JP3566652B2 - 広帯域信号の効率的な符号化のための聴覚重み付け装置および方法 - Google Patents
広帯域信号の効率的な符号化のための聴覚重み付け装置および方法 Download PDFInfo
- Publication number
- JP3566652B2 JP3566652B2 JP2000578811A JP2000578811A JP3566652B2 JP 3566652 B2 JP3566652 B2 JP 3566652B2 JP 2000578811 A JP2000578811 A JP 2000578811A JP 2000578811 A JP2000578811 A JP 2000578811A JP 3566652 B2 JP3566652 B2 JP 3566652B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- gamma
- filter
- wideband signal
- transfer function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000005236 sound signal Effects 0.000 claims abstract description 31
- 239000013598 vector Substances 0.000 claims description 74
- 230000006870 function Effects 0.000 claims description 40
- 238000012546 transfer Methods 0.000 claims description 39
- 230000001413 cellular effect Effects 0.000 claims description 36
- 238000004891 communication Methods 0.000 claims description 31
- 230000015572 biosynthetic process Effects 0.000 claims description 29
- 238000003786 synthesis reaction Methods 0.000 claims description 29
- 230000004044 response Effects 0.000 claims description 26
- 238000001914 filtration Methods 0.000 claims description 15
- 230000010267 cellular communication Effects 0.000 claims description 13
- 230000003595 spectral effect Effects 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000004260 weight control Methods 0.000 claims description 7
- 230000002457 bidirectional effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 abstract description 13
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 230000005284 excitation Effects 0.000 description 38
- 238000013139 quantization Methods 0.000 description 17
- 238000013459 approach Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/90—Pitch determination of speech signals
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/26—Pre-filtering or post-filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L2019/0001—Codebooks
- G10L2019/0011—Long term prediction filters, i.e. pitch estimation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Optical Recording Or Reproduction (AREA)
- Error Detection And Correction (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Dc Digital Transmission (AREA)
- Mobile Radio Communication Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Measuring Frequencies, Analyzing Spectra (AREA)
- Stereo-Broadcasting Methods (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
- Optical Communication System (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Television Systems (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Image Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
- Inorganic Insulating Materials (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Coils Or Transformers For Communication (AREA)
- Package Frames And Binding Bands (AREA)
- Installation Of Indoor Wiring (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Networks Using Active Elements (AREA)
Description
発明の背景
1. 発明の分野
本発明は、重み付けされた広帯域信号(0−7000Hz)と後で合成された重み付けされた広帯域信号との間の差を低減させるように、広帯域信号に応答して聴覚的に重み付けされた信号を生成するための聴覚重み付け装置および方法に関する。
【0002】
2. 従来技術の簡単な説明
例えば音声/映像電子会議システム、マルチメディア、ワイヤレスアプリケーション、並びに、インターネットおよびパケットネットワークアプリケーションのような様々な用途において、主観的品質/ビットレートの良好なトレードオフを有する効率的なディジタル広帯域音声/オーディオ符号化技術に対する要求がますます高まっている。最近になるまで、主として200−3400Hz帯域内のフィルタリングされた電話帯域幅が音声符号化アプリケーションで使用されていた。しかし、音声信号の了解性と自然さを向上させるために、広帯域音声アプリケーションに対する要求がますます高まっている。50−7000Hz帯域の帯域幅が、対面音声品質を実現するのに十分であることが発見された。オーディオ信号に関しては、この帯域は許容可能なオーディオ品質をもたらすが、この品質は20−20000Hz帯域を使用するCD品質よりは依然として低い。
【0003】
音声エンコーダが音声信号をディジタルビットストリームに変換し、このディジタルビットストリームが通信チャネルを経由して伝送される(または、記憶媒体内に記憶される)。音声信号はディジタル化され(すなわち、通常は16ビットサンプリングによって量子化され)、音声エンコーダは、より少ないビット数でこれらのディジタルサンプルを表現すると同時に良好な主観的音声品質を維持するという役割を有する。この音声デコーダ或いはシンセサイザは、伝送または記憶されたビットストリームに演算を施し、このビットストリームを変換して音声信号に戻す。
【0004】
優れた品質/ビットレートのトレードオフを実現することが可能な最良の従来技術の1つが、いわゆる符号励起線形予測(CELP)方式である。この方式では、サンプリングされた音声信号を、一般にフレームと呼ばれる、1個のブロックがL個のサンプルから成る連続したブロックの形で処理し、ここでLは(10−30ミリ秒の音声に対応する)何らかの予め決められた数である。CELPでは、各フレーム毎に線形予測(LP)合成フィルタを計算して伝送する。その次に、L個のサンプルから成るフレームを、N個のサンプルから成るサブフレームと呼ばれるより小さいブロックに分割し、ここではL=kNでありかつkは1フレーム内のサブフレームの個数である(Nは一般に4−10ミリ秒の音声に対応する)。励起信号を各サブフレーム内で求め、この励起信号は、一般に、2つの成分、すなわち、直前の励起(ピッチ寄与(pitch contribution)または適応コードブックとも呼ばれる)からの一方の成分と、イノベーティブコードブック(innovative codebook)(固定コードブックとも呼ばれる)からの他方の成分とから成る。この励起信号が伝送され、合成音声を得るためにLP合成フィルタの入力としてデコーダで使用される。
【0005】
CELPにおけるイノベーティブコードブックは、N次元のコードベクトルと呼ばれるサンプルN個分の長さのシーケンスの索引付きセットである。各々のコードブックシーケンスは、1からMの範囲内の整数kによる索引を付けられ、ここでMはビット数bとして表現されることが多いコードブックのサイズを表し、ここでM=2bである。
【0006】
CELP方式によって音声を合成するためには、コードブックからの適切なコードベクトルを音声信号のスペクトル特徴をモデル化する時変フィルタを通してフィルタリングすることによって、N個のサンプルから成るブロックの各々を合成する。エンコーダ側では、コードブックからのコードベクトルの全てまたはそのサブセットに関して合成出力を計算する(コードブック探索)。こうして得られたコードベクトルは、聴覚的に重み付けされた歪み測度にしたがってオリジナルの音声信号に最も近い合成出力を生成するコードベクトルである。この聴覚重み付けを、いわゆる聴覚重み付けフィルタを使用して行い、この聴覚重み付けフィルタは一般的にLP合成フィルタから得られる。
【0007】
CELPモデルは電話帯域の音声信号の符号化に非常に有効であり、CELPを基礎とする幾つかの規格が、広範囲のアプリケーション、特にディジタル移動電話アプリケーションにおいて存在している。電話帯域では、音声信号は200−3400Hzに帯域制限され、8000サンプル/秒でサンプリングされる。広帯域音声/オーディオアプリケーションでは、音声信号は50−7000Hzに帯域制限され、16000サンプル/秒でサンプリングされる。
【0008】
電話帯域に最適化されたCELPモデルを広帯域信号に適用する時には幾つかの問題が生じ、高品質の広帯域信号を得るためにはこのモデルに追加の特徴を加えることが必要である。広帯域信号は、電話帯域信号に比較してはるかに広いダイナミックレンジを示し、このことが、(ワイヤレスアプリケーションでは必須である)このアルゴリズムの固定小数点処理系が必要とされる時に、精度上の問題を生じさせる。さらに、CELPモデルは、通常はより高いエネルギー成分を有する低周波数領域にその符号化ビットの大半を費やすことが多く、この結果としてローパスの出力信号が生じる。この問題を克服するために、聴覚重み付けフィルタを広帯域信号に適合するように改変しなければならず、かつ、高周波数領域を強調するプリエンファシス方式が、ダイナミックレンジを低減させてより単純な固定小数点処理系を実現するために、および、信号のより高い周波数の成分をより適切に符号化することを確実にするために重要になる。
【0009】
CELPタイプのエンコーダでは、聴覚重み付けドメイン内で入力音声と合成音声との間の平均2乗誤差を最小化することによって、最適のピッチとイノベーティブコードブックとを探索する。これは、重み付けされた入力音声と重み付けされた合成音声との間の誤差を最小化することと同等であり、この場合に、重み付けは、次式の伝達関数W(z)を有するフィルタを使用して行われる。
【0010】
W(z)=A(z/g1)/A(z/g2)ここで0<Γ2<Γ1≦1.
「合成による分析(AbS)」コーダでは、量子化誤差が重み付けフィルタの逆フィルタW−1(z)によって重み付けられ、この逆フィルタが入力信号におけるフォルマント構造の一部分を示すということが分析から明らかになっている。したがって、フォルマント領域内により多くのエネルギーを有するように量子化誤差を整形することによって、人間の耳のマスキング特性を利用して、このフォルマント領域内に存在する強い信号エネルギーで量子化誤差をマスキングする。重み付けの量を係数Γ1およびΓ2によって制御する。
【0011】
このフィルタは電話帯域信号に対しては適切に働く。しかし、このフィルタが広帯域信号に適用される時には効率的な聴覚重み付けに適していないということが明らかになった。このフィルタがフォルマント構造とこれに必要とされるスペクトル傾斜(spectral tilt)とを同時にモデル化する上で固有の制限を有することが明らかになっている。このスペクトル傾斜は、広帯域信号においては、その低周波数と高周波数の間の広いダイナミックレンジのために、より一層顕著になる。スペクトル傾斜とフォルマントの重み付けを別々に制御するために、フィルタW(z)に傾斜フィルタ(tilt filter)を加えることが提案された。
発明の目的
したがって、本発明の目的は、高品質の再生信号を得るために改変された聴覚重み付けフィルタを使用し、かつ、固定小数点アルゴリズム処理系を実行可能にする、広帯域信号に適合させた聴覚重み付け装置および方法を提供することである。
発明の概要
さらに明確に述べると、本発明によって、重み付けされた広帯域信号と後に合成される重み付けされた広帯域信号との間の差を低減させるように、広帯域信号に応答して聴覚的に重み付けされた信号を生成する聴覚重み付け装置が提供される。この聴覚重み付け装置は、
a)広帯域信号に応答して、広帯域信号の高周波数成分を強調し、プリエンファシスされた信号を生成する信号プリエンファシスフィルタと、
b)プリエンファシスされた信号に応答して、合成フィルタ係数を生成する合成フィルタ計算器と、
c)プリエンファシスされた信号と合成フィルタ係数とに応答して、プリエンファシスされた信号を合成フィルタ係数に関してフィルタリングし、聴覚的に重み付けされた信号を生成する聴覚重み付けフィルタ
とを含む。聴覚重み付けフィルタは、固定した分母を有する伝達関数を有し、それによって、フォルマント領域内の広帯域信号の重み付けがその広帯域信号のスペクトル傾斜から実質的に切り離される。
【0012】
さらに、本発明は、重み付けされた広帯域信号と後に合成される重み付けされた広帯域信号との間の差を低減させるように、広帯域信号に応答して聴覚的に重み付けされた信号を生成する方法にも関する。この方法は、強調した高周波数成分を有するプリエンファシスされた信号を生成するために広帯域信号をフィルタリングすることと、プリエンファシスされた信号から合成フィルタ係数を計算することと、合成フィルタ係数に関してプリエンファシスされた信号をフィルタリングして、聴覚的に重み付けされた音声信号を生成することとを含む。このフィルタリングは、フォルマント領域における広帯域信号の重み付けが広帯域信号のスペクトル傾斜から実質的に切り離されるように、固定した分母を有する伝達関数を有する聴覚重み付けフィルタを通してプリエンファシス信号を処理することを含む。
【0013】
本発明の好ましい一実施態様では、
− ダイナミックレンジの縮小が、次式の伝達関数によって広帯域信号をフィルタリングすることを含み、
P(z)=1−μz−1
ここでμが、0から1の値を有するプリエンファシス係数である。
【0014】
− プリエンファシス係数μは0.7である。
− 聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である。
− 変数γ2はμに等しいように設定されている。
【0015】
したがって、量子化誤差の全体的な聴覚重み付けが、スペクトル傾斜とフォルマントとの重み付けを別々に制御するように、プリエンファシスフィルタと、復号した広帯域音声信号の高い主観的品質を実現する改変された重み付けフィルタとをフィルタW(z)の形に組み合わせることによって得られる。
したがって、従来技術の簡単な説明で示した問題に対する解決策は、プリエンファシスフィルタを入力に導入することと、プリエンファシスされた信号に基づいて合成フィルタ係数を計算することと、分母を固定することによって改変された聴覚重み付けフィルタを使用することである。広帯域信号のダイナミックレンジを縮小することによって、プリエンファシスフィルタは、広帯域信号を固定小数点処理系により適したものにし、そのスペクトルの高周波数成分の符号化を改善する。
【0016】
さらに、本発明は、広帯域信号を符号化するエンコーダに関し、このエンコーダは、a)上述の聴覚重み付け装置と、b)聴覚的に重み付けされた信号に応答してピッチコードブックパラメータとイノベーティブ探索ターゲットベクトルとを生成するピッチコードブック探索装置と、c)合成フィルタ係数とイノベーティブ探索ターゲットベクトルとに応答してイノベーティブコードブックパラメータを生成するイノベーティブコードブック探索装置と、d)ピッチコードブックパラメータとイノベーティブコードブックパラメータと合成フィルタ係数とを含む符号化された広帯域信号を生成する信号形成装置とを含む。
【0017】
さらに、本発明によって、
− 複数のセルに分割されている広い地理的区域に通信サービスを提供するセルラー通信システムが提供され、このシステムは、a)移動送信機/受信機ユニットと、b)それぞれにセル内に配置されているセルラー基地局と、c)セルラー基地局間の通信を制御する制御端末装置と、d)1つのセル内に位置した各移動ユニットとこのセルのセルラー基地局との間の双方向無線通信サブシステムとを含み、この双方向無線通信サブシステムは、移動ユニットとセルラー基地局との両方において、
i)広帯域信号を符号化する上述のエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
ii)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含む。
【0018】
− セルラー移動送信機/受信機ユニットが提供され、このユニットは、
a)広帯域信号を符号化する上述のエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
b)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含む。
【0019】
− セルラーネットワーク要素が提供され、このセルラーネットワーク要素は、
a)広帯域信号を符号化する上述のエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
b)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含む。
【0020】
− 1つのセル内に位置した各移動ユニットとこのセルのセルラー基地局との間の双方向無線通信サブシステムが提供され、この双方向無線通信サブシステムは、移動ユニットとセルラー基地局の両方において、
a)広帯域信号を符号化する上述のエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
b)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含む。
【0021】
添付図面を参照しながら、本発明の単なる具体例として示す本発明の好ましい実施形態に関する以下の非限定的な説明を理解することによって、本発明の目的と利点と他の特徴とがより明確になるだろう。
好ましい実施形態の詳細な説明
当業者に周知であるように、401(図4を参照されたい)のようなセルラー通信システムが、広い地理的区域をC個のより小さいセルに分割することによってその広い地理的区域全体にわたって通信サービスを提供する。C個の小さいセルは、その各セルに無線信号チャネルとオーディオチャネルとデータチャネルとを提供するべつべつのセルラー基地局4021、4022、...、402Cによって通信サービスを提供される。
【0022】
無線信号チャネルは、セルラー基地局402のサービスエリア(セル)の限界内の403のような移動無線電話(移動送信機/受信機ユニット)の呼出と、基地局のセルの内側もしくは外側に位置する他の無線電話403に対して、または、公衆交換電話網(PSTN)404のような別のネットワークに対して呼出を行うために使用される。
【0023】
無線電話403が呼出を行うことに成功するかまたは呼出を受信することに成功すると、オーディオチャネルまたはデータチャネルが、この無線電話403と、この無線電話403が中に位置しているセルに対応するセルラー基地局402との間に確立され、基地局402と無線電話403との間の通信がオーディオチャネルまたはデータチャネルを通して行われる。さらに、無線電話403は、通話が進行している最中に無線信号チャネルを通して制御情報またはタイミング情報を受信することもできる。
【0024】
通話が進行している最中に無線電話403がセルの外に出て別の隣接セルの中に入る場合には、無線電話403は、その新たなセル基地局402の使用可能なオーディオまたはデータチャネルに通話をハンドオーバーする。通話が進行していない時に無線電話403がセルの外に出て別の隣接セルの中に入る場合には、無線電話403は、新たなセルの基地局402にログインするために無線信号送信チャネルを通して制御メッセージを送る。このようにして、広い地理的区域全体にわたっての移動通信が可能である。
【0025】
さらに、セルラー通信システム401は、例えば無線電話403とPSTN 404との間の通信、または、第1のセル内に位置した無線電話403と第2のセル内に位置した無線電話403との間の通信の最中に、セルラー基地局402とPSTN 404との間の通信を制御するための制御端末装置405を含む。 もちろん、1つのセルの基地局402とそのセル内に位置した無線電話403との間にオーディオチャネルまたはデータチャネルを確立するためには、双方向無線通信サブシステムが必要である。図4に非常に単純化して示しているように、こうした双方向無線通信サブシステムは、一般に、無線電話403内に、
音声信号を符号化するエンコーダ407と、エンコーダ407からの符号化音声信号を409のようなアンテナを通して送信する送信回路408とを含む送信機406と、
一般には同一のアンテナ409を通して、送信された符号化音声信号を受信する受信回路411と、受信回路411からの受信した符号化音声信号を復号するデコーダ412とを含む受信機410
とを含む。
【0026】
さらに、無線電話は、エンコーダ407とデコーダ412とが接続されておりかつこれらからの信号を処理するための他の従来通りの無線電話回路413も含み、この回路413は当業者に公知であり、したがって本明細書ではさらに詳細には説明しない。
さらに、こうした双方向無線通信サブシステムは、一般に、その基地局402内に、
音声信号を符号化するエンコーダ415と、エンコーダ415からの符号化音声信号を417のようなアンテナを通して送信する送信回路416とを含む送信機414と、
同一のアンテナ409または別のアンテナ(図示していない)を通して、送信された符号化音声信号を受信する受信回路419と、受信回路419からの受信した符号化音声信号を復号するデコーダ420とを含む受信機418
とを含む。
【0027】
さらに、基地局402は、一般に、制御端末装置405と送信機414と受信機418の間の通信を制御するための、基地局制御装置421とこれに関連したデータベース422とを含む。
当業者には周知であるように、双方向無線通信サブシステムにおいて、すなわち、無線電話403と基地局402との間で、例えば音声といった有声音信号のような音響信号を送信するのに必要な帯域幅を縮小するために、音声符号化が必要とされている。
【0028】
符号励起線形予測(CELP)エンコーダのように一般に13キロビット/秒以下で動作する(415および407のような)LPボイスエンコーダは、音声信号の短期スペクトル包絡線をモデル化するためにLP合成フィルタを使用することが一般的である。一般には10ミリ秒毎または20ミリ秒毎にLP情報がデコーダ(例えば、420、412)に伝送され、デコーダ側で抽出される。
【0029】
本明細書で開示する新規の方法は、LPに基づく別の符号化システムを使用してもよい。しかし、CELPタイプの符号化システムを、本発明の方法を非限定的に例示するための好ましい実施形態で使用する。同様に、こうした方式を、有声音および音声以外の音響信号と共に使用することも、他のタイプの広帯域信号と共に使用することも可能である。
【0030】
図1は、広帯域信号により適切に適合するように改変されたCELPタイプの音声符号化装置100の略ブロック図を示す。
サンプリングされた入力音声信号114が、ブロック1個当たりL個のサンプルから成る連続した「フレーム」と呼ばれるブロックに分割される。各フレームにおいて、そのフレーム内の音声信号を表す異なったパラメータが計算され、符号化され、伝送される。一般的に、LP合成フィルタを表現するLPパラメータが各フレーム毎に1回計算される。各フレームは、N個のサンプルから成るより小さいブロック(長さNのブロック)にさらに分割され、このブロックでは励起パラメータ(ピッチおよびイノベーション)が求められる。CELPの文献では、こうした長さNのブロックは「サブフレーム」と呼ばれ、このサブフレーム中のN個のサンプル信号は「N次元ベクトル」と呼ばれている。この好ましい実施形態では、長さNは5ミリ秒に相当し、一方、長さLは20ミリ秒に相当し、このことは、1個のフレームが4個のサブフレームを含むことを意味する(16kHzのサンプリングレートではN=80であり、12.8kHzへのダウンサンプリング後では、N=64である)。様々なN次元ベクトルが符号化手順中に生じる。図1と図2に現れるベクトルのリストと、伝送されるパラメータのリストとを次に示す。
主要なN次元ベクトルのリスト
s 広帯域信号入力音声ベクトル(ダウンサンプリングと前処理とプリエンファシスとの後)、
sw 重み付けされた音声ベクトル、
so 重み付けされた合成フィルタのゼロ入力応答、
sp ダウンサンプリングされ前処理された信号、
オーバサンプリングされた合成音声信号、
s′ デエンファシス前の合成信号、
sd デエンファシスされた合成信号、
sh デエンファシスおよび後処理後の合成信号、
x ピッチ探索のためのターゲットベクトル、
x′ イノベーション探索のためのターゲットベクトル、
h 重み付けされた合成フィルタインパルス応答、
vT 遅延Tにおける適応(ピッチ)コードブック、
yT フィルタリングされたピッチコードブックベクトル(hと畳み込み演算されたvT)、
ck 索引kにおけるイノベーティブコードベクトル(イノベーションコードブックからのk番目のエントリ)、
cf 強調されたスケーリング済みイノベーションコードベクトル、
u 励起信号(スケーリングされたイノベーションコードベクトルおよびピッチコードベクトル)、
u′ 強調された励起、
z 帯域通過ノイズシーケンス、
w′ ホワイトノイズシーケンス、
w スケーリングされたノイズシーケンス。
伝送されるパラメータのリスト
STP 短期予測パラメータ(A(z)を定義する)、
T ピッチ遅れ(すなわち、ピッチコードブック索引)、
b ピッチゲイン(すなわち、ピッチコードブックゲイン)、
j ピッチコードベクトルで使用されるローパスフィルタの索引、
k コードベクトル索引(イノベーションコードブックエントリ)、
g イノベーションコードブックゲイン。
【0031】
この好ましい実施形態では、STPパラメータはフレーム1個当たり1回伝送され、その他のパラメータはフレーム1個当たり4回(すなわち各サブフレーム毎に1回)伝送される。
エンコーダ側
サンプリングされた音声信号を、101から111の番号が付いた11個のモジュールに分けた図1の符号化装置100によって各ブロック単位で符号化する。
【0032】
入力音声を、フレームと呼ばれる上述のL個のサンプルから成るブロックの形に処理する。
図1を参照すると、サンプリングされた入力音声信号114をダウンサンプリングモジュール101においてダウンサンプリングする。例えば、当業者に周知の方法を使用して、この信号を16kHzから12.8kHzにダウンサンプリングする。もちろん、別の周波数へのダウンサンプリングも想定可能である。ダウンサンプリングは、より小さい周波数帯域幅が符号化されるので、符号化効率を向上させる。さらに、これは、1フレーム中のサンプルの数が減少させられるので、アルゴリズムの複雑性を低減させる。ビットレートを16キロビット/秒未満に低下させる時には、ダウンサンプリングの使用が重要になるが、16キロビット/秒を越える場合にはダウンサンプリングは不可欠ではない。
【0033】
ダウンサンプリング後に、20ミリ秒あたり320サンプルフレームが245サンプルフレームに縮小される(ダウンサンプリング率は4/5である)。
その次に、入力フレームを随意採用の前処理ブロック102に送る。前処理ブロック102は、50Hzのカットオフ周波数を有するハイパスフィルタから成ってもよい。ハイパスフィルタ102は、50Hz未満の不要な音響成分を除去する。
【0034】
ダウンサンプリングされ前処理された信号を、sp(n)、n=0,1,2,...、L−1で表し、ここでLはフレームの長さである(12.8kHzのサンプリング周波数では256)。プリエンファシスフィルタ103の好ましい具体例では、信号sp(n)は、次の伝達関数を有するフィルタを使用してプリエンファシスされる。
【0035】
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である(典型的な値はμ=0.7である)。より高次のフィルタを使用してもよい。より効率的な固定小数点処理系を得るために、ハイパスフィルタ102とプリエンファシスフィルタ103とを互いに交換することが可能であることを指摘しておかなければならない。
【0036】
プリエンファシスフィルタ103の機能は、入力信号の高周波数成分を強調することである。さらに、このプリエンファシスフィルタ103は入力音声信号のダイナミックレンジを縮小し、このことが入力音声信号を固定小数点処理系により一層適したものにする。プリエンファシスを行わない場合には、固定小数点を使用する単精度演算の形でのLP分析は実行が困難である。
【0037】
プリエンファシスはさらに、量子化誤差の適正な包括的な聴覚重み付けを実現する上で重要な役割を果たし、音質の改善に寄与する。これについては、さらに詳細に後述する。
プリエンファシスフィルタ103の出力をs(n)で表す。この信号は、計算器モジュール104でLP分析を行うために使用される。LP分析は当業者に周知の方法である。この好ましい実施形態では、自己相関アプローチを使用する。この自己相関アプローチでは、最初に、(約30−40ミリ秒の長さを有することが一般的である)ハミング窓を使用して信号s(n)をウィンドウ処理する。このウィンドウ処理された信号から自己相関を計算し、LPフィルタ係数aiを計算するためにレヴィンソン−ダービンの再帰計算を使用し、ここでi=1,...,pであり、pはLP次数であり、広帯域符号化の場合には16であることが一般的である。パラメータaiは、LPフィルタの伝達関数の係数であり、次の関係式で示される。
【0038】
【数1】
【0039】
LP分析を計算器モジュール104で行い、この計算器モジュール104はさらに、LPフィルタ係数の量子化と補間も行う。最初に、LPフィルタ係数を、量子化と補間により適している別の同等のドメインに変換する。線スペクトル対(LSP)ドメインとイミタンス(immitance)スペクトル対(ISP)ドメインとが、量子化と補間を効率的に行うことができる2つのドメインである。16個のLPフィルタ係数aiを、分割量子化または多段量子化またはこれらの組合せを使用して約30ビットから50ビットに量子化することが可能である。補間の目的は、各フレーム毎に1回ずつLPフィルタ係数を伝送しつつ各サブフレーム毎にLPフィルタ係数を更新することを可能にすることであり、このことがビットレートを増加させることなしにエンコーダの性能を向上させる。LPフィルタ係数の量子化と補間は、他の点では当業者に周知であると考えられ、したがって本明細書ではさらに詳細には説明しない。
【0040】
【数2】
【0041】
聴覚重み付け
「合成による分析」エンコーダでは、聴覚的に重み付けされたドメインにおいて入力音声と合成音声の間の平均2乗誤差を最小化することによって、最適のピッチおよびイノベーションパラメータを探索する。これは、重み付けされた入力音声と重み付けされた合成音声との間の誤差を最小化することと同等である。
【0042】
重み付けされた信号sw(n)を、聴覚重み付けフィルタ105で計算する。従来通りに、重み付けされた信号sw(n)を、次式の伝達関数W(z)を有する重み付けフィルタによって計算する。
W(z)=A(z/γ1)/A(z/γ2)ここで0<γ2<γ1≦1
当業者には周知であるように、従来技術の「合成による分析」(AbS)エンコーダでは、聴覚重み付けフィルタ105の伝達関数の逆関数である伝達関数W−1(z)によって量子化誤差が重み付けされるということが分析によって示されている。この結果は、B.S.AtalおよびM.R.Schroeder,“Predictive coding of speech and subjective error criteria”,IEEE Transaction ASSP,vol.27,no.3,pp.247−254,June 1979に詳細に説明されている。伝達関数W−1(z)は入力音声信号のフォルマント構造の一部分を示す。したがって、量子化誤差がフォルマント領域内により大きいエネルギーを有し、それによってこのフォルマント領域内に存在する強い信号エネルギーによって量子化誤差がマスキングされるように量子化誤差を整形することによって、人間の耳のマスキング特性が利用される。重み付けの量を係数γ1、γ2で制御する。
【0043】
上述の従来の聴覚重み付けフィルタ105は、電話帯域信号には十分に有効に機能する。しかし、この従来の聴覚重み付けフィルタ105が広帯域信号の効率的な聴覚重み付けには適していないことが明らかになった。さらに、従来の聴覚重み付けフィルタ105がフォルマント構造とそれに必要なスペクトル傾斜とを同時にモデル化する上で固有の制限を有することも明らかになった。スペクトル傾斜は、広帯域信号においては、低周波数と高周波数の間の広いダイナミックレンジのためにより一層顕著である。従来技術は、広帯域入力信号の傾斜およびフォルマント重み付けを制御するために、傾斜フィルタをW(z)に加えることを提案している。
【0044】
この問題に対する新規の解決策は、本発明によれば、プリエンファシスフィルタ103を入力に導入することと、プリエンファシスされた音声s(n)に基づいてLPフィルタA(z)を計算することと、フィルタW(z)の分母を固定することによって改変されたフィルタW(z)を使用することである。
LPフィルタA(z)を得るために、プリエンファシスされた信号s(n)に対してモジュール104においてLP分析を行う。さらに、固定された分母を有する新たな聴覚重み付けフィルタ105を使用する。聴覚重み付けフィルタ104のための伝達関数の一例を次の関係式で示す。
【0045】
W(z)=A(z/γ1)/(1−γ2z−1)ここで0<γ2<γ1≦1
より高い次数を分母で使用することが可能である。この構造が、フォルマント重み付けを傾斜から実質的に切り離す。
A(z)はプリエンファシスされた音声信号s(n)に基づいて計算されるので、フィルタの傾斜1/A(z/γ1)は、A(z)がオリジナルの音声に基づいて計算される場合よりは顕著ではないということに留意されたい。次の伝達関数を有するフィルタを使用して、デコーダ側でデエンファシスが行われるので、
P−1(z)=1/(1−μz−1)1
量子化誤差のスペクトルは、伝達関数W−1(z)P−1(z)を有するフィルタによって整形される。通常はそうであるように、γ2がμに等しく設定されている時には、量子化誤差のスペクトルは、伝達関数が1/A(z/γ1)であるフィルタによって整形され、A(z)はプリエンファシスされた音声信号に基づいて計算される。プリエンファシスと改変された重み付けフィルタリングとの組合せによって誤差の整形を実現するこの構造は、固定小数点アルゴリズムの実現が容易であるという利点に加えて、広帯域信号の符号化に関して非常に効率的であるということが、主観的な聴取によって明らかになった。
ピッチ分析
ピッチ分析を簡略化するために、重み付けされた音声信号sw(n)を使用して、開ループピッチ探索モジュール106において開ループピッチ遅れTOLを最初に推定する。その次に、サブフレーム単位で閉ループピッチ探索モジュール107において行われる閉ループピッチ分析を、開ループピッチ遅れTOLの付近に制限し、このことがLTPパラメータT、b(ピッチ遅れとピッチゲイン)の探索の複雑性を著しく低減させる。通常は、当業者に周知の方法を使用して、開ループピッチ分析を10ミリ秒(2個のサブフレーム)毎に1回ずつモジュール106で行う。
【0046】
【数3】
【0047】
閉ループピッチ(すなわちピッチコードブック)パラメータb、T、jを閉ループピッチ探索モジュール107において計算し、この閉ループピッチ探索モジュール107は、入力としてターゲットベクトルxとインパルス応答ベクトルhと開ループピッチ遅れTOLとを使用する。従来においては、ピッチ予測は、次の伝達関数を有するピッチフィルタによって表現されており、
1/(1−bz−T)
ここでbはピッチゲインであり、Tはピッチ遅延すなわち遅れである。この場合に、励起信号u(n)に対するピッチの寄与はbu(n−T)によって与えられ、この場合に全励起が、
u(n)=bu(n−T)+gck(n)
で与えられ、ここでgはイノベーティブコードブックゲインであり、ck(n)は索引kにおけるイノベーティブコードベクトルである。
【0048】
ピッチ遅れTがサブフレーム長さNよりも短い場合に、この表現は制限を有する。別の表現では、ピッチ寄与を、直前の励起信号を含むピッチコードブックと見なすことが可能である。一般的に、ピッチコードブック中の各ベクトルは先行のベクトルの(1つのサンプルを捨てて新たなサンプルを加えた)「1つ分ずれた」変型である。ピッチ遅れT>Nである場合には、ピッチコードブックはフィルタ構造(1/(1−bz−1)と同等であり、ピッチ遅れTにおけるピッチコードブックベクトルvT(n)は次式で与えられる。
【0049】
VT(n)=u(n−T), n=0,...,N−1.
Nより短いピッチ遅れTの場合には、ベクトルvT(n)は、そのベクトルが完成するまで、直前の励起からの使用可能なサンプルを反復することによって構築される(これはフィルタ構造と同等ではない)。
最近のエンコーダでは、より高いピッチ分解能が使用され、このことは有声音音響セグメントの品質を著しく向上させる。これは、多相補間フィルタを使用して直前の励起信号をオーバサンプリングすることによって行われる。この場合には、ベクトルvT(n)は、一般的に、直前の励起の補間変型に相当し、ピッチ遅れTは非整数の遅延(例えば、50.25)である。
【0050】
ピッチ探索は、ターゲットベクトルxとスケーリングされたフィルタリング済みの直前の励起との間の平均2乗重み付け誤差Eを最小化する最適のピッチ遅れTとゲインbとを発見することから成る。誤差Eは次のように表現され、
E=‖x−byT‖2
ここでyTはピッチ遅れTにおけるフィルタリングされたピッチコードブックベクトルであり、
【0051】
【数4】
【0052】
である。
探索基準
【0053】
【数5】
【0054】
ここでtはベクトル転置を表す。
を最大化することにより誤差Eを最小化することができる。
本発明のこの好ましい実施形態では、1/3のサブサンプルピッチ分解能が使用され、ピッチ(ピッチコードブック)探索が3つの段階によって構成されている。
【0055】
第1の段階では、開ループピッチ遅れTOLが、重み付けされた音声信号sw(n)に応答して開ループピッチ探索モジュール106で推定される。上述の説明で示したように、この開ループピッチ分析は、当業者に周知の方法を使用して10ミリ秒(2つのサブフレーム)毎に1回ずつ行われるのが一般的である。
第2の段階では、探索基準Cが、推定された開ループピッチ遅れTOL(一般に±5)に近い整数ピッチ遅れに関して、閉ループピッチ探索モジュール107で探索され、このことが探索手順を著しく単純化する。各ピッチ遅れ毎に畳み込みを計算する必要なしに、フィルタリングされたコードベクトルyTを更新するために、単純な手順を使用する。
【0056】
最適の整数ピッチ遅れを第2の段階で発見すると、探索の第3の段階(モジュール107)においてその最適の整数ピッチ遅れの付近の端数がテストされる。 ピッチ予測器が、ピッチ遅れT>Nの場合の妥当な想定である形式1/(1−bz−1)のフィルタによって表現される時には、ピッチフィルタのスペクトルが、周波数範囲全体にわたって高調波構造を示し、この高調波周波数は1/Tに関係している。広帯域信号の場合には、広帯域信号における高調波構造がその拡張されたスペクトルの全体を含むわけではないので、この高調波構造はあまり効率的ではない。この高調波構造は、音声セグメントに応じて特定の周波数までにだけ存在するにすぎない。したがって、広帯域音声の有声音セグメントにおけるピッチ寄与の効率的な表現を得るためには、ピッチ予測フィルタは、広帯域スペクトル全体にわたって周期性の量を変化させるという柔軟性を有する必要がある。
【0057】
広帯域信号の音声スペクトルの高調波構造の効率的なモデリングを行う新たな方法を本明細書で開示し、この方法では、幾つかの形態のローパスフィルタが直前の励起に適用され、より高い予測ゲインを有するローパスフィルタが選択される。
サブサンプルピッチ分解能を使用する時には、ローパスフィルタを、より高いピッチ分解能を得るために使用される補間フィルタの中に組み込むことが可能である。この場合には、選択された整数ピッチ遅れの付近の端数をテストするピッチ探索の第3の段階を、互いに異なったローパス特性を有する幾つかの補間フィルタに対して繰り返し、探索基準Cを最小にする端数とフィルタ索引とを選択する。
【0058】
より単純なアプローチは、上述の3つの段階での探索を行って、特定の周波数応答を有する1つだけの補間フィルタを使用して最適の端数ピッチ遅れを求め、異なった予め決められたローパスフィルタを選択されたピッチコードブックベクトルvTに適用することによってその端における最適のローパスフィルタ形状を選択し、ピッチ予測誤差を最小にするローパスフィルタを選択することである。このアプローチを詳細に後述する。
【0059】
図3は、この提案のアプローチの好ましい具体例の略ブロック図を示す。
記憶装置モジュール303では、直前の励起信号u(n)、n<0を記憶する。ピッチコードブック探索モジュール301が、ターゲットベクトルxと、開ループピッチ遅れTOLと、記憶装置モジュール303からの直前の励起信号u(n)、n<0とに対して応答し、上述の探索基準Cを最小にするピッチコードブック(ピッチコードブック)検索を行う。モジュール301で行った探索の結果から、モジュール302が最適のピッチコードブックベクトルvTを生成する。サブサンプルピッチ分解能(端数ピッチ)を使用するので、直前の励起信号u(n)、n<0が補間され、ピッチコードブックベクトルvTは、補間された直前の励起信号に対応するということに留意されたい。この好ましい実施形態では、補間フィルタ(モジュール301内、図示していない)が、7000Hzを越える周波数成分を除去するローパスフィルタ特性を有する。
【0060】
好ましい一実施形態では、K個のフィルタ特性を使用する。これらのフィルタ特性はローパスフィルタ特性であることも帯域通過フィルタ特性であることも可能である。最適のコードベクトルvTがピッチコードベクトル発生器302によって決定されて供給されると、vTのK個のフィルタリングされた変型が、305(j)のようなK個の異なった周波数整形フィルタを使用してそれぞれに計算され、ここでj=1,2,...,Kである。これらのフィルタリングされた変型をvf (j)と表現し、ここでj=1,2,...,Kである。これらの異なったベクトルvf (j)を、それぞれのモジュール304(j)(ここでj=1,2,...,Kである)においてインパルス応答hと畳み込み演算し、ベクトルy(j)(ここでj=1,2,...,Kである)を得る。各ベクトルy(j)に関して平均2乗ピッチ予測誤差を計算するために、対応する増幅器307(j)によって値y(j)にゲインbを乗算し、さらに、対応する減算器308(j)によって値by(j)をターゲットベクトルxから減算する。セレクタ309が、平均2乗ピッチ予測誤差
e(j)=‖x−b(j)y(j)‖2, j=1,2,...,K
を最小にする周波数整形フィルタ305(j)を選択する。y(j)の各値に関して平均2乗ピッチ予測誤差e(j)を計算するために、対応する増幅器307(j)によって値y(j)にゲインbを乗算し、さらに、減算器308(j)によって値b(j)y(j)をターゲットベクトルxから減算する。次の関係式を使用して、索引jにおける周波数整形フィルタに関連した対応するゲイン計算器306(j)によって、各々のゲインb(j)を計算する。
【0061】
b(j)=x’y(j)/‖y(j)‖2
セレクタ309では、パラメータb、T、jは、平均2乗ピッチ予測誤差eを最小にするvTまたはvf (j)に基づいて選択される。
再び図1を参照すると、ピッチコードブック索引Tは符号化されてマルチプレクサ112に送られる。ピッチゲインbは量子化されてマルチプレクサ112に送られる。この新たなアプローチを使用する場合には、選択された周波数整形フィルタの索引jをマルチプレクサ112で符号化するために、追加の情報が必要である。例えば、3つのフィルタを使用する場合(j=1,2,3)には、この情報を表現するために2ビットが必要である。フィルタ索引情報jをピッチゲインbと共に符号化することも可能である。
イノベーティブコードブック探索
ピッチ、または、LTP(長期予測)パラメータb、T、jを求めた後に、次のステップは、図1の探索モジュール110によって最適のイノベーティブ励起を探索することである。最初に、ターゲットベクトルxを、LTP寄与
x’=x−byT
を減算することによって更新し、ここでbはピッチゲインであり、yTはフィルタリングされたピッチコードブックベクトル(選択されたローパスフィルタでフィルタリングされ、図3を参照して説明したようにインパルス応答hと畳み込み演算された、遅延Tにおける直前の励起)である。
【0062】
CELPにおける探索手順は、ターゲットベクトルとスケーリングされたフィルタリング済みコードベクトルとの間の平均2乗誤差
E=‖x’−gHck‖2
を最小にする最適の励起コードベクトルckとゲインgとを発見することによって行なわれる。ここでHは、インパルス応答ベクトルhから得られた下三角畳み込み行列である。
【0063】
本発明のこの好ましい実施形態では、イノベーティブコードブック探索を、1995年8月22日付で発行された米国特許第5,444,816号(Adoul他)と、1997年12月17日付でAduol他に発行された米国特許第5,699,482号と、1998年5月19日付でAduol他に発行された米国特許第5,754,976号と、1997年12月23日付の米国特許第5,701,392号(Adoul他)とに説明されている通りの代数的コードブックによってモジュール110で行う。
【0064】
最適の励起コードベクトルckとそのゲインgとがモジュール110によって選択され終わると、コードブック索引kとゲインgとが符号化されてマルチプレクサ112に送られる。
図1を参照すると、パラメータb、T、j、 、k、gがマルチプレクサ112を通して多重化され、その後で通信チャネルを通して送られる。
記憶装置の更新
記憶装置モジュール111(図1)では、重み付けされた合成フィルタ
【0065】
【数13】
【0066】
の状態が、この重み付けされた合成フィルタを通して励起信号u=gck+bvTをフィルタリングすることによって更新される。このフィルタリングの後に、このフィルタの状態が記憶され、計算器モジュール108でゼロ入力応答を計算するための初期状態として、その次のサブフレームで使用される。
ターゲットベクトルxの場合と同様に、当業者に周知の数学的には同等である別のアプローチを、このフィルタの状態を更新するために使用することが可能である。
デコーダ側
図2の音声復号装置200が、ディジタル入力222(デマルチプレクサ217に対する入力ストリーム)とサンプリングされた出力音声223(加算器221の出力)との間で行われる様々なステップを示す。
【0067】
デマルチプレクサ217は、ディジタル入力チャネルから受け取ったバイナリ情報から合成モデルパラメータを抽出する。受け取ったバイナリフレームの各々から抽出されるパラメータは、
短期予測パラメータ(STP) (フレーム毎に1回)、
長期予測(LTP)パラメータT、b、j(各サブフレーム毎)、および、
イノベーションコードブック索引kとゲインg(各サブフレーム毎)
である。
【0068】
後述するように、現在の音声信号が、これらのパラメータに基づいて合成される。
イノベーティブコードブック218が索引kに応答してイノベーションコードベクトルckを生じさせ、このイノベーションコードベクトルは、復号されたゲイン係数gによって増幅器224を通してスケーリングされる。この好ましい実施形態では、上記の米国特許第5,444,816号、同第5,699,482号、同第5,754,976号、同第5,701,392号に説明されている通りのイノベーティブコードブック218を、イノベーティブコードベクトルckを表現するために使用する。
【0069】
増幅器224の出力における、生成されたスケーリングされたコードベクトルgckを、イノベーションフィルタ205を通して処理する。
周期性の強調
増幅器224の出力における、生成されたスケーリングされたコードベクトルを、周波数依存性のピッチエンハンサ205を通して処理する。
【0070】
励起信号uの周期性を強調することが、有声音セグメントの場合に品質を改善する。これは、過去においては、導入される周期性の量を制御する式1/(1−εbz−1)(ただし、εは0.5未満の係数である)のフィルタを通して、イノベーティブコードブック(固定コードブック)218からのイノベーションベクトルをフィルタリングすることによって行われた。このアプローチは、スペクトル全体にわたって周期性を導入するので、広帯域信号の場合には効果的でない。本発明の一部分である新たな代案のアプローチを説明すると、このアプローチでは、より低い周波数よりもより高い周波数を強調する周波数応答のイノベーションフィルタ205(F(z))を通して、イノベーティブ(固定)コードブックからのイノベーティブコードベクトルckをフィルタリングすることによって、周期性の強調を行う。F(z)の係数は励起信号uの周期性の量に関係する。
【0071】
当業者に周知の様々な方法が、有効な周期性係数を得るために使用可能である。例えば、ゲインbの値が周期性の表示を与える。すなわち、ゲインbが1に近い場合には、励起信号uの周期性は高く、ゲインbが0.5未満である場合には、周期性は低い。
好ましい実施形態で使用するフィルタF(z)の係数を得るための別の効果的な方法は、励起信号u全体におけるピッチ寄与の量をこの係数に関係付けることである。この結果として、周波数応答がサブフレームの周期性に依存することになり、この場合に、より高い周波数が、ピッチゲインが高ければ高いほど強く強調される(より強い全体的勾配が得られる)。イノベーションフィルタ205は、励起信号uの周期性がより大きい時に、低周波数におけるイノベーティブコードベクトルckのエネルギーを低下させる効果を有し、このことが、より高い周波数よりもより低い周波数における励起信号uの周期性を強調する。イノベーションフィルタ205に関して提案する式は、
(1)F(z)=1−σz−1,または(2)F(z)=−αz+1−αz−1
であり、ここでσまたはαは、励起信号uの周期性のレベルから導き出される周期性係数である。
【0072】
F(z)の第2の3項形式を、好ましい実施形態で使用する。周期性係数αは有声音化係数発生器204で計算する。励起信号uの周期性に基づいて周期性係数αを導き出すために、幾つかの方法を使用することが可能である。次にその方法を2つ示す。
方法1:
最初に、全励起信号uに対するピッチ寄与の割合を、次式によって有声音化係数発生器204で計算し、
【0073】
【数6】
【0074】
ここでvTはピッチコードブックベクトルであり、bはピッチゲインであり、uは次式によって加算器219の出力で与えられる励起信号uである。
u=gck+bvT
項bvTが、ピッチ遅れTと、記憶装置203内に記憶されているuの直前の値とに応答して、ピッチコードブック(ピッチコードブック)201から得られるということに留意されたい。その次に、ピッチコードブック201からのピッチコードベクトルvTを、デマルチプレクサ217からの索引jによってカットオフ周波数が調整されるローパスフィルタ202を通して処理する。その次に、得られたコードベクトルvTにデマルチプレクサ217からのゲインbを増幅器226を通して乗算し、信号bvTを得る。
【0075】
係数αを、次式によって有声音化係数発生器204で計算し、
α=qRp ただし α<q
ここでqは強調の量を制御する係数である(この好ましい実施形態ではqは0.25に設定される。)
方法2:
周期性係数αを計算するために本発明の好ましい実施形態で使用する別の方法を次に説明する。
【0076】
最初に、有声音化係数rvを、次式によって有声音化係数発生器204で計算し、
rv=(Ev−Ec)/(Ev+Ec)
ここでEvはスケーリングされたピッチコードベクトルbvTのエネルギーであり、Ecはスケーリングされたイノベーティブコードベクトルgckのエネルギーである。すなわち、
【0077】
【数7】
【0078】
rvの値は−1から1までの値であることに留意されたい(1は純粋に有声音の信号に相当し、−1は純粋に無声音の信号に相当する)。
その次に、この好ましい実施形態では、係数αを次式によって有声音化係数発生器204で計算し、
α=0.125(1+rv)
この係数αは、純粋に無声音の信号の場合には0の値に相当し、純粋に有声音の信号の場合には0.25に相当する。
【0079】
上記の第1のF(z)の2項形式では、周期性係数αを、上述の方法1と方法2においてσ=2αを使用することによって近似的に求めることが可能である。この場合には、周期性係数σを上述の方法1で次のように計算する。
σ=2qRp ただし σ<2q.
方法2では、周期性係数σを次のように計算する。
【0080】
σ=0.25(1+rv).
したがって、強調された信号cfは、スケーリングされたイノベーティブコードベクトルgckをイノベーションフィルタ205(F(z))を通してフィルタリングすることによって計算される。
強調された励起信号u′を次のように加算器220で計算する。
【0081】
u′=cf+bvT
このプロセスがエンコーダ100では行われないことに留意されたい。したがって、エンコーダ100とデコーダ200の間の同期を維持するために、強調なしに励起信号uを使用してピッチコードブック201の内容を更新することが不可欠である。したがって、励起信号uをピッチコードブック201の記憶装置203を更新するために使用し、強調された励起信号u′をLP合成フィルタ206の入力で使用する。
合成とデエンファシス
【0082】
【数8】
【0083】
D(z)=1/(1−μz−1)
ここでμは0から1の値を有するプリエンファシス係数である(典型的な値はμ=0.7である)。より高次のフィルタも使用可能である。
このベクトルs′は、デエンファシスフィルタD(z)(モジュール207)を通過させられてベクトルsdが得られ、ベクトルsdはハイパスフィルタ208を通過させられて50Hz未満の不要な周波数が除去されてshが得られる。
オーバサンプリングと高周波数再生
【0084】
【数9】
【0085】
本発明による高周波数生成手順を次で説明する。
ランダムノイズ発生器213が、当業者に周知の方法を使用して、周波数帯域全体にわたって一様なスペクトルを有するホワイトノイズシーケンスw′を生成する。生成されたシーケンスは、オリジナルのドメインにおけるサブフレーム長さである長さN′である。Nがダウンサンプリングされたドメインにおけるサブフレーム長さであることに留意されたい。この好ましい実施形態では、N=64でN′=80であり、これらは5ミリ秒に相当する。
【0086】
ホワイトノイズシーケンスをゲイン調整モジュール214で適正にスケーリングする。ゲイン調整は次のステップを含む。最初に、生成されたノイズシーケンスw′のエネルギーを、エネルギー計算モジュール210によって計算された強調された励起信号u′のエネルギーに等しいように設定し、この結果として得られたスケーリングされたノイズシーケンスが次式で与えられる。
【0087】
【数10】
【0088】
ゲインスケーリングの第2のステップは、(無声音セグメントに比較して高周波数のエネルギが小さい)有声音セグメントの場合には、生成されるノイズのエネルギーを減少させるように、有声音化係数発生器204の出力において合成信号の高周波数成分を計算に入れることである。この好ましい実施形態では、高周波数成分の測定を、スペクトル傾斜計算器212によって合成信号の傾斜を測定することと、それにしたがってエネルギを減少させることとによって実現する。零交叉測定のような他の測定を同様に使用することが可能である。傾斜が非常に強い場合は、これは有声音セグメントに対応し、ノイズのエネルギーをさらに減少させる。傾斜係数tiltをモジュール202で合成信号shの第1の相関係数として計算し、これは次式で与えられ、
【0089】
【数11】
【0090】
ここで有声音化係数rvは次式で与えられ、
rv=(Ev−Ec)/(Ev+Ec)
ここでEvはスケーリングされたピッチコードベクトルbvTのエネルギーであり、Ecは上述の通りのスケーリングされたイノベーティブコードベクトルgckのエネルギーである。有声音化係数rvはtiltよりも小さい場合が殆どであるが、この条件は、tilt値が負でありかつrvの値がHIGHである場合に高周波数トーンに対する予防策として導入されている。したがって、この条件は、こうしたトーン信号の場合のノイズエネルギーを減少させる。
【0091】
一様なスペクトルの場合にはtilt値は0であり、強く有声音化された信号の場合にはtilt値は1であり、高周波数により多くのエネルギーが存在する無声音信号の場合にはtilt値は負である。
高周波数成分の量からスケーリング係数glを得るために様々な方法を使用することが可能である。本発明では、上述の信号の傾斜に基づいて2つの方法を提示する。
方法1:
スケーリング係数glを次式によってtiltから得る。
【0092】
g1=1−tilt bounded by 0.2≦g1≦1.0
tiltが1に近い場合の強く有声音化された信号では、glは0.2であり、強く無声音化された信号の場合にはglは1.0になる。
方法2:
tilt係数glを最初にゼロ以上に制限し、その次にこのスケーリング係数を次式によってtiltから得る。
【0093】
g1=10−0.8tilt
従って、ゲイン調整モジュール214で生成されたスケーリングされたノイズシーケンスwgは次式で与えられる。
Wg=g1W.
tiltがゼロに近い時には、スケーリング係数glは1に近く、このことはエネルギーの減少を生じさせない。tilt値が1である時は、スケーリング係数glは、生成されるノイズのエネルギーの12dBの減少をもたらす。
【0094】
【数12】
【0095】
本発明をその好ましい実施形態によって上記で説明してきたが、この実施形態を、本発明の着想と本質から逸脱することなしに、添付の特許請求項の範囲内で自由に改変することが可能である。好ましい実施形態では広帯域音声信号の使用を説明したが、広帯域信号一般を使用する他の具体例にも本発明が適用されることと、本発明が必ずしも音声用途だけには限定されないということとが、当業者には明らかだろう。
【図面の簡単な説明】
【図1】広帯域符号化装置の好ましい実施形態の略ブロック図である。
【図2】広帯域復号装置の好ましい実施形態の略ブロック図である。
【図3】ピッチ分析装置の好ましい実施形態の略ブロック図である。
【図4】図1の広帯域符号化装置と図2の広帯域復号装置とが使用可能なセルラー通信システムの単純化した略ブロック図である。
Claims (49)
- 重み付けされた広帯域信号と後に合成される重み付けされた広帯域信号との間の差を低減させるように、広帯域信号に応答して聴覚的に重み付けされた信号を生成する聴覚重み付け装置であって、
a)前記広帯域信号に応答して、前記広帯域信号の高周波数成分を強調し、プリエンファシスされた信号を生成する信号プリエンファシスフィルタと、
b)前記プリエンファシスされた信号に応答して、合成フィルタ係数を生成する合成フィルタ計算器と、
c)前記プリエンファシスされた信号と前記合成フィルタ係数とに応答して、前記プリエンファシスされた信号を前記合成フィルタ係数に関してフィルタリングし、前記聴覚重み付けされた信号を生成するための、聴覚重み付けフィルタであって、固定した分母を有する伝達関数を有し、それによって、フォルマント領域内の前記広帯域信号の重み付けが前記広帯域信号のスペクトル傾斜から実質的に切り離される聴覚重み付けフィルタ
とを含む聴覚重み付け装置。 - 前記信号プリエンファシスフィルタは次式の伝達関数を有し、
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である
請求項1に記載の聴覚重み付け装置。 - 前記プリエンファシス係数μは0.7である請求項2に記載の聴覚重み付け装置。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項2に記載の聴覚重み付け装置。 - γ2はμに等しく設定されている請求項4に記載の聴覚重み付け装置。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項1に記載の聴覚重み付け装置。 - γ2はμに等しく設定されている請求項6に記載の聴覚重み付け装置。
- 重み付けされた広帯域信号と後に合成される重み付けされた広帯域信号との間の差を低減させるように、広帯域信号に応答して聴覚的に重み付けされた信号を生成する方法であって、
a)強調した高周波数成分を有するプリエンファシスされた信号を生成するために前記広帯域信号をフィルタリングすることと、
b)前記プリエンファシスされた信号から合成フィルタ係数を計算することと、
c)聴覚重み付けされた音声信号を生成するために前記プリエンファシスされた信号を前記合成フィルタ係数に関してフィルタリングすること
とを含み、
前記フィルタリングは、フォルマント領域における前記広帯域信号の重み付けが前記広帯域信号のスペクトル傾斜から実質的に切り離されるように、固定した分母を有する伝達関数を有する聴覚重み付けフィルタを通して前記プリエンファシスされた信号を処理することを含む方法。 - 前記広帯域信号をフィルタリングすることは、次式の伝達関数によるフィルタリングを含み、
P(z)=1−μz−1
ここでμは0から1の値を有するプリエンファシス係数である
請求項8に記載の聴覚的に重み付けられた広帯域信号を生成する方法。 - 前記プリエンファシス係数μは0.7である請求項9に記載の聴覚的に重み付けられた広帯域信号を生成する方法。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項9に記載の聴覚的に重み付けられた広帯域信号を生成する方法。 - γ2はμに等しく設定されている請求項11に記載の聴覚的に重み付けられた広帯域信号を生成する方法。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項8に記載の聴覚的に重み付けられた広帯域信号を生成する方法。 - γ2はμに等しく設定されている請求項13に記載の聴覚的に重み付けられた広帯域信号を生成する方法。
- 広帯域信号を符号化するエンコーダであって、
a)請求項1に記載の聴覚重み付け装置と、
b)聴覚的に重み付けされた信号に応答して、ピッチコードブックパラメータとイノベーティブ探索ターゲットベクトルとを生成するピッチコードブック探索装置と、
c)前記合成フィルタ係数と前記イノベーティブ探索ターゲットベクトルとに応答して、イノベーティブコードブックを生成するイノベーティブコードブック探索装置と、
d)前記ピッチコードブックパラメータと前記イノベーティブコードブックパラメータと前記合成フィルタ係数とを含む符号化された広帯域信号を生成する信号形成装置
とを含むエンコーダ。 - 前記信号プリエンファシスフィルタは次式の伝達関数を有し、
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である
請求項15に記載のエンコーダ。 - 前記プリエンファシス係数μは0.7である請求項16に記載のエンコーダ。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項16に記載のエンコーダ。 - γ2はμに等しく設定されている請求項18に記載のエンコーダ。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項15に記載のエンコーダ。 - μはγ2に等しく設定されている請求項20に記載のエンコーダ。
- 複数のセルに分割されている広い地理的区域に通信サービスを提供するセルラー通信システムであって、
a)移動送信機/受信機ユニットと、
b)それぞれに前記セル内に配置されているセルラー基地局と、
c)前記セルラー基地局間の通信を制御する制御端末装置と、
d)1つのセル内に位置した各移動ユニットと前記1つのセルの前記セルラー基地局との間の双方向無線通信サブシステムであって、前記移動ユニットと前記セルラー基地局との両方において、
i)請求項15に記載の広帯域信号を符号化するエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
ii)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含む双方向無線通信サブシステム
とを含むセルラー通信システム。 - 前記信号プリエンファシスフィルタは次式の伝達関数を有し、
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である
請求項22に記載のセルラー通信システム。 - 前記プリエンファシス係数μは0.7である請求項23に記載のセルラー通信システム。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項23に記載のセルラー通信システム。 - μはγ2に等しく設定されている請求項25に記載のセルラー通信システム。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項22に記載のセルラー通信システム。 - γ2はμに等しく設定されている請求項27に記載のセルラー通信システム。
- セルラー移動送信機/受信機ユニットであって、
a)請求項15に記載の広帯域信号を符号化するエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
b)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含むセルラー移動送信機/受信機ユニット。 - 前記信号プリエンファシスフィルタは次式の伝達関数を有し、
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である
請求項29に記載のセルラー移動送信機/受信機ユニット。 - 前記プリエンファシス係数μは0.7である請求項30に記載のセルラー移動送信機/受信機ユニット。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項30に記載のセルラー移動送信機/受信機ユニット。 - γ2はμに等しく設定されている請求項32に記載のセルラー移動送信機/受信機ユニット。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項29に記載のセルラー移動送信機/受信機ユニット。 - γ2はμに等しく設定されている請求項34に記載のセルラー移動送信機/受信機ユニット。
- セルラーネットワーク要素であって、
a)請求項15に記載の広帯域信号を符号化するエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
b)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含むセルラーネットワーク要素。 - 前記信号プリエンファシスフィルタは次式の伝達関数を有し、
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である
請求項36に記載のセルラーネットワーク要素。 - 前記プリエンファシス係数μは0.7である請求項37に記載のセルラーネットワーク要素。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項37に記載のセルラーネットワーク要素。 - γ2はμに等しく設定されている請求項39に記載のセルラーネットワーク要素。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項36に記載のセルラーネットワーク要素。 - μはγ2に等しく設定されている請求項41に記載のセルラーネットワーク要素。
- 移動送信機/受信機ユニットと、それぞれにセル内に位置したセルラー基地局と、前記セルラー基地局間の通信を制御する制御端末装置とを含む、複数のセルに分割されている広い地理的区域に通信サービスを提供するセルラー通信システムにおける、
1つのセル内に位置した各移動ユニットと前記1つのセルの前記セルラー基地局との間の双方向無線通信サブシステムであって、前記移動ユニットと前記セルラー基地局の両方において、
a)請求項15に記載の広帯域信号を符号化するエンコーダと、符号化された広帯域信号を送信する送信回路とを含む送信機と、
b)送信された符号化広帯域信号を受信する受信回路と、受信された符号化広帯域信号を復号するデコーダとを含む受信機
とを含む双方向無線通信サブシステム。 - 前記信号プリエンファシスフィルタは次式の伝達関数を有し、
P(z)=1−μz−1
ここでμは、0から1の値を有するプリエンファシス係数である
請求項43に記載の双方向無線通信サブシステム。 - 前記プリエンファシス係数μは0.7である請求項44に記載の双方向無線通信サブシステム。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項44に記載の双方向無線通信サブシステム。 - μはγ2に等しく設定されている請求項46に記載の双方向無線通信サブシステム。
- 前記聴覚重み付けフィルタは次式の伝達関数を有し、
W(z)=A(z/γ1)/(1−γ2z−1)
ここで0<γ2<γ1≦1であり、かつ、γ2とγ1は重み付け制御値である
請求項43に記載の双方向無線通信サブシステム。 - γ2はμに等しく設定されている請求項48に記載の双方向無線通信サブシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2,252,170 | 1998-10-27 | ||
CA002252170A CA2252170A1 (en) | 1998-10-27 | 1998-10-27 | A method and device for high quality coding of wideband speech and audio signals |
PCT/CA1999/001010 WO2000025304A1 (en) | 1998-10-27 | 1999-10-27 | Perceptual weighting device and method for efficient coding of wideband signals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002528776A JP2002528776A (ja) | 2002-09-03 |
JP3566652B2 true JP3566652B2 (ja) | 2004-09-15 |
Family
ID=4162966
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000578812A Expired - Lifetime JP3936139B2 (ja) | 1998-10-27 | 1999-10-27 | オーバーサンプリングされた合成広帯域信号の高周波数成分回復の方法および装置 |
JP2000578810A Expired - Lifetime JP3869211B2 (ja) | 1998-10-27 | 1999-10-27 | 広帯域信号の復号における周期性の強調 |
JP2000578811A Expired - Lifetime JP3566652B2 (ja) | 1998-10-27 | 1999-10-27 | 広帯域信号の効率的な符号化のための聴覚重み付け装置および方法 |
JP2000578808A Expired - Lifetime JP3490685B2 (ja) | 1998-10-27 | 1999-10-27 | 広帯域信号の符号化における適応帯域ピッチ探索のための方法および装置 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000578812A Expired - Lifetime JP3936139B2 (ja) | 1998-10-27 | 1999-10-27 | オーバーサンプリングされた合成広帯域信号の高周波数成分回復の方法および装置 |
JP2000578810A Expired - Lifetime JP3869211B2 (ja) | 1998-10-27 | 1999-10-27 | 広帯域信号の復号における周期性の強調 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000578808A Expired - Lifetime JP3490685B2 (ja) | 1998-10-27 | 1999-10-27 | 広帯域信号の符号化における適応帯域ピッチ探索のための方法および装置 |
Country Status (20)
Country | Link |
---|---|
US (8) | US7260521B1 (ja) |
EP (4) | EP1125284B1 (ja) |
JP (4) | JP3936139B2 (ja) |
KR (3) | KR100417635B1 (ja) |
CN (4) | CN1127055C (ja) |
AT (4) | ATE246389T1 (ja) |
AU (4) | AU752229B2 (ja) |
BR (2) | BR9914890B1 (ja) |
CA (5) | CA2252170A1 (ja) |
DE (4) | DE69910240T2 (ja) |
DK (4) | DK1125276T3 (ja) |
ES (4) | ES2205892T3 (ja) |
HK (1) | HK1043234B (ja) |
MX (2) | MXPA01004181A (ja) |
NO (4) | NO317603B1 (ja) |
NZ (1) | NZ511163A (ja) |
PT (4) | PT1125285E (ja) |
RU (2) | RU2219507C2 (ja) |
WO (4) | WO2000025303A1 (ja) |
ZA (2) | ZA200103366B (ja) |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2252170A1 (en) * | 1998-10-27 | 2000-04-27 | Bruno Bessette | A method and device for high quality coding of wideband speech and audio signals |
US6704701B1 (en) * | 1999-07-02 | 2004-03-09 | Mindspeed Technologies, Inc. | Bi-directional pitch enhancement in speech coding systems |
ES2287122T3 (es) * | 2000-04-24 | 2007-12-16 | Qualcomm Incorporated | Procedimiento y aparato para cuantificar de manera predictiva habla sonora. |
JP3538122B2 (ja) * | 2000-06-14 | 2004-06-14 | 株式会社ケンウッド | 周波数補間装置、周波数補間方法及び記録媒体 |
US7010480B2 (en) * | 2000-09-15 | 2006-03-07 | Mindspeed Technologies, Inc. | Controlling a weighting filter based on the spectral content of a speech signal |
US6691085B1 (en) * | 2000-10-18 | 2004-02-10 | Nokia Mobile Phones Ltd. | Method and system for estimating artificial high band signal in speech codec using voice activity information |
JP3582589B2 (ja) * | 2001-03-07 | 2004-10-27 | 日本電気株式会社 | 音声符号化装置及び音声復号化装置 |
SE0202159D0 (sv) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
US8605911B2 (en) | 2001-07-10 | 2013-12-10 | Dolby International Ab | Efficient and scalable parametric stereo coding for low bitrate audio coding applications |
JP2003044098A (ja) * | 2001-07-26 | 2003-02-14 | Nec Corp | 音声帯域拡張装置及び音声帯域拡張方法 |
KR100393899B1 (ko) * | 2001-07-27 | 2003-08-09 | 어뮤즈텍(주) | 2-단계 피치 판단 방법 및 장치 |
US7680665B2 (en) * | 2001-08-24 | 2010-03-16 | Kabushiki Kaisha Kenwood | Device and method for interpolating frequency components of signal adaptively |
PT1423847E (pt) | 2001-11-29 | 2005-05-31 | Coding Tech Ab | Reconstrucao de componentes de frequencia elevada |
US7240001B2 (en) | 2001-12-14 | 2007-07-03 | Microsoft Corporation | Quality improvement techniques in an audio encoder |
US6934677B2 (en) | 2001-12-14 | 2005-08-23 | Microsoft Corporation | Quantization matrices based on critical band pattern information for digital audio wherein quantization bands differ from critical bands |
JP2003255976A (ja) * | 2002-02-28 | 2003-09-10 | Nec Corp | 音声素片データベースの圧縮伸張を行なう音声合成装置及び方法 |
US8463334B2 (en) * | 2002-03-13 | 2013-06-11 | Qualcomm Incorporated | Apparatus and system for providing wideband voice quality in a wireless telephone |
CA2388439A1 (en) | 2002-05-31 | 2003-11-30 | Voiceage Corporation | A method and device for efficient frame erasure concealment in linear predictive based speech codecs |
CA2388352A1 (en) * | 2002-05-31 | 2003-11-30 | Voiceage Corporation | A method and device for frequency-selective pitch enhancement of synthesized speed |
CA2392640A1 (en) | 2002-07-05 | 2004-01-05 | Voiceage Corporation | A method and device for efficient in-based dim-and-burst signaling and half-rate max operation in variable bit-rate wideband speech coding for cdma wireless systems |
US7299190B2 (en) * | 2002-09-04 | 2007-11-20 | Microsoft Corporation | Quantization and inverse quantization for audio |
JP4676140B2 (ja) | 2002-09-04 | 2011-04-27 | マイクロソフト コーポレーション | オーディオの量子化および逆量子化 |
US7502743B2 (en) | 2002-09-04 | 2009-03-10 | Microsoft Corporation | Multi-channel audio encoding and decoding with multi-channel transform selection |
SE0202770D0 (sv) | 2002-09-18 | 2002-09-18 | Coding Technologies Sweden Ab | Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks |
US7254533B1 (en) * | 2002-10-17 | 2007-08-07 | Dilithium Networks Pty Ltd. | Method and apparatus for a thin CELP voice codec |
JP4433668B2 (ja) * | 2002-10-31 | 2010-03-17 | 日本電気株式会社 | 帯域拡張装置及び方法 |
KR100503415B1 (ko) * | 2002-12-09 | 2005-07-22 | 한국전자통신연구원 | 대역폭 확장을 이용한 celp 방식 코덱간의 상호부호화 장치 및 그 방법 |
CA2415105A1 (en) * | 2002-12-24 | 2004-06-24 | Voiceage Corporation | A method and device for robust predictive vector quantization of linear prediction parameters in variable bit rate speech coding |
CN100531259C (zh) * | 2002-12-27 | 2009-08-19 | 冲电气工业株式会社 | 语音通信设备 |
US7039222B2 (en) * | 2003-02-28 | 2006-05-02 | Eastman Kodak Company | Method and system for enhancing portrait images that are processed in a batch mode |
US6947449B2 (en) * | 2003-06-20 | 2005-09-20 | Nokia Corporation | Apparatus, and associated method, for communication system exhibiting time-varying communication conditions |
KR100651712B1 (ko) * | 2003-07-10 | 2006-11-30 | 학교법인연세대학교 | 광대역 음성 부호화기 및 그 방법과 광대역 음성 복호화기및 그 방법 |
CN100590712C (zh) * | 2003-09-16 | 2010-02-17 | 松下电器产业株式会社 | 编码装置和译码装置 |
US7792670B2 (en) * | 2003-12-19 | 2010-09-07 | Motorola, Inc. | Method and apparatus for speech coding |
US7460990B2 (en) * | 2004-01-23 | 2008-12-02 | Microsoft Corporation | Efficient coding of digital media spectral data using wide-sense perceptual similarity |
EP1744139B1 (en) * | 2004-05-14 | 2015-11-11 | Panasonic Intellectual Property Corporation of America | Decoding apparatus and method thereof |
KR20070012832A (ko) * | 2004-05-19 | 2007-01-29 | 마츠시타 덴끼 산교 가부시키가이샤 | 부호화 장치, 복호화 장치 및 이들의 방법 |
BRPI0514940A (pt) * | 2004-09-06 | 2008-07-01 | Matsushita Electric Ind Co Ltd | dispositivo de codificação escalável e método de codificação escalável |
DE102005000828A1 (de) * | 2005-01-05 | 2006-07-13 | Siemens Ag | Verfahren zum Codieren eines analogen Signals |
CN101107650B (zh) * | 2005-01-14 | 2012-03-28 | 松下电器产业株式会社 | 语音切换装置及语音切换方法 |
CN100592389C (zh) * | 2008-01-18 | 2010-02-24 | 华为技术有限公司 | 合成滤波器状态更新方法及装置 |
JP5237637B2 (ja) * | 2005-06-08 | 2013-07-17 | パナソニック株式会社 | オーディオ信号の帯域を拡張するための装置及び方法 |
FR2888699A1 (fr) * | 2005-07-13 | 2007-01-19 | France Telecom | Dispositif de codage/decodage hierachique |
US7562021B2 (en) * | 2005-07-15 | 2009-07-14 | Microsoft Corporation | Modification of codewords in dictionary used for efficient coding of digital media spectral data |
US7630882B2 (en) * | 2005-07-15 | 2009-12-08 | Microsoft Corporation | Frequency segmentation to obtain bands for efficient coding of digital media |
US7539612B2 (en) * | 2005-07-15 | 2009-05-26 | Microsoft Corporation | Coding and decoding scale factor information |
FR2889017A1 (fr) * | 2005-07-19 | 2007-01-26 | France Telecom | Procedes de filtrage, de transmission et de reception de flux video scalables, signal, programmes, serveur, noeud intermediaire et terminal correspondants |
US8417185B2 (en) | 2005-12-16 | 2013-04-09 | Vocollect, Inc. | Wireless headset and method for robust voice data communication |
US7885419B2 (en) | 2006-02-06 | 2011-02-08 | Vocollect, Inc. | Headset terminal with speech functionality |
US7773767B2 (en) | 2006-02-06 | 2010-08-10 | Vocollect, Inc. | Headset terminal with rear stability strap |
WO2007121778A1 (en) * | 2006-04-24 | 2007-11-01 | Nero Ag | Advanced audio coding apparatus |
US20090281813A1 (en) * | 2006-06-29 | 2009-11-12 | Nxp B.V. | Noise synthesis |
US8358987B2 (en) * | 2006-09-28 | 2013-01-22 | Mediatek Inc. | Re-quantization in downlink receiver bit rate processor |
US7966175B2 (en) * | 2006-10-18 | 2011-06-21 | Polycom, Inc. | Fast lattice vector quantization |
CN101192410B (zh) * | 2006-12-01 | 2010-05-19 | 华为技术有限公司 | 一种在编解码中调整量化质量的方法和装置 |
GB2444757B (en) * | 2006-12-13 | 2009-04-22 | Motorola Inc | Code excited linear prediction speech coding |
US8688437B2 (en) | 2006-12-26 | 2014-04-01 | Huawei Technologies Co., Ltd. | Packet loss concealment for speech coding |
GB0704622D0 (en) * | 2007-03-09 | 2007-04-18 | Skype Ltd | Speech coding system and method |
US20100292986A1 (en) * | 2007-03-16 | 2010-11-18 | Nokia Corporation | encoder |
WO2008151408A1 (en) * | 2007-06-14 | 2008-12-18 | Voiceage Corporation | Device and method for frame erasure concealment in a pcm codec interoperable with the itu-t recommendation g.711 |
US7761290B2 (en) | 2007-06-15 | 2010-07-20 | Microsoft Corporation | Flexible frequency and time partitioning in perceptual transform coding of audio |
US8046214B2 (en) | 2007-06-22 | 2011-10-25 | Microsoft Corporation | Low complexity decoder for complex transform coding of multi-channel sound |
US7885819B2 (en) * | 2007-06-29 | 2011-02-08 | Microsoft Corporation | Bitstream syntax for multi-process audio decoding |
BRPI0814129A2 (pt) * | 2007-07-27 | 2015-02-03 | Panasonic Corp | Dispositivo de codificação de áudio e método de codificação de áudio |
TWI346465B (en) * | 2007-09-04 | 2011-08-01 | Univ Nat Central | Configurable common filterbank processor applicable for various audio video standards and processing method thereof |
US8249883B2 (en) * | 2007-10-26 | 2012-08-21 | Microsoft Corporation | Channel extension coding for multi-channel source |
US8300849B2 (en) * | 2007-11-06 | 2012-10-30 | Microsoft Corporation | Perceptually weighted digital audio level compression |
JP5326311B2 (ja) * | 2008-03-19 | 2013-10-30 | 沖電気工業株式会社 | 音声帯域拡張装置、方法及びプログラム、並びに、音声通信装置 |
US8788276B2 (en) * | 2008-07-11 | 2014-07-22 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for calculating bandwidth extension data using a spectral tilt controlled framing |
USD605629S1 (en) | 2008-09-29 | 2009-12-08 | Vocollect, Inc. | Headset |
KR20100057307A (ko) * | 2008-11-21 | 2010-05-31 | 삼성전자주식회사 | 노래점수 평가방법 및 이를 이용한 가라오케 장치 |
CN101770778B (zh) * | 2008-12-30 | 2012-04-18 | 华为技术有限公司 | 一种预加重滤波器、感知加权滤波方法及系统 |
CN101599272B (zh) * | 2008-12-30 | 2011-06-08 | 华为技术有限公司 | 基音搜索方法及装置 |
CN101604525B (zh) * | 2008-12-31 | 2011-04-06 | 华为技术有限公司 | 基音增益获取方法、装置及编码器、解码器 |
GB2466674B (en) | 2009-01-06 | 2013-11-13 | Skype | Speech coding |
GB2466672B (en) * | 2009-01-06 | 2013-03-13 | Skype | Speech coding |
GB2466671B (en) * | 2009-01-06 | 2013-03-27 | Skype | Speech encoding |
GB2466673B (en) | 2009-01-06 | 2012-11-07 | Skype | Quantization |
GB2466669B (en) * | 2009-01-06 | 2013-03-06 | Skype | Speech coding |
GB2466675B (en) * | 2009-01-06 | 2013-03-06 | Skype | Speech coding |
GB2466670B (en) * | 2009-01-06 | 2012-11-14 | Skype | Speech encoding |
RU2538334C2 (ru) * | 2009-02-26 | 2015-01-10 | Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка | Кодер, декодер и способ для них |
US20110301946A1 (en) * | 2009-02-27 | 2011-12-08 | Panasonic Corporation | Tone determination device and tone determination method |
US8160287B2 (en) | 2009-05-22 | 2012-04-17 | Vocollect, Inc. | Headset with adjustable headband |
US8452606B2 (en) * | 2009-09-29 | 2013-05-28 | Skype | Speech encoding using multiple bit rates |
US20120203548A1 (en) * | 2009-10-20 | 2012-08-09 | Panasonic Corporation | Vector quantisation device and vector quantisation method |
US8484020B2 (en) * | 2009-10-23 | 2013-07-09 | Qualcomm Incorporated | Determining an upperband signal from a narrowband signal |
US8438659B2 (en) | 2009-11-05 | 2013-05-07 | Vocollect, Inc. | Portable computing device and headset interface |
CN105374362B (zh) * | 2010-01-08 | 2019-05-10 | 日本电信电话株式会社 | 编码方法、解码方法、编码装置、解码装置以及记录介质 |
CN101854236B (zh) | 2010-04-05 | 2015-04-01 | 中兴通讯股份有限公司 | 一种信道信息反馈方法和系统 |
EP2559028B1 (en) * | 2010-04-14 | 2015-09-16 | VoiceAge Corporation | Flexible and scalable combined innovation codebook for use in celp coder and decoder |
JP5749136B2 (ja) | 2011-10-21 | 2015-07-15 | 矢崎総業株式会社 | 端子圧着電線 |
KR102138320B1 (ko) | 2011-10-28 | 2020-08-11 | 한국전자통신연구원 | 통신 시스템에서 신호 코덱 장치 및 방법 |
CN105761724B (zh) * | 2012-03-01 | 2021-02-09 | 华为技术有限公司 | 一种语音频信号处理方法和装置 |
CN103295578B (zh) | 2012-03-01 | 2016-05-18 | 华为技术有限公司 | 一种语音频信号处理方法和装置 |
US9070356B2 (en) * | 2012-04-04 | 2015-06-30 | Google Technology Holdings LLC | Method and apparatus for generating a candidate code-vector to code an informational signal |
US9263053B2 (en) * | 2012-04-04 | 2016-02-16 | Google Technology Holdings LLC | Method and apparatus for generating a candidate code-vector to code an informational signal |
CN103928029B (zh) * | 2013-01-11 | 2017-02-08 | 华为技术有限公司 | 音频信号编码和解码方法、音频信号编码和解码装置 |
US9728200B2 (en) | 2013-01-29 | 2017-08-08 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for adaptive formant sharpening in linear prediction coding |
RU2618919C2 (ru) | 2013-01-29 | 2017-05-12 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Устройство и способ для синтезирования аудиосигнала, декодер, кодер, система и компьютерная программа |
US9620134B2 (en) | 2013-10-10 | 2017-04-11 | Qualcomm Incorporated | Gain shape estimation for improved tracking of high-band temporal characteristics |
US10614816B2 (en) | 2013-10-11 | 2020-04-07 | Qualcomm Incorporated | Systems and methods of communicating redundant frame information |
US10083708B2 (en) | 2013-10-11 | 2018-09-25 | Qualcomm Incorporated | Estimation of mixing factors to generate high-band excitation signal |
US9384746B2 (en) | 2013-10-14 | 2016-07-05 | Qualcomm Incorporated | Systems and methods of energy-scaled signal processing |
KR101931273B1 (ko) | 2013-10-18 | 2018-12-20 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 결정론적 및 잡음 유사 정보를 사용하는 오디오 신호의 인코딩 및 오디오 신호의 디코딩을 위한 개념 |
MX355091B (es) * | 2013-10-18 | 2018-04-04 | Fraunhofer Ges Forschung | Concepto para codificar una señal de audio y decodificar una señal de audio usando información de conformación espectral relacionada con la voz. |
CN105745706B (zh) * | 2013-11-29 | 2019-09-24 | 索尼公司 | 用于扩展频带的装置、方法和程序 |
US10163447B2 (en) | 2013-12-16 | 2018-12-25 | Qualcomm Incorporated | High-band signal modeling |
KR102251833B1 (ko) | 2013-12-16 | 2021-05-13 | 삼성전자주식회사 | 오디오 신호의 부호화, 복호화 방법 및 장치 |
US9697843B2 (en) * | 2014-04-30 | 2017-07-04 | Qualcomm Incorporated | High band excitation signal generation |
CN110097892B (zh) * | 2014-06-03 | 2022-05-10 | 华为技术有限公司 | 一种语音频信号的处理方法和装置 |
CN105047201A (zh) * | 2015-06-15 | 2015-11-11 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | 一种基于分段扩展的宽带激励信号合成方法 |
US9837089B2 (en) * | 2015-06-18 | 2017-12-05 | Qualcomm Incorporated | High-band signal generation |
US10847170B2 (en) | 2015-06-18 | 2020-11-24 | Qualcomm Incorporated | Device and method for generating a high-band signal from non-linearly processed sub-ranges |
US9407989B1 (en) | 2015-06-30 | 2016-08-02 | Arthur Woodrow | Closed audio circuit |
JP6611042B2 (ja) * | 2015-12-02 | 2019-11-27 | パナソニックIpマネジメント株式会社 | 音声信号復号装置及び音声信号復号方法 |
CN106601267B (zh) * | 2016-11-30 | 2019-12-06 | 武汉船舶通信研究所 | 一种基于超短波fm调制的语音增强方法 |
US10573326B2 (en) * | 2017-04-05 | 2020-02-25 | Qualcomm Incorporated | Inter-channel bandwidth extension |
CN113324546B (zh) * | 2021-05-24 | 2022-12-13 | 哈尔滨工程大学 | 罗经失效下的多潜航器协同定位自适应调节鲁棒滤波方法 |
US20230318881A1 (en) * | 2022-04-05 | 2023-10-05 | Qualcomm Incorporated | Beam selection using oversampled beamforming codebooks and channel estimates |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8500843A (nl) | 1985-03-22 | 1986-10-16 | Koninkl Philips Electronics Nv | Multipuls-excitatie lineair-predictieve spraakcoder. |
JPH0738118B2 (ja) * | 1987-02-04 | 1995-04-26 | 日本電気株式会社 | マルチパルス符号化装置 |
EP0331858B1 (en) * | 1988-03-08 | 1993-08-25 | International Business Machines Corporation | Multi-rate voice encoding method and device |
US5359696A (en) * | 1988-06-28 | 1994-10-25 | Motorola Inc. | Digital speech coder having improved sub-sample resolution long-term predictor |
JP2621376B2 (ja) | 1988-06-30 | 1997-06-18 | 日本電気株式会社 | マルチパルス符号化装置 |
JP2900431B2 (ja) | 1989-09-29 | 1999-06-02 | 日本電気株式会社 | 音声信号符号化装置 |
JPH03123113A (ja) * | 1989-10-05 | 1991-05-24 | Fujitsu Ltd | ピッチ周期探索方式 |
US5307441A (en) * | 1989-11-29 | 1994-04-26 | Comsat Corporation | Wear-toll quality 4.8 kbps speech codec |
US5701392A (en) | 1990-02-23 | 1997-12-23 | Universite De Sherbrooke | Depth-first algebraic-codebook search for fast coding of speech |
US5754976A (en) | 1990-02-23 | 1998-05-19 | Universite De Sherbrooke | Algebraic codebook with signal-selected pulse amplitude/position combinations for fast coding of speech |
CA2010830C (en) | 1990-02-23 | 1996-06-25 | Jean-Pierre Adoul | Dynamic codebook for efficient speech coding based on algebraic codes |
CN1062963C (zh) * | 1990-04-12 | 2001-03-07 | 多尔拜实验特许公司 | 用于产生高质量声音信号的解码器和编码器 |
US5113262A (en) * | 1990-08-17 | 1992-05-12 | Samsung Electronics Co., Ltd. | Video signal recording system enabling limited bandwidth recording and playback |
US6134373A (en) * | 1990-08-17 | 2000-10-17 | Samsung Electronics Co., Ltd. | System for recording and reproducing a wide bandwidth video signal via a narrow bandwidth medium |
US5235669A (en) * | 1990-06-29 | 1993-08-10 | At&T Laboratories | Low-delay code-excited linear-predictive coding of wideband speech at 32 kbits/sec |
US5392284A (en) * | 1990-09-20 | 1995-02-21 | Canon Kabushiki Kaisha | Multi-media communication device |
JP2626223B2 (ja) * | 1990-09-26 | 1997-07-02 | 日本電気株式会社 | 音声符号化装置 |
US6006174A (en) * | 1990-10-03 | 1999-12-21 | Interdigital Technology Coporation | Multiple impulse excitation speech encoder and decoder |
US5235670A (en) * | 1990-10-03 | 1993-08-10 | Interdigital Patents Corporation | Multiple impulse excitation speech encoder and decoder |
JP3089769B2 (ja) | 1991-12-03 | 2000-09-18 | 日本電気株式会社 | 音声符号化装置 |
GB9218864D0 (en) * | 1992-09-05 | 1992-10-21 | Philips Electronics Uk Ltd | A method of,and system for,transmitting data over a communications channel |
JP2779886B2 (ja) * | 1992-10-05 | 1998-07-23 | 日本電信電話株式会社 | 広帯域音声信号復元方法 |
US5455888A (en) * | 1992-12-04 | 1995-10-03 | Northern Telecom Limited | Speech bandwidth extension method and apparatus |
IT1257431B (it) | 1992-12-04 | 1996-01-16 | Sip | Procedimento e dispositivo per la quantizzazione dei guadagni dell'eccitazione in codificatori della voce basati su tecniche di analisi per sintesi |
US5621852A (en) * | 1993-12-14 | 1997-04-15 | Interdigital Technology Corporation | Efficient codebook structure for code excited linear prediction coding |
DE4343366C2 (de) * | 1993-12-18 | 1996-02-29 | Grundig Emv | Verfahren und Schaltungsanordnung zur Vergrößerung der Bandbreite von schmalbandigen Sprachsignalen |
US5450449A (en) * | 1994-03-14 | 1995-09-12 | At&T Ipm Corp. | Linear prediction coefficient generation during frame erasure or packet loss |
US5956624A (en) * | 1994-07-12 | 1999-09-21 | Usa Digital Radio Partners Lp | Method and system for simultaneously broadcasting and receiving digital and analog signals |
JP3483958B2 (ja) | 1994-10-28 | 2004-01-06 | 三菱電機株式会社 | 広帯域音声復元装置及び広帯域音声復元方法及び音声伝送システム及び音声伝送方法 |
FR2729247A1 (fr) | 1995-01-06 | 1996-07-12 | Matra Communication | Procede de codage de parole a analyse par synthese |
AU696092B2 (en) * | 1995-01-12 | 1998-09-03 | Digital Voice Systems, Inc. | Estimation of excitation parameters |
EP0732687B2 (en) | 1995-03-13 | 2005-10-12 | Matsushita Electric Industrial Co., Ltd. | Apparatus for expanding speech bandwidth |
JP3189614B2 (ja) | 1995-03-13 | 2001-07-16 | 松下電器産業株式会社 | 音声帯域拡大装置 |
US5664055A (en) * | 1995-06-07 | 1997-09-02 | Lucent Technologies Inc. | CS-ACELP speech compression system with adaptive pitch prediction filter gain based on a measure of periodicity |
US6064962A (en) * | 1995-09-14 | 2000-05-16 | Kabushiki Kaisha Toshiba | Formant emphasis method and formant emphasis filter device |
US5819213A (en) * | 1996-01-31 | 1998-10-06 | Kabushiki Kaisha Toshiba | Speech encoding and decoding with pitch filter range unrestricted by codebook range and preselecting, then increasing, search candidates from linear overlap codebooks |
JP3357795B2 (ja) * | 1996-08-16 | 2002-12-16 | 株式会社東芝 | 音声符号化方法および装置 |
JPH10124088A (ja) * | 1996-10-24 | 1998-05-15 | Sony Corp | 音声帯域幅拡張装置及び方法 |
JP3063668B2 (ja) | 1997-04-04 | 2000-07-12 | 日本電気株式会社 | 音声符号化装置及び復号装置 |
US5999897A (en) * | 1997-11-14 | 1999-12-07 | Comsat Corporation | Method and apparatus for pitch estimation using perception based analysis by synthesis |
US6449590B1 (en) * | 1998-08-24 | 2002-09-10 | Conexant Systems, Inc. | Speech encoder using warping in long term preprocessing |
US6104992A (en) * | 1998-08-24 | 2000-08-15 | Conexant Systems, Inc. | Adaptive gain reduction to produce fixed codebook target signal |
CA2252170A1 (en) * | 1998-10-27 | 2000-04-27 | Bruno Bessette | A method and device for high quality coding of wideband speech and audio signals |
-
1998
- 1998-10-27 CA CA002252170A patent/CA2252170A1/en not_active Abandoned
-
1999
- 1999-10-27 JP JP2000578812A patent/JP3936139B2/ja not_active Expired - Lifetime
- 1999-10-27 AT AT99952200T patent/ATE246389T1/de active
- 1999-10-27 PT PT99952200T patent/PT1125285E/pt unknown
- 1999-10-27 KR KR10-2001-7005326A patent/KR100417635B1/ko active IP Right Grant
- 1999-10-27 AT AT99952199T patent/ATE246834T1/de active
- 1999-10-27 DK DK99952199T patent/DK1125276T3/da active
- 1999-10-27 AU AU64571/99A patent/AU752229B2/en not_active Expired
- 1999-10-27 KR KR10-2001-7005324A patent/KR100417836B1/ko active IP Right Grant
- 1999-10-27 US US09/830,114 patent/US7260521B1/en not_active Expired - Lifetime
- 1999-10-27 BR BRPI9914890-0B1A patent/BR9914890B1/pt not_active IP Right Cessation
- 1999-10-27 PT PT99952199T patent/PT1125276E/pt unknown
- 1999-10-27 CN CN99813602A patent/CN1127055C/zh not_active Expired - Lifetime
- 1999-10-27 JP JP2000578810A patent/JP3869211B2/ja not_active Expired - Lifetime
- 1999-10-27 EP EP99952183A patent/EP1125284B1/en not_active Expired - Lifetime
- 1999-10-27 PT PT99952201T patent/PT1125286E/pt unknown
- 1999-10-27 US US09/830,276 patent/US6807524B1/en not_active Expired - Lifetime
- 1999-10-27 BR BRPI9914889-7B1A patent/BR9914889B1/pt not_active IP Right Cessation
- 1999-10-27 CA CA002347667A patent/CA2347667C/en not_active Expired - Lifetime
- 1999-10-27 US US09/830,331 patent/US6795805B1/en not_active Expired - Lifetime
- 1999-10-27 DK DK99952201T patent/DK1125286T3/da active
- 1999-10-27 CN CNB998136417A patent/CN1165892C/zh not_active Expired - Lifetime
- 1999-10-27 AT AT99952201T patent/ATE256910T1/de active
- 1999-10-27 MX MXPA01004181A patent/MXPA01004181A/es active IP Right Grant
- 1999-10-27 KR KR10-2001-7005325A patent/KR100417634B1/ko active IP Right Grant
- 1999-10-27 DK DK99952183T patent/DK1125284T3/da active
- 1999-10-27 NZ NZ511163A patent/NZ511163A/en not_active IP Right Cessation
- 1999-10-27 DE DE69910240T patent/DE69910240T2/de not_active Expired - Lifetime
- 1999-10-27 ES ES99952200T patent/ES2205892T3/es not_active Expired - Lifetime
- 1999-10-27 EP EP99952201A patent/EP1125286B1/en not_active Expired - Lifetime
- 1999-10-27 CN CNB998136409A patent/CN1165891C/zh not_active Expired - Lifetime
- 1999-10-27 JP JP2000578811A patent/JP3566652B2/ja not_active Expired - Lifetime
- 1999-10-27 PT PT99952183T patent/PT1125284E/pt unknown
- 1999-10-27 CA CA002347668A patent/CA2347668C/en not_active Expired - Lifetime
- 1999-10-27 RU RU2001114194/09A patent/RU2219507C2/ru active
- 1999-10-27 RU RU2001114193/09A patent/RU2217718C2/ru active
- 1999-10-27 JP JP2000578808A patent/JP3490685B2/ja not_active Expired - Lifetime
- 1999-10-27 CA CA002347743A patent/CA2347743C/en not_active Expired - Lifetime
- 1999-10-27 ES ES99952199T patent/ES2205891T3/es not_active Expired - Lifetime
- 1999-10-27 WO PCT/CA1999/001009 patent/WO2000025303A1/en active IP Right Grant
- 1999-10-27 EP EP99952199A patent/EP1125276B1/en not_active Expired - Lifetime
- 1999-10-27 ES ES99952201T patent/ES2212642T3/es not_active Expired - Lifetime
- 1999-10-27 WO PCT/CA1999/000990 patent/WO2000025305A1/en active IP Right Grant
- 1999-10-27 AU AU64555/99A patent/AU6455599A/en not_active Abandoned
- 1999-10-27 MX MXPA01004137A patent/MXPA01004137A/es active IP Right Grant
- 1999-10-27 US US09/830,332 patent/US7151802B1/en not_active Expired - Lifetime
- 1999-10-27 DK DK99952200T patent/DK1125285T3/da active
- 1999-10-27 WO PCT/CA1999/001008 patent/WO2000025298A1/en active IP Right Grant
- 1999-10-27 AU AU64569/99A patent/AU763471B2/en not_active Expired
- 1999-10-27 AU AU64570/99A patent/AU6457099A/en not_active Abandoned
- 1999-10-27 DE DE69910239T patent/DE69910239T2/de not_active Expired - Lifetime
- 1999-10-27 CA CA002347735A patent/CA2347735C/en not_active Expired - Lifetime
- 1999-10-27 ES ES99952183T patent/ES2207968T3/es not_active Expired - Lifetime
- 1999-10-27 WO PCT/CA1999/001010 patent/WO2000025304A1/en active IP Right Grant
- 1999-10-27 DE DE69910058T patent/DE69910058T2/de not_active Expired - Lifetime
- 1999-10-27 EP EP99952200A patent/EP1125285B1/en not_active Expired - Lifetime
- 1999-10-27 DE DE69913724T patent/DE69913724T2/de not_active Expired - Lifetime
- 1999-10-27 AT AT99952183T patent/ATE246836T1/de active
- 1999-10-27 CN CNB998136018A patent/CN1172292C/zh not_active Expired - Lifetime
-
2001
- 2001-04-25 ZA ZA200103366A patent/ZA200103366B/en unknown
- 2001-04-25 ZA ZA200103367A patent/ZA200103367B/en unknown
- 2001-04-26 NO NO20012068A patent/NO317603B1/no not_active IP Right Cessation
- 2001-04-26 NO NO20012066A patent/NO319181B1/no not_active IP Right Cessation
- 2001-04-26 NO NO20012067A patent/NO318627B1/no not_active IP Right Cessation
-
2002
- 2002-06-20 HK HK02104592.2A patent/HK1043234B/zh not_active IP Right Cessation
-
2004
- 2004-10-15 US US10/964,752 patent/US20050108005A1/en not_active Abandoned
- 2004-10-18 US US10/965,795 patent/US20050108007A1/en not_active Abandoned
- 2004-12-01 NO NO20045257A patent/NO20045257L/no unknown
-
2006
- 2006-08-04 US US11/498,771 patent/US7672837B2/en not_active Expired - Fee Related
-
2009
- 2009-11-17 US US12/620,394 patent/US8036885B2/en not_active Expired - Fee Related
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3566652B2 (ja) | 広帯域信号の効率的な符号化のための聴覚重み付け装置および方法 | |
JP4662673B2 (ja) | 広帯域音声及びオーディオ信号復号器における利得平滑化 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040610 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3566652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |