the portion 35a, a desired current source including the current dipole portion 38 and the feedback current 37 is realized in the phantom 32.
[0008]
[Problems to be solved by the invention]
However, in such a conventional current source simulator, the current dipole portion 38 is generated by the current flowing through the horizontal portions 35a and 35b of the coated conductors 34a and 34b, that is, the current flowing through the stripped conductor portion. A possible current source is a linear one having no finite spread. On the other hand, the active current actually generated in the living body has a finite spread, and it is considered that the spread of epilepsy and the like has a spread of about several cm 2 . A current source having such a spread cannot be produced, and therefore, there is a problem that a current source similar to an active current source actually generated in a living body cannot be generated. An object of the present invention is to provide a current source simulator that can generate a current source similar to an active current source actually generated in a living body with a simple configuration.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a current source simulator according to the present invention includes a phantom formed of a nonmagnetic material and filled with a conductive liquid, and a pair of electrodes disposed at predetermined positions in the phantom, An insulator covering the entire surface except for one end surface of each of the pair of electrodes, a pair of covered conductors connected to the respective electrodes, and current control means for supplying a predetermined current between the pair of covered conductors are provided. It is characterized by having.
[0010]
As the conductive liquid sealed in the phantom, physiological saline may be used, and as the non-magnetic material forming the phantom, plastic, acrylic resin, or the like may be used.
[0011]
The pair of electrodes may be formed of a material having excellent corrosiveness, for example, platinum or gold.
[0012]
The pair of electrodes may be formed so as to have a straight axis and have a uniform cross section perpendicular to the axis, for example, a rectangular cylinder, a rectangular parallelepiped, or the like.
[0013]
A material that is electrically insulating and does not transmit liquid, for example, a synthetic resin such as vinyl chloride can be used as a covering material for the covered conductor.
[0014]
The insulator can be formed of a material that is electrically insulative and impermeable to liquid, for example, vinyl chloride.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a phantom 12 filled with a physiological saline solution 11 is entirely formed of a non-magnetic material such as plastic, and at least one surface (upper surface in the figure) is formed on the dewar bottom surface of the SQUID sensor. The shape along the bottom surface, that is, a convex spherical surface in FIG.
[0016]
One or more electrode portions 13 fixed by a non-magnetic screw or the like are provided at some predetermined positions (positions known in advance) inside the phantom 12, and the current control device 14 Control is performed so that a desired current is selectively supplied.
[0017]
FIG. 2 is an enlarged perspective view of the electrode unit 13. The electrode unit 13 basically includes a pair of electrodes 21a and 21b and a pair of covered conductive wires 22a electrically coupled to these electrodes. 22b and an insulator 23 covering the other surfaces of the electrodes 21a and 21b except for the end surfaces 27a and 27b.
[0018]
The electrodes 21a and 21b are made of a highly corrosive metal material, such as platinum, and are formed in a right cylindrical shape so that the cross section orthogonal to the axis is uniform. The coated conductive wires 22a and 22b are coated with a material that is electrically insulative and impermeable to liquid, for example, a synthetic resin such as vinyl chloride, and has one end connected to junctions 24a and 24b with the electrodes 21a and 21b and the other end connected to a current. It is electrically connected to junctions 26a and 26b with the control device 25.
[0019]
The insulator 23 is made of a material that is electrically insulative and does not transmit liquid, for example, a synthetic resin such as vinyl chloride, and is formed so as to cover all surfaces of the electrodes 21a and 21b except the end surfaces 27a and 27b. I have.
[0020]
Next, the operation of the present invention will be described. The current supplied from the current controller 14 and reaching the junction 24a with the electrode 21a via the covered conductor 22a becomes a current 28a uniformly distributed inside the electrode 21a. And reaches the end surface 27a of the electrode 21a which is not covered with the insulator 23. The current having reached the end face 27a becomes a feedback current 29 in the physiological saline 11 and reaches the end face 27b of the electrode 21b which is not covered with the other insulator 23, and is uniformly distributed again inside the electrode 21b. The current 28b flows and returns to the current controller 14 via the covered conductor 22b.
[0021]
As a result, currents 28a and 28b distributed uniformly in the electrodes 21a and 21b flow, and by appropriately setting the diameters of the electrodes 21a and 21b, a spread that actually occurs in a living body can be obtained. A current source having the same.
[0022]
In addition, as in the present embodiment, by using an electrode having a linear axis and having a uniform cross section perpendicular to the axis, the current flows almost uniformly distributed in the electrode. The advantage that the test data of the above can be easily obtained.
[0023]
In the above embodiment, the shape of the electrode is described as a right cylindrical shape.However, any electrode may be used as long as the electrode has a linear axis and a uniform cross section perpendicular to the axis, such as a rectangular parallelepiped or a plate. Good.
[0024]
【The invention's effect】
According to the current source simulator according to the present invention, since a pair of electrodes is used in the current generating portion, it is possible to form a current source having a spread that actually occurs in a living body.
[Brief description of the drawings]
FIG. 1 is an overall schematic diagram of a current source simulator according to an embodiment of the present invention.
FIG. 2 is an enlarged view of an electrode portion of the current source simulator according to the present invention.
FIG. 3 is a diagram showing a conventional current source simulator.
[Explanation of symbols]
11 physiological saline 12 phantom 13 current source simulator 14 current control devices 21a and 21b electrodes 22a 22b ... covered conductor 23 ... insulators 24a, 24b ... junctions 26a, 26b between electrodes and conductors ... junctions 27a, 27b between selection drive control devices and conductors ... electrodes are insulated. No end faces 28a, 28b ... uniformly distributed current 29 in the electrode ... feedback current

Claims (1)

非磁性体で形成され電導性の液体が封入されたファントムと、このファントム内の所定位置に配設され、金属材料からなり直線状の軸線を有し軸直交断面が一様である一対の電極と、それぞれ一対の電極の一端面を除く全面を覆う絶縁体と、前記それぞれの電極に接続された一対の被覆導線と、前記一対の被覆導線間に所定の電流を供給する電流制御手段と、を備えたことを特徴とする電流源シミュレータ。A phantom formed of a non-magnetic material and filled with a conductive liquid, and a pair of electrodes disposed at predetermined positions in the phantom, made of a metal material, having a straight axis and having a uniform cross section orthogonal to the axis. And an insulator covering the entire surface except for one end surface of each of the pair of electrodes, a pair of covered conductors connected to the respective electrodes, and current control means for supplying a predetermined current between the pair of covered conductors, A current source simulator comprising:
JP31076795A 1995-11-29 1995-11-29 Current source simulator Expired - Lifetime JP3567564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31076795A JP3567564B2 (en) 1995-11-29 1995-11-29 Current source simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31076795A JP3567564B2 (en) 1995-11-29 1995-11-29 Current source simulator

Publications (2)

Publication Number Publication Date
JPH09140675A JPH09140675A (en) 1997-06-03
JP3567564B2 true JP3567564B2 (en) 2004-09-22

Family

ID=18009236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31076795A Expired - Lifetime JP3567564B2 (en) 1995-11-29 1995-11-29 Current source simulator

Country Status (1)

Country Link
JP (1) JP3567564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867209B2 (en) * 2005-06-16 2012-02-01 横河電機株式会社 Phantom of the magnetoencephalograph

Also Published As

Publication number Publication date
JPH09140675A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
Rush et al. EEG electrode sensitivity-an application of reciprocity
JP6638582B2 (en) Magnetic measuring device
Cohen et al. Part II magnetic field produced by a current dipole
Hämäläinen et al. Magnetoencephalographic (MEG) characterization of dynamic brain activation
Horacek Digital model for studies in magnetocardiography
WO1999037206A1 (en) System and method for measuring, estimating and displaying rms current density maps
JP2002125946A (en) Biological magnetic field measuring instrument
US10272254B2 (en) Current diverter for magnetic stimulation of biological systems
US8483795B2 (en) Primary source mirror for biomagnetometry
Williamson et al. Application of SQUID sensors to the investigation of neural activity in the human brain
Liehr et al. Vortex shaped current sources in a physical torso phantom
JP3567564B2 (en) Current source simulator
Brauer et al. Reconstruction of extended current sources in a human body phantom applying biomagnetic measuring techniques
Rosen et al. A study of the vector magnetocardiographic waveform
Janawadkar et al. SQUID-based measurement of biomagnetic fields
Wikswo Jr High-resolution magnetic imaging: Cellular action currents and other applications
Tsizin et al. Printable anisotropic phantom for EEG with distributed current sources
Bradshaw et al. Surface current density mapping for identification of gastric slow wave propagation
Ahlfors et al. Magnetic imaging of conductivity
Wikswo Jr Recent developments in the measurement of magnetic fields from isolated nerves and muscles
Peters et al. On the fetal magnetocardiogram
JPH10216098A (en) Current source simulator
Brauer et al. Reconstruction of low frequency currents
JP2001070272A (en) Simulating device for intracerebral electrical phenomenon
JPH08266499A (en) Biomagnetic measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6