JP3567001B2 - Method for producing composite sintered body of silicon carbide and silicon nitride - Google Patents
Method for producing composite sintered body of silicon carbide and silicon nitride Download PDFInfo
- Publication number
- JP3567001B2 JP3567001B2 JP31123394A JP31123394A JP3567001B2 JP 3567001 B2 JP3567001 B2 JP 3567001B2 JP 31123394 A JP31123394 A JP 31123394A JP 31123394 A JP31123394 A JP 31123394A JP 3567001 B2 JP3567001 B2 JP 3567001B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- silicon nitride
- sintered body
- powder
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 48
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 47
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 31
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 31
- 239000002131 composite material Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000005245 sintering Methods 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 description 31
- 239000000843 powder Substances 0.000 description 28
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 239000002114 nanocomposite Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
Description
【0001】
【産業上の利用分野】
本発明は炭化珪素と窒化珪素の複合焼結体の製造方法に関し、特にHIPで焼成され、高い緻密性と優れた強度を有する複合焼結体の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
窒化珪素系セラミック焼結体は、高強度、高耐熱衝撃性、高耐摩耗性などの点から、また炭化珪素セラミック焼結体は、高強度、高耐酸化性などの点から、高温での使用条件が苛酷な構造用セラミックスとしての利用が期待されている。近年こうしたモノリシック焼結体に対して、両者の利点を合わせ持つミクロレベルの窒化珪素−炭化珪素複合焼結体や窒化珪素の粒内に微細な炭化珪素が分散したナノコンポジット構造の窒化珪素−炭化珪素複合焼結体を得るための検討が種々試みられている。
【0003】
特開昭58−91070号は、炭化珪素と窒化珪素の混合粉末に焼結助剤としてホウ素、炭素、無機酸化物を添加、混合して、焼結することにより形成される炭化珪素と窒化珪素の複合焼結体を開示している。この複合焼結体は、微細な窒化珪素−炭化珪素混合粉末を使用し、焼結助剤の存在下で1500〜2300℃の通常焼結又はホットプレスで焼結することにより製造される。しかし、この先行技術には、ホウ素、炭素、無機酸化物を同時に添加する方法は、具体的に示されておらず、そのため、この方法による焼結体では、焼結方法としてホットプレスを用いる必要が有り、複雑な形状の部品に対応できないという問題がある。
【0004】
また、特開平2−160669号は、気相反応法で得られた非晶質の窒化珪素−炭化珪素複合粉末から、平均粒径1μm以下の炭化珪素が粒界に分散し、かつ数ナノメーターから数百ナノメーターの大きさの炭化珪素の微細粒子が窒化珪素粒子内に分散した微細構造を有する窒化珪素−炭化珪素複合焼結体を開示している。しかし、非晶質窒化珪素−炭化珪素複合粉末は、焼結中に分解成分が生成され、液相焼結が進行しにくく、かつ非常に嵩高いため、成形性が悪い。そのためこの場合も、焼結方法として実質的にホットプレスを用いる必要がある。
【0005】
したがって本発明の目的は、複雑形状に対応可能なHIPで焼成し、高い緻密性と優れた高温強度を有する炭化珪素と窒化珪素の複合焼結体の製造方法を提供することである。
【0006】
【課題を解決するための手段】
以上の目的に鑑み鋭意研究の結果、本発明者等は、炭化珪素と窒化珪素の混合粉末に特定の添加剤を添加し、HIP焼成すれば、高い緻密性と強度を有する炭化珪素と窒化珪素の複合焼結体が得られることを発見し、本発明を完成した。
【0007】
すなわち、本発明の炭化珪素と窒化珪素の複合焼結体の製造方法は、(a)炭化珪素と窒化珪素との混合粉末に焼結助剤及びホウ素並びに炭素を添加し、その際前記焼結助剤として(イ)酸化アルミニウム及び/又は窒化アルミニウム、並びに(ロ)周期律表3A族元素及び/又は4A族元素の酸化物を用い、(b)HIP焼成するもので、炭化珪素と窒化珪素との合計を 100 重量%として、前記炭化珪素の含有量を 15 〜 50 重量%とし、前記焼結助剤の合計含有量を 15 重量%以下とし、前記ホウ素と炭素の合計含有量を 0.3 〜5重量%とし、前記(イ)酸化アルミニウム及び/又は窒化アルミニウムの合計含有量と前記(ロ)周期律表3A族元素及び/又は4A族元素の酸化物の合計含有量の比を2:1〜1: 15 とすることを特徴とする。
【0008】
以下、本発明を詳細に説明する。
〔1〕出発原料
(1)Si3 N4 粉末
本発明で用いる窒化珪素粉末は、0.01〜1μm、特に0.1〜0.8μmの平均粒径を有するものが好ましい。Si3 N4 粉末の添加量は、炭化珪素と窒化珪素との合計重量を100重量%として、50〜85重量%とするのが好ましく、より好ましくは70〜80重量%とする。Si3 N4 粉末の添加量が80重量%を越えると(炭化珪素に対するSi3 N4 粉末の割合が高すぎると)、炭化珪素の複合効果がなくなるので好ましくない。
【0009】
(2)炭化珪素粉末
炭化珪素粉末は、0.01〜1μm、特に0.08〜0.8μmの平均粒径を有するものが好ましい。好ましい炭化珪素粉末の添加量は、炭化珪素と窒化珪素との合計重量を100重量%として、15〜50重量%であり、より好ましくは20〜30重量%である。炭化珪素粉末の含有量が50重量%を越えると、緻密化が困難となるので好ましくない。
【0010】
(3)焼結助剤粉末
焼結助剤粉末は(イ)酸化アルミニウムと窒化アルミニウムのいずれか及び/又は(ロ)周期律表3A族元素又は4A族元素の酸化物とからなる。
【0011】
Al2 O3 とAlNのうち、Al2 O3 がより好ましい。他の酸化物はY2 O3 、Yb2 O3 、Er2 O3 等の周期律表3A族元素及びZrO2 、HfO2 等の周期律表4A族元素の化合物から選ばれた少なくとも1種であり、好ましくはY2 O3 である。好ましい組み合わせはAl2 O3 とAlNのいずれかと無機酸化物一種であり、特に好ましくはAl2 O3 とY2 O3 である。焼結助剤の合計含有量は、炭化珪素と窒化珪素との合計重量を100重量%として15重量%以下とし、好ましくは8重量%以下とする。焼結助剤粉末が15重量%より多いと焼結体の高温強度が低い。Al2 O3 とAlNのいずれかと周期律表3A族元素又は4A族元素の酸化物とを同時に添加する時、Al2 O3 とAlNの合計含有量と周期律表3A族元素又は4A族元素の酸化物の合計含有量の比は、2:1〜1:15とする。
【0012】
(4)ホウ素
ホウ素は微細粉末であればどれでもよいが、非晶質粉末であるのが好ましい。ホウ素粉末の平均粒径は1μm以下、特に0.8μm以下であるのが好ましい。
【0013】
(5)炭素
本発明に使用する炭素質粉末は、微細であれば特定のものに特に限定されないが、グラファイト粉末もしくはアセチレンブラック、ケッチェンブラック等のカーボンブラック粉末が好ましく、特にグラファイトが好ましい。炭素質粉末は、平均粒径が5μm以下、特に1μm以下であるのが好ましい。平均粒径が5μmより大きいと均一な分散が困難となる。
【0014】
ホウ素と炭素の合計含有量は、炭化珪素と窒化珪素との合計重量を100重量%として0.3〜5重量%とし、好ましくは1〜3重量%とする。ホウ素と炭素の合計含有量が5重量%より多いと焼結体の密度が低下する。
【0015】
〔2〕複合焼結体の製造方法
(1)成形体の作製
まず、各成分を上記配合比となるように配合し、ボールミル、ニーダー等で十分に混合する。混合は乾式でも湿式でも良い。湿式混合の場合には、粉末混合物に水、エタノール、ブタノール等の分散媒体を加える。また、射出成形の場合には適当な有機又は無機バインダーを添加する。有機バインダーとしては、例えばエチルシリケート、ポリエチレングリコール、ポリビニルアルコール(PVA)、アクリルエマルジョン、ポリウレタンエマルジョン等が挙げられる。また、無機バインダーも添加することができる。
【0016】
成形体の作製は、金型成形などの方法で行うことができるが、複雑な形状の成形体を作製するにはスリップキャスティング成形や射出成形が好ましい。
【0017】
(2)焼結
本発明では、HIPで成形体を焼結する。HIP焼結により、良好な焼結体密度を達成することができる。焼結温度は1700〜2200℃で、好ましくは1750〜2000℃である。焼結温度が1700℃未満であると、焼結体の強度及び靭性が低い。また焼結温度が2200℃を超えるとSi3 N4 の分解が始まるので好ましくない。焼結は非酸化性雰囲気下、好ましくは窒素ガス雰囲気下で行う。このとき、雰囲気ガス圧は1〜2000kgf /cm2 程度とするのが好ましく、焼結時間は1〜5時間程度とするのが好ましい。また、成形体は伴粉、好ましくはBN伴粉とともに、ルツボに入れて焼結するのが好ましい。ルツボはBNルツボ、カーボンルツボなど、好ましくはBNルツボ、特に好ましくはカーボンルツボと、その内部に設けられるBNルツボとからなる複合ルツボを用いるのが好ましい。
【0018】
上記方法で得られた炭化珪素と窒化珪素の複合焼結体は、Si3 N4 粒子内及び粒界に微細なSiC粒子が分散し、かつSiC粒子内に微細なSi3 N4 粒子が分散したいわゆるナノコンポジット構造を有する。SiC粒子はSi3 N4 粒子より熱膨張率が大きいため、Si3 N4 粒子に圧縮残留応力が働くと考えられる。また、Si3 N4 の粒界に分散した微細なSiC粒子は、Si3 N4 の粒界すべりを抑制するくさびのような作用をすると考えられる。
【0019】
【実施例】
以下、本発明を具体的実施例によりさらに詳細に説明するが、本発明はこれに限定されるものではない。
【0020】
実施例1〜5及び比較例1〜6
平均粒径が0.1 μmのSi3 N4 粉末と、平均粒径が0.2 μmのSiC粉末と、平均粒径が1.4 μmのY2 O3 粉末と、平均粒径が0.8 μmのAl2 O3 粉末と、平均粒径0.8 μmのB粉末と、平均粒径1μmのC粉末とを、表1に示す割合で秤量し、エタノール300gと窒化珪素ボール600gとともに2リットルのモノポットに入れ、エタノールを溶媒としてボールミルにより64時間混合し、溶媒を乾燥除去して試料粉末とした。
【0021】
【0022】
各種試料粉末を金型プレス(200kg/cm2 )で予備成形した後、CIPで4トン/平方センチの等方圧を加え、30×50×6mmの成形体を作製した。成形体を図1に示すように伴粉に埋め込むようにBNルツボに入れ、これをさらにカーボンルツボに入れて、窒素ガス中1000気圧の雰囲気下、1850℃でHIP焼結を行い、炭化珪素と窒化珪素の複合焼結体を得た。
【0023】
得られた焼結体の密度をアルキメデス法で測定した。JIS R−1601に従って、焼結体を3×4×40mmの大きさに切断して試験片とし、スパン30mm及びクロスヘッドスピード0.5 mm/分の条件で室温での3点曲げ強度試験を行った。結果はまとめて表2に示す。
【0024】
【0025】
表2に示すように、ホウ素及び炭素を添加しない比較例1と炭化珪素の含有率が15重量%以下の比較例2〜6の3点曲げ強度がいずれも実施例1〜5より低かった。また、Y2 O3 とAl2 O3 を添加せず、ホウ素と炭素のみを焼結助剤として添加した比較例7では、HIPによる焼結ができなかった。
【0026】
図2には、実施例2で得た焼結体の顕微鏡断面写真(日本電子(株)製顕微鏡、倍率×100,000)を示す。焼結体のSi3N4粒子A内及び粒界に微細なSiC粒子Bが分散し、かつSiC粒子C内に微細なSi3N4粒子Dが分散していることがわかる。
【0027】
【発明の効果】
以上詳述したように、本発明の方法によれば、炭化珪素と窒化珪素と特定の焼結助剤を用い、HIPにより焼結することによって、Si3 N4 粒子内及び粒界に微細なSiC粒子が分散し、かつSiC粒子内に微細なSi3 N4 粒子が分散したナノコンポジット構造を有する複合焼結体が得られる。このため、本発明の方法により得られた複合焼結体は優れた緻密性と高温強度を有する。このような特性を有する炭化珪素と窒化珪素の複合焼結体は、高温下で使用される摺動部材等に好適である。
【図面の簡単な説明】
【図1】本発明の炭化珪素と窒化珪素の複合焼結体の製造に用いるHIP焼結用ルツボを概略的に示す断面図である。
【図2】本発明における炭化珪素と窒化珪素の複合焼結体の組織の一例を示す模式図である。
【符号の説明】
1・・・カーボンルツボ
2・・・BNルツボ
3・・・伴粉
4・・・成形体
A・・・窒化珪素粒子
B・・・炭化珪素微細粒子
C・・・炭化珪素粒子
D・・・窒化珪素微細粒子[0001]
[Industrial applications]
The present invention relates to a method for producing a composite sintered body of silicon carbide and silicon nitride, and more particularly to a method for producing a composite sintered body fired by HIP and having high density and excellent strength.
[0002]
Problems to be solved by the prior art and the invention
Silicon nitride ceramic sintered bodies have high strength, high thermal shock resistance, and high wear resistance, and silicon carbide ceramic sintered bodies have high strength and high oxidation resistance. It is expected to be used as structural ceramics, which are used under severe conditions. In recent years, such a monolithic sintered body has been combined with a silicon nitride-silicon carbide composite sintered body at a micro level having both advantages and a silicon nitride-carbonized carbide having a nanocomposite structure in which fine silicon carbide is dispersed in grains of silicon nitride. Various attempts have been made to obtain a silicon composite sintered body.
[0003]
JP-A-58-91070 discloses that silicon carbide and silicon nitride formed by adding, mixing and sintering boron, carbon and an inorganic oxide as a sintering aid to a mixed powder of silicon carbide and silicon nitride. Are disclosed. This composite sintered body is manufactured by using fine silicon nitride-silicon carbide mixed powder and sintering by normal sintering or hot pressing at 1500 to 2300 ° C in the presence of a sintering aid. However, this prior art does not specifically describe a method of adding boron, carbon, and an inorganic oxide at the same time. Therefore, in a sintered body by this method, it is necessary to use a hot press as a sintering method. Therefore, there is a problem that it is not possible to cope with a component having a complicated shape.
[0004]
Japanese Patent Application Laid-Open No. 2-160669 discloses that silicon carbide having an average particle size of 1 μm or less is dispersed at a grain boundary from amorphous silicon nitride-silicon carbide composite powder obtained by a gas phase reaction method, and is several nanometers. Discloses a silicon nitride-silicon carbide composite sintered body having a fine structure in which fine particles of silicon carbide having a size of several hundred nanometers are dispersed in silicon nitride particles. However, the amorphous silicon nitride-silicon carbide composite powder has poor moldability because decomposition components are generated during sintering and liquid phase sintering does not easily proceed and is very bulky. Therefore, also in this case, it is necessary to substantially use a hot press as the sintering method.
[0005]
Therefore, an object of the present invention is to provide a method for producing a composite sintered body of silicon carbide and silicon nitride, which has high denseness and excellent high-temperature strength, fired by HIP capable of handling a complicated shape.
[0006]
[Means for Solving the Problems]
In light of the above objects, as a result of intensive studies, the present inventors have found that, if a specific additive is added to a mixed powder of silicon carbide and silicon nitride and HIP sintering is performed, silicon carbide and silicon nitride having high density and strength can be obtained. It was discovered that a composite sintered body of the formula (1) was obtained, and the present invention was completed.
[0007]
That is, the method for producing a composite sintered body of silicon carbide and silicon nitride according to the present invention comprises the steps of: (a) adding a sintering aid, boron and carbon to a mixed powder of silicon carbide and silicon nitride; using (a) aluminum oxide and / or aluminum nitride as the aid, and (b) periodic table group 3A elements and / or oxides of group 4A elements, is then burned (b) HIP, silicon carbide and silicon nitride the total of 100 weight% of the content of silicon carbide and 15 to 50 wt%, the total content of the sintering aid and 15% by weight or less, 0.3 to the total content of the boron and carbon The ratio of the total content of (a) the aluminum oxide and / or aluminum nitride to the (b) the total content of the oxides of the Group 3A element and / or the Group 4A element of the periodic table is 2: 1. to 1: characterized by a 15.
[0008]
Hereinafter, the present invention will be described in detail.
[1] Starting Material (1) Si 3 N 4 Powder The silicon nitride powder used in the present invention preferably has an average particle size of 0.01 to 1 μm, particularly 0.1 to 0.8 μm. The addition amount of the Si 3 N 4 powder is preferably 50 to 85% by weight, more preferably 70 to 80% by weight, with the total weight of silicon carbide and silicon nitride being 100% by weight. If the amount of the Si 3 N 4 powder exceeds 80% by weight (the ratio of the Si 3 N 4 powder to the silicon carbide is too high), the combined effect of the silicon carbide is lost, which is not preferable.
[0009]
(2) Silicon Carbide Powder The silicon carbide powder preferably has an average particle diameter of 0.01 to 1 μm, particularly 0.08 to 0.8 μm. A preferable addition amount of the silicon carbide powder is 15 to 50% by weight, and more preferably 20 to 30% by weight, where the total weight of silicon carbide and silicon nitride is 100% by weight. If the content of the silicon carbide powder exceeds 50% by weight, densification becomes difficult, which is not preferable.
[0010]
(3) Sintering aid powder The sintering aid powder comprises (a) any one of aluminum oxide and aluminum nitride and / or (b) an oxide of a Group 3A element or a Group 4A element of the periodic table.
[0011]
Of Al 2 O 3 and AlN, Al 2 O 3 is more preferable. The other oxide is at least one selected from the group 3A elements of the periodic table such as Y 2 O 3 , Yb 2 O 3 and Er 2 O 3 and the compounds of the group 4A elements of the periodic table such as ZrO 2 and HfO 2. And preferably Y 2 O 3 . A preferred combination is any one of Al 2 O 3 and AlN and one kind of inorganic oxide, particularly preferably Al 2 O 3 and Y 2 O 3 . The total content of the sintering aid is 15% by weight or less , preferably 8% by weight or less, with the total weight of silicon carbide and silicon nitride being 100% by weight. If the sintering aid powder is more than 15% by weight, the high-temperature strength of the sintered body is low. When simultaneously adding either Al 2 O 3 or AlN and an oxide of a Group 3A element or a Group 4A element of the Periodic Table, the total content of Al 2 O 3 and AlN and the Group 3A or Group 4A element of the Periodic Table are added. Is 2: 1 to 1:15.
[0012]
(4) Boron Boron may be any fine powder, but is preferably an amorphous powder. The average particle size of the boron powder is preferably 1 μm or less, particularly preferably 0.8 μm or less.
[0013]
(5) Carbon The carbonaceous powder used in the present invention is not particularly limited as long as it is fine, but graphite powder or carbon black powder such as acetylene black and Ketjen black is preferable, and graphite is particularly preferable. The average particle size of the carbonaceous powder is preferably 5 μm or less, particularly preferably 1 μm or less. If the average particle size is larger than 5 μm, uniform dispersion becomes difficult.
[0014]
The total content of boron and carbon is set to 0.3 to 5% by weight , and preferably 1 to 3% by weight , with the total weight of silicon carbide and silicon nitride being 100% by weight. If the total content of boron and carbon is more than 5% by weight, the density of the sintered body decreases.
[0015]
[2] Production method of composite sintered body (1) Production of molded body First, each component is blended so as to have the above-mentioned blending ratio, and is sufficiently mixed by a ball mill, a kneader or the like. Mixing may be dry or wet. In the case of wet mixing, a dispersion medium such as water, ethanol, or butanol is added to the powder mixture. In the case of injection molding, an appropriate organic or inorganic binder is added. Examples of the organic binder include ethyl silicate, polyethylene glycol, polyvinyl alcohol (PVA), acrylic emulsion, and polyurethane emulsion. Also, an inorganic binder can be added.
[0016]
The molded article can be produced by a method such as die molding. However, in order to produce a molded article having a complicated shape, slip casting or injection molding is preferable.
[0017]
(2) Sintering In the present invention, the compact is sintered by HIP. Good sintered body density can be achieved by HIP sintering. The sintering temperature is 1700-2200 ° C, preferably 1750-2000 ° C. If the sintering temperature is lower than 1700 ° C., the strength and toughness of the sintered body are low. If the sintering temperature exceeds 2200 ° C., decomposition of Si 3 N 4 starts, which is not preferable. Sintering is performed in a non-oxidizing atmosphere, preferably in a nitrogen gas atmosphere. At this time, the atmospheric gas pressure is preferably about 1 to 2000 kgf / cm 2, and the sintering time is preferably about 1 to 5 hours. The compact is preferably put into a crucible and sintered together with the accompanying powder, preferably BN accompanying powder. The crucible is preferably a BN crucible, such as a BN crucible or a carbon crucible, particularly preferably a composite crucible composed of a carbon crucible and a BN crucible provided therein.
[0018]
In the composite sintered body of silicon carbide and silicon nitride obtained by the above method, fine SiC particles are dispersed in Si 3 N 4 particles and grain boundaries, and fine Si 3 N 4 particles are dispersed in SiC particles. It has a so-called nanocomposite structure. SiC particles for Si 3 N 4 coefficient of thermal expansion than the particle is large, it believed to Si 3 N 4 particles compressive residual stress acts. Further, the fine SiC particles dispersed in the grain boundaries the Si 3 N 4 is believed to act as a suppressing wedge grain boundary sliding the Si 3 N 4.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited thereto.
[0020]
Examples 1 to 5 and Comparative Examples 1 to 6
Si 3 N 4 powder having an average particle size of 0.1 μm, SiC powder having an average particle size of 0.2 μm, Y 2 O 3 powder having an average particle size of 1.4 μm, and an average particle size of 0 μm. 0.8 μm Al 2 O 3 powder, B powder having an average particle diameter of 0.8 μm, and C powder having an average particle diameter of 1 μm were weighed at the ratios shown in Table 1, and were weighed together with 300 g of ethanol and 600 g of silicon nitride balls. The mixture was placed in a 2 liter monopot, mixed by a ball mill using ethanol as a solvent for 64 hours, and the solvent was removed by drying to obtain a sample powder.
[0021]
[0022]
After various sample powders were preformed by a die press (200 kg / cm 2 ), an isotropic pressure of 4 ton / square centimeter was applied by CIP to produce a 30 × 50 × 6 mm molded body. As shown in FIG. 1, the compact was placed in a BN crucible so as to be embedded in the accompanying powder, and this was further placed in a carbon crucible, and subjected to HIP sintering at 1850 ° C. in a nitrogen gas atmosphere at 1000 atm. A composite sintered body of silicon nitride was obtained.
[0023]
The density of the obtained sintered body was measured by the Archimedes method. According to JIS R-1601, the sintered body was cut into a size of 3 × 4 × 40 mm to obtain a test piece, and a three-point bending strength test was performed at room temperature under the conditions of a span of 30 mm and a crosshead speed of 0.5 mm / min. went. The results are summarized in Table 2.
[0024]
[0025]
As shown in Table 2, the three-point bending strengths of Comparative Example 1 in which boron and carbon were not added and Comparative Examples 2 to 6 in which the content of silicon carbide was 15% by weight or less were lower than Examples 1 to 5. In Comparative Example 7 in which only boron and carbon were added as sintering aids without adding Y 2 O 3 and Al 2 O 3 , sintering by HIP was not possible.
[0026]
FIG. 2 shows a micrograph of a cross section of the sintered body obtained in Example 2 (a microscope manufactured by JEOL Ltd., magnification × 100,000). It can be seen that the fine SiC particles B are dispersed in the Si 3 N 4 particles A and the grain boundaries of the sintered body, and the fine Si 3 N 4 particles D are dispersed in the SiC particles C.
[0027]
【The invention's effect】
As described in detail above, according to the method of the present invention, silicon carbide, silicon nitride, and a specific sintering aid are used, and sintering is performed by HIP, so that fine particles are formed in Si 3 N 4 particles and at grain boundaries. A composite sintered body having a nanocomposite structure in which SiC particles are dispersed and fine Si 3 N 4 particles are dispersed in the SiC particles is obtained. Therefore, the composite sintered body obtained by the method of the present invention has excellent denseness and high-temperature strength. A composite sintered body of silicon carbide and silicon nitride having such characteristics is suitable for a sliding member or the like used at a high temperature.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a crucible for HIP sintering used for manufacturing a composite sintered body of silicon carbide and silicon nitride according to the present invention.
FIG. 2 is a schematic diagram showing an example of a structure of a composite sintered body of silicon carbide and silicon nitride according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Carbon crucible 2 ...
Claims (2)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31123394A JP3567001B2 (en) | 1994-11-21 | 1994-11-21 | Method for producing composite sintered body of silicon carbide and silicon nitride |
EP95117928A EP0712819B1 (en) | 1994-11-21 | 1995-11-14 | Method for producing composite sintered body of silicon carbide and silicon nitride |
DE69512349T DE69512349T2 (en) | 1994-11-21 | 1995-11-14 | Process for the production of composite sintered bodies from silicon carbide and silicon nitride |
US08/559,001 US5785922A (en) | 1994-11-21 | 1995-11-16 | Method for producing composite sintered body of silicon carbide and silicon nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31123394A JP3567001B2 (en) | 1994-11-21 | 1994-11-21 | Method for producing composite sintered body of silicon carbide and silicon nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08143366A JPH08143366A (en) | 1996-06-04 |
JP3567001B2 true JP3567001B2 (en) | 2004-09-15 |
Family
ID=18014699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31123394A Expired - Fee Related JP3567001B2 (en) | 1994-11-21 | 1994-11-21 | Method for producing composite sintered body of silicon carbide and silicon nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3567001B2 (en) |
-
1994
- 1994-11-21 JP JP31123394A patent/JP3567001B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08143366A (en) | 1996-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3559382B2 (en) | Method for producing silicon nitride based sintered body | |
JP2507480B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
US5785922A (en) | Method for producing composite sintered body of silicon carbide and silicon nitride | |
Semen et al. | Structural ceramics derived from a preceramic polymer | |
JP4348429B2 (en) | Porous silicon nitride and method for producing the same | |
JP3567001B2 (en) | Method for producing composite sintered body of silicon carbide and silicon nitride | |
JP4070254B2 (en) | Composite sintered body of silicon nitride and silicon carbide and method for producing the same | |
JP2649220B2 (en) | Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body | |
JP3810183B2 (en) | Silicon nitride sintered body | |
JPH1029868A (en) | Silicon nitride composite sintered compact and its production | |
JP3454994B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH1029869A (en) | Silicon nitride-silicon carbide composite sintered compact and its production | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JP3570676B2 (en) | Porous ceramic body and method for producing the same | |
JPH08175874A (en) | Production of composite sintered compact composed of silicon carbide and silicon nitride | |
JP2980342B2 (en) | Ceramic sintered body | |
JP3932349B2 (en) | Reaction synthesis of non-oxide boron nitride composites | |
JPH07237971A (en) | Production of silicon nitride reaction sintered compact | |
JPS61251578A (en) | Manufacturing method of silicon nitride sintered body | |
JP2826080B2 (en) | Silicon nitride / silicon carbide composite sintered body and method for producing composite powder | |
JP3271123B2 (en) | Method for producing composite of silicon nitride and boron nitride | |
JP2665755B2 (en) | Method for producing β-sialon composite ceramics | |
JP3318466B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2658944B2 (en) | Silicon nitride-titanium nitride composite ceramics and method for producing the same | |
JPS6346029B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |