[go: up one dir, main page]

JP3563424B2 - Method for producing 4H-pyran-4-one - Google Patents

Method for producing 4H-pyran-4-one Download PDF

Info

Publication number
JP3563424B2
JP3563424B2 JP29641693A JP29641693A JP3563424B2 JP 3563424 B2 JP3563424 B2 JP 3563424B2 JP 29641693 A JP29641693 A JP 29641693A JP 29641693 A JP29641693 A JP 29641693A JP 3563424 B2 JP3563424 B2 JP 3563424B2
Authority
JP
Japan
Prior art keywords
pyran
formula
acid
acetal
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29641693A
Other languages
Japanese (ja)
Other versions
JPH07145162A (en
Inventor
進 ▲高▼田
誠 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP29641693A priority Critical patent/JP3563424B2/en
Publication of JPH07145162A publication Critical patent/JPH07145162A/en
Application granted granted Critical
Publication of JP3563424B2 publication Critical patent/JP3563424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は種々の医薬品の合成原料として利用価値の高い4H−ピラン−4−オンの製造方法、及びその方法に有用な中間体及びその製造方法に関する。
4H−ピラン−4−オンは抗菌剤の合成試薬である4H−ピラン−4−チオン、N−アルキルピリジン−4−チオンの製造原料として用いられる。さらに、4H−ピラン−4−オンを文献記載の方法に従って接触還元すれば、医薬品合成に有用な物質であるテトラヒドロ−4H−ピラン−4−オンを容易に製造することができる。
【0002】
【従来技術及び解決課題】
式(V):
【化13】

Figure 0003563424
で示される4H−ピラン−4−オンは従来から種々の方法によって製造されている。
例えば、4H−ピラン−4−オンの合成原料となるケリドン酸の合成法として、E.R.Riegel 及び F.Zwilgmeyerは下記の反応を開示している[Org.Syn.Coll.Vol.2.126(1943)]。しかし、この反応は操作が繁雑である。
【化14】
Figure 0003563424
【0003】
そして、そのケリドン酸を脱炭酸する方法としてO.Henbergen 及び L.N.Owenは下記の反応を開示している[J.Chem.Soc.,910(1952)]。この反応は脱炭酸反応に高温が必要なことが欠点である。
【化15】
Figure 0003563424
【0004】
さらに、C.Desouza,Y.Hajikarian 及び P.WSheldrrakwは下記の反応を開示している[Synth.Commun.,22.755(1992)]。しかし、この反応も脱炭酸反応に高温が必要である。
【化16】
Figure 0003563424
このように、4H−ピラン−4−オンは従来から種々の方法によって製造されているものの、それらの反応は原料のケリドン酸の合成操作が繁雑であったり、4H−ピラン−4−オンへの脱炭酸に高温を必要とするなど、4H−ピラン−4−オンを工業的に大量合成するために適したものとはいえない。
【0005】
【発明の構成】
本発明は4H−ピラン−4−オンの製造方法に関する。本発明者らは新規な化合物である4−オキソ−4H−ピラン−3,5−ジカルボン酸ジアルキルエステル体[以下に記載の式(IV)の化合物]の合成に成功し、これを脱炭酸することを特徴とする4H−ピラン−4−オンの新規な製造方法[下記反応式における第三工程]を見いだした。本発明方法の一態様は以下の一連の反応式によって示される。
【化17】
Figure 0003563424
[式中、R、R、及びRはそれぞれ個別に低級アルキルであり、好ましくはC−Cアルキル、更に好ましくはC−Cアルキルである]
【0006】
即ち、アセトンジカルボン酸ジアルキルエステル(I)に N,N−ジアルキルホルムアミドジアルキルアセタール(II)を縮合させ、2,4−ビス−N,N−ジアルキルアミノメチレンアセトンジカルボン酸ジアルキルエステル(III)を生成させ、得られたエステル体(III)を酸処理して4−オキソ−4H−ピラン−3,5−ジカルボン酸ジアルキルエステル(IV)とし、この化合物(IV)を酸加水分解により脱炭酸し、目的とする4H−ピラン−4−オン(V)を製造する。この製造方法は安全でありかつ操作も簡便であるので、4H−ピラン−4−オンの大量合成に適した新規な方法である。
【0007】
本発明の4H−ピラン−4−オンの製造方法は三工程から構成される。
第一工程はアセトンジカルボン酸ジアルキルエステル(I)に N,N−ジアルキルホルムアミドジアルキルアセタール(II)を反応させ、2,4−ビス−N,N−ジアルキルアミノメチレンアセトンジカルボン酸ジアルキルエステル(III)を生成させる工程である。
この工程の反応は溶媒なしでも進行するが、その場合は副生成物が多くなるので、溶媒を使用するのが好ましい。使用する溶媒は化合物(I)及び(II)に不活性な溶媒、例えばベンゼン、トルエン、ジクロロエタン及びテトラクロロエタンなどであり、また収率は低くなるがメタノールも溶媒として使用できる。この反応は使用する溶媒の沸点付近まで加熱して通常数十分〜数時間行えば、定量的に進行し、式(I)の化合物は殆ど消費される。なお、化合物(I)及び化合物(II)とは通常1:2モル比で、好ましくは1:2以上のモル比で反応させる。
【0008】
式(I)で示されるアセトンジカルボン酸ジアルキルエステルには、ジメチルエステル、ジエチルエステル、ジプロピルエステル、ジイソプロピルエステル、ジプロピルエステル体が包含される。また、式(II)で示されるN,N−ジアルキルホルムアミドジアルキルアセタールには、N,N−ジメチルホルムアミドジメチルアセタール、N,N−ジメチルホルムアミドジエチルアセタール、N,N−ジメチルホルムアミドジプロピルアセタール、N,N−ジメチルホルムアミドジイソプロピルアセタール、N,N−ジメチルホルムアミドジ−t−ブチルアセタール、N,N−ジメチルホルムアミドジシクロヘキシルアセタール、N,N−ジメチルホルムアミドジネオペンチルアセタール、N,N−ジエチルホルムアミドジメチルアセタール、N,N−ジエチルホルムアミドジエチルアセタール、N,N−ジエチルホルムアミドジプロピルアセタール、N,N−ジエチルホルムアミドジイソプロピルアセタール、N,N−ジエチルホルムアミドジ−t−ブチルアセタール、N,N−ジエチルホルムアミドジシクロヘキシルアセタール、N,N−ジエチルホルムアミドジネオペンチルアセタール等が包含される。これらの化合物は殆どが市販されているので容易に入手可能である。
【0009】
第二工程は式(III)の化合物のアミノ部分を酸存在下に加水分解して閉環させ、式(IV)で示される4−オキソ−4H−ピラン−3,5−ジカルボン酸ジアルキルエステルとする工程である。この工程の反応を強酸条件加熱下で行えば脱炭酸反応も同時に起こり目的の4H−ピラン−4−オン(V)が直接得られる。しかし、この場合の収率は低くなるので、化合物(III)を脱炭酸させずに加水分解して効率良く閉環させるのが好ましい。本発明者らの条件検討の結果、希塩酸やリン酸などの弱酸が好ましく、特にリン酸が最適であることが判明した。酸の使用量は、化合物(III)に対して好ましくは3当量以上である。
使用する溶媒としては該酸が溶解する水溶性の有機溶媒、例えばアセトン、テトラヒドロフラン、酢酸エチルなどが好ましいが、塩化メチレンも使用できる。この工程は反応温度として氷冷下〜室温を使用する。加熱すれば、脱炭酸も起こり得ることに留意すべきである。反応時間は通常数時間で完了する。
なお、式(IV)の化合物は文献に記載されていない新規な化合物である。
【0010】
第三工程は式(IV)の化合物を酸性条件下に加熱し、それを式(V)で示される4H−ピラン−4−オンに変換する工程である。この工程の反応は通常の脱炭酸条件で進行する。加熱温度は通常数十度〜約150℃、好ましくは50−100℃である。酸性条件にするには希硫酸、塩酸、酢酸、硝酸などを使用し、好ましくは希硫酸を使用する。
上記のC.Desouzaら[Synth.Commun.,22.755(1992)]は207℃もの還流温度を用いて4−オキソ−4H−ピラン−2,6−ジカルボン酸(ケリドン酸)を脱炭酸し、4H−ピラン−4−オンを製造しているが、これに比べ、本発明の第三工程反応は条件が緩和であり操作も容易である。尚、本工程においては、収率面を考慮すればRの炭素数が少ない程好ましく、C−Cアルキル、とりわけメチルが好ましい。
【0011】
本発明は一態様として、新規な化合物である式(IV)の化合物を出発物質とする4H−ピラン−4−オンを製造するためのこの第三工程の方法に関する。また、別の態様では、上記第二工程及び第三工程を包含する、式(III)の化合物を出発物質とする式(IV)の化合物を経由する4H−ピラン−4−オンの製造方法に関する。さらには、式(I)及び式(II)の化合物を出発物質とする第一工程、第二工程及び第三工程を包含する4H−ピラン−4−オンの製造方法に関する。
【0012】
上記のように式(III)で示される化合物を強酸の存在下に加熱条件下で処理すれば、直接4H−ピラン−4−オンを得ることができる。強酸には例えば希塩酸、希硫酸を用いる。温度は通常50〜100℃である。かかる工程も本発明の一部を構成するものである。
【0013】
以下に実施例を記載し、本発明方法をさらに詳細に説明するが、これらは単なる例示であって、本発明の技術的範囲を限定するものではない。
【実施例】
実施例1
(1) 4−オキソ−4H−ピラン−3,5−ジカルボン酸ジメチルエステルの製造(式 及び式 (II) の化合物からの式 (I の化合物の製造)
アセトンジカルボン酸ジメチルエステル174gをトルエン870ml に溶解し、氷水で冷却後、撹拌下にN,N−ジメチルホルムアミドジメチルアセタール320ml を10分間で加える。75℃の油浴上1時間、さらに105℃の油浴上2時間、生成したメタノールを溜出しながら加熱する。減圧下にトルエン及び過剰のアセタール試薬を溜去し、得られた残渣をアセトン1.45リットルに溶解させる。この溶液に撹拌下、85%リン酸346g及びアセトン350ml の混合溶液を室温にて10分間で加え、得られた混合物を2.5時間撹拌する。アセトンを減圧下に除去し、食塩水1リットルを加え、塩化メチレンで抽出し、食塩水で洗浄後、硫酸マグネシウムで乾燥し、活性炭10gで処理し、減圧下に濃縮し、エーテル1リットルを加え、析出結晶を濾過する。これにより、淡黄色結晶として4−オキソ−4H−ピラン−3,5−ジカルボン酸ジメチルエステル160gを得る。融点:107−108℃。収率:75.4%。
元素分析(Cとして)
計算値 :C,50.95; H,3.80 (%)
実験値 :C,50.94; H,3.89 (%)
−NMR (CDCl) δ: 8.43 (2H,s,C−H and C−H), 3.90 (6H,s,COCH) ppm
IR (CHCl): 1755, 1718, 1673, 1564, 1438, 1319, 1278, 1116, 1058 cm−1
【0014】
(2) 4H−ピラン−4−オンの製造(式 (I の化合物から式 の化合物の製造)
先の工程にて製造した4−オキソ−4H−ピラン−3,5−ジカルボン酸ジメチルエステル160gに4N硫酸1.13リットルを加え、105℃の油浴上2.5時間加熱する。冷却後、塩化メチレン200ml を加え、30℃以下で40%水酸化ナトリウム水溶液500gを滴下し、NaCO 20gを加えた後、塩化メチレンで抽出し、硫酸マグネシウムで乾燥し、活性炭10gで処理し、減圧下に塩化メチレンを除去し、吸湿性の黄色粗結晶4H−ピラン−4−オン42.7gを得る。収率:58.9%。この粗結晶を減圧蒸留し、吸湿性淡黄色結晶として純粋な4H−ピラン−4−オン38.3g得る。bp25111〜112℃。収率:52.9%。
−NMR (CDCl) δ: 7.74 (2H,m,C−H and C−H), 6.37 (2H,m,C−H and C−H) ppm。
【0015】
実施例2
(III) の化合物からの4H−ピラン−4−オンの直接的製造
アセトンジカルボン酸ジメチルエステル1.74gを氷水で冷却し、撹拌下にN,N−ジメチルホルムアミドジメチルアセタール4.0ml を加える。得られた混合物を75℃の油浴上1時間加熱する。減圧下にトルエン及び過剰のアセタール試薬を溜去し、橙黄色油状物質として2,4−ビス(N,N−ジメチルアミノメチレン)アセトンジカルボン酸ジメチルエステル2.69gを得る。収率:94.5%。得られたエステル体に4N 硫酸13ml を加え、100℃の油浴上1時間加熱する。食塩を加え塩化メチレンで抽出し、硫酸マグネシウムで乾燥後、アルミナ10gで精製し、10%アセトニトリル/塩化メチレンで溶出することで、淡橙黄色油状物として4H−ピラン−4−オン0.254gを得る。収率:28.0%。
−NMR (CDCl) δ: 7.74 (2H,m,C−H and C−H), 6.37 (2H,m,C−H and C−H) ppm。
本実施例でも4H−ピラン−4−オンが製造されるが、酸性条件が強すぎるため、収率は非常に低かった。これは閉環前に脱炭酸反応が起こるためと推測される。
【0016】
実施例3
(1) 4−オキソ−4H−ピラン−3,5−ジカルボン酸ジエチルエステル(式 及び式 (II) の化合物からの式 (I の化合物の製造)
アセトンジカルボン酸ジエチルエステル25gをトルエン125ml に溶解し、氷水で冷却し、撹拌下にN,N−ジメチルホルムアミドジメチルアセタール 40ml を10分間で加える。75℃の油浴上1時間、さらに105℃の油浴上2時間、生成されたメタノールを溜出しながら加熱する。減圧下にトルエン及び過剰のアセタール試薬を溜去し、得られた残渣をアセトン200ml に溶解する。この溶液に撹拌下、85%リン酸42.9g及びアセトン43ml の混合溶液を室温にて10分間で加え、2時間撹拌する。アセトンを減圧下に除去し、食塩水120ml を加え、塩化メチレンで抽出し、食塩水で洗浄後、硫酸マグネシウムで乾燥し、活性炭2.5gで処理し、減圧下に塩化メチレンを除去し、橙赤色油状物質として4−オキソ−4H−ピラン−3,5−ジカルボン酸ジエチルエステル29.65gを得る。収率:99.5%。
−NMR (CDCl) δ: 8.40 (2H,s,C−H and C−H), 4.36 (4H,q,J=7Hz,CH CH), 1.37 (6H,t,J=7Hz,CH CH ) ppm
【0017】
(2) 4H−ピラン−4−オンの製造(式 (I の化合物から式 の化合物の製造)
先の工程にて製造した4−オキソ−4H−ピラン−3,5−ジカルボン酸ジエチルエステル29.65gに4N硫酸185ml を加え、105℃の油浴上1.5時間加熱する。冷却後、30℃以下で50%水酸化ナトリウム水溶液62gを滴下し、NaCO 3.3gを加え、拆出結晶を濾過水で洗浄し、瀘液を塩化メチレンで抽出し、硫酸マグネシウムで乾燥し、活性炭3gで処理後、減圧下に塩化メチレンを除去し、茶色の吸湿性油状物質4.57gを得る。減圧蒸留し、吸湿性淡黄色結晶として4H−ピラン−4−オン3.19gを得る。bp23106〜108℃。収率:27.0%。
−NMR (CDCl) δ: 7.74 (2H,m,C−H and C−H), 6.37 (2H,m,C−H and C−H) ppm。[0001]
[Industrial applications]
The present invention relates to a method for producing 4H-pyran-4-one having high utility as a raw material for synthesizing various pharmaceuticals, an intermediate useful for the method, and a method for producing the same.
4H-pyran-4-one is used as a raw material for producing 4H-pyran-4-thione and N-alkylpyridine-4-thione, which are synthetic reagents for antibacterial agents. Furthermore, if 4H-pyran-4-one is catalytically reduced according to the method described in the literature, it is possible to easily produce tetrahydro-4H-pyran-4-one, which is a substance useful for pharmaceutical synthesis.
[0002]
[Prior art and problems to be solved]
Formula (V):
Embedded image
Figure 0003563424
The 4H-pyran-4-one represented by is conventionally produced by various methods.
For example, as a method for synthesizing kelidonic acid, which is a raw material for synthesizing 4H-pyran-4-one, E.I. R. Riegel and F.S. Zwigmeyer discloses the following reaction [Org. Syn. Coll. Vol. 2.126 (1943)]. However, this reaction is complicated.
Embedded image
Figure 0003563424
[0003]
As a method for decarboxylating the kelidonic acid, O.I. Henberg et al. N. Owen discloses the following reaction [J. Chem. Soc. , 910 (1952)]. The disadvantage of this reaction is that high temperatures are required for the decarboxylation reaction.
Embedded image
Figure 0003563424
[0004]
Further, C.I. Desouza, Y .; Hajikarian and P.M. WS Heldrakw discloses the following reaction [Synth. Commun. , 22.755 (1992)]. However, this reaction also requires high temperatures for the decarboxylation reaction.
Embedded image
Figure 0003563424
As described above, although 4H-pyran-4-one has been conventionally produced by various methods, the reaction is complicated in the operation of synthesizing keridonic acid as a raw material, or 4H-pyran-4-one is converted to 4H-pyran-4-one. It cannot be said that 4H-pyran-4-one is suitable for industrial large-scale synthesis of 4H-pyran-4-one, for example, requiring a high temperature for decarboxylation.
[0005]
Configuration of the Invention
The present invention relates to a method for producing 4H-pyran-4-one. The present inventors have succeeded in synthesizing a novel compound, 4-oxo-4H-pyran-3,5-dicarboxylic acid dialkyl ester [compound of formula (IV) described below], and decarboxylate it. A novel process for producing 4H-pyran-4-one [third step in the following reaction formula] was found. One embodiment of the method of the present invention is represented by the following series of reaction formulas.
Embedded image
Figure 0003563424
[Wherein R 1 , R 2 and R 3 are each independently lower alkyl, preferably C 1 -C 7 alkyl, more preferably C 1 -C 4 alkyl]
[0006]
That is, N, N-dialkylformamide dialkyl acetal (II) is condensed with acetone dicarboxylic acid dialkyl ester (I) to form 2,4-bis-N, N-dialkylaminomethylene acetone dicarboxylic acid dialkyl ester (III). The resulting ester (III) is treated with an acid to give 4-oxo-4H-pyran-3,5-dicarboxylic acid dialkyl ester (IV), and the compound (IV) is decarboxylated by acid hydrolysis, To produce 4H-pyran-4-one (V). Since this production method is safe and easy to operate, it is a novel method suitable for mass synthesis of 4H-pyran-4-one.
[0007]
The method for producing 4H-pyran-4-one of the present invention comprises three steps.
In the first step, an acetone dicarboxylic acid dialkyl ester (I) is reacted with an N, N-dialkylformamide dialkyl acetal (II) to give 2,4-bis-N, N-dialkylaminomethylene acetone dicarboxylic acid dialkyl ester (III). This is the step of generating.
The reaction in this step proceeds even without a solvent, but in that case, a by-product increases, so that a solvent is preferably used. The solvent used is a solvent inert to compounds (I) and (II), such as benzene, toluene, dichloroethane and tetrachloroethane, and methanol can be used as a solvent although the yield is low. This reaction is carried out quantitatively, usually by heating to near the boiling point of the solvent to be used and for several tens of minutes to several hours, and the compound of the formula (I) is almost consumed. The compound (I) and the compound (II) are reacted usually at a molar ratio of 1: 2, preferably at a molar ratio of 1: 2 or more.
[0008]
The acetone dicarboxylic acid dialkyl ester represented by the formula (I) includes dimethyl ester, diethyl ester, dipropyl ester, diisopropyl ester and dipropyl ester. The N, N-dialkylformamide dialkyl acetal represented by the formula (II) includes N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N-dimethylformamide diisopropyl acetal, N, N-dimethylformamide di-t-butyl acetal, N, N-dimethylformamide dicyclohexyl acetal, N, N-dimethylformamide dineopentyl acetal, N, N-diethylformamide dimethyl acetal, N , N-Diethylformamide diethyl acetal, N, N-diethylformamide dipropyl acetal, N, N-diethylformamide diisopropyl acetal, N, N-diethylform Amide di -t- butyl acetal, N, N-diethylformamide dicyclohexyl acetal, N, N-diethylformamide dineopentyl acetal, and the like. Most of these compounds are easily available because they are commercially available.
[0009]
In the second step, the amino moiety of the compound of the formula (III) is hydrolyzed in the presence of an acid to form a ring-closed compound, thereby obtaining a dialkyl 4-oxo-4H-pyran-3,5-dicarboxylate represented by the formula (IV). It is a process. If the reaction of this step is carried out under heating under strong acid conditions, a decarboxylation reaction also takes place at the same time, and the desired 4H-pyran-4-one (V) is directly obtained. However, since the yield in this case is low, it is preferable to hydrolyze the compound (III) without decarboxylation and to efficiently close the ring. As a result of the examination of the conditions by the present inventors, it has been found that a weak acid such as dilute hydrochloric acid or phosphoric acid is preferable, and phosphoric acid is particularly optimum. The amount of the acid to be used is preferably at least 3 equivalents to compound (III).
As a solvent to be used, a water-soluble organic solvent in which the acid is dissolved, for example, acetone, tetrahydrofuran, ethyl acetate and the like are preferable, but methylene chloride can also be used. In this step, the reaction temperature is from ice-cooled to room temperature. It should be noted that if heated, decarboxylation can also occur. The reaction time is usually completed in a few hours.
The compound of the formula (IV) is a novel compound not described in the literature.
[0010]
The third step is to heat the compound of formula (IV) under acidic conditions and convert it to 4H-pyran-4-one of formula (V). The reaction in this step proceeds under normal decarboxylation conditions. The heating temperature is usually several tens of degrees to about 150 ° C, preferably 50-100 ° C. Dilute sulfuric acid, hydrochloric acid, acetic acid, nitric acid and the like are used for the acidic condition, and dilute sulfuric acid is preferably used.
The above C.I. Desouza et al. [Synth. Commun. , 22.755 (1992)] decarboxylate 4-oxo-4H-pyran-2,6-dicarboxylic acid (keridonic acid) using a reflux temperature as high as 207 ° C. to produce 4H-pyran-4-one. However, in comparison with this, the third step reaction of the present invention has milder conditions and is easier to operate. In this step, considering the yield, the number of carbon atoms in R 1 is preferably as small as possible, and C 1 -C 4 alkyl, especially methyl is preferable.
[0011]
The present invention, in one aspect, relates to this third step process for preparing 4H-pyran-4-one starting from a novel compound of formula (IV). In another aspect, the present invention relates to a method for producing 4H-pyran-4-one via a compound of the formula (IV) starting from a compound of the formula (III), comprising the second step and the third step. . Furthermore, the present invention relates to a method for producing 4H-pyran-4-one, which comprises a first step, a second step and a third step starting from the compounds of the formulas (I) and (II).
[0012]
When the compound represented by the formula (III) is treated under heating conditions in the presence of a strong acid as described above, 4H-pyran-4-one can be directly obtained. For example, diluted hydrochloric acid or diluted sulfuric acid is used as the strong acid. The temperature is usually 50-100 ° C. Such steps also constitute a part of the present invention.
[0013]
Hereinafter, the present invention will be described in more detail with reference to Examples, but these are merely examples, and do not limit the technical scope of the present invention.
【Example】
Example 1
(1) Preparation of dimethyl 4-oxo-4H-pyran-3,5-dicarboxylic acid ( production of compound of formula ( IV ) from compound of formula ( I ) and formula (II) )
After dissolving 174 g of dimethyl acetone dicarboxylate in 870 ml of toluene and cooling with ice water, 320 ml of N, N-dimethylformamide dimethyl acetal is added thereto with stirring for 10 minutes. The mixture is heated while distilling off the produced methanol for 1 hour on a 75 ° C. oil bath and for 2 hours on a 105 ° C. oil bath. The toluene and excess acetal reagent are distilled off under reduced pressure, and the obtained residue is dissolved in 1.45 liter of acetone. While stirring, a mixed solution of 346 g of 85% phosphoric acid and 350 ml of acetone is added at room temperature for 10 minutes, and the resulting mixture is stirred for 2.5 hours. The acetone was removed under reduced pressure, 1 liter of brine was added, extracted with methylene chloride, washed with brine, dried over magnesium sulfate, treated with 10 g of activated carbon, concentrated under reduced pressure, and 1 liter of ether was added. The precipitated crystals are filtered. This gives 160 g of 4-oxo-4H-pyran-3,5-dicarboxylic acid dimethyl ester as pale yellow crystals. Melting point: 107-108 ° C. Yield: 75.4%.
Elemental analysis (as C 9 H 8 O 6 )
Calculated value: C, 50.95; H, 3.80 (%)
Experimental value: C, 50.94; H, 3.89 (%)
H 1 -NMR (CDCl 3) δ : 8.43 (2H, s, C 2 -H and C 6 -H), 3.90 (6H, s, CO 2 CH 3) ppm
IR (CHCl 3): 1755, 1718, 1673, 1564, 1438, 1319, 1278, 1116, 1058 cm -1
[0014]
(2) 4H-pyran-4-one (the preparation of compounds of formula (V) from compounds of formula (I V))
1.13 L of 4N sulfuric acid is added to 160 g of 4-oxo-4H-pyran-3,5-dicarboxylic acid dimethyl ester produced in the previous step, and the mixture is heated on a 105 ° C. oil bath for 2.5 hours. After cooling, 200 ml of methylene chloride was added, 500 g of a 40% aqueous solution of sodium hydroxide was added dropwise at 30 ° C. or lower, 20 g of Na 2 CO 3 was added, extracted with methylene chloride, dried over magnesium sulfate, and treated with 10 g of activated carbon. Then, methylene chloride was removed under reduced pressure to obtain 42.7 g of hygroscopic yellow crude crystal 4H-pyran-4-one. Yield: 58.9%. The crude crystals are distilled under reduced pressure to obtain 38.3 g of pure 4H-pyran-4-one as hygroscopic pale yellow crystals. bp 25 111-112 ° C. Yield: 52.9%.
H 1 -NMR (CDCl 3) δ : 7.74 (2H, m, C 2 -H and C 6 -H), 6.37 (2H, m, C 3 -H and C 5 -H) ppm.
[0015]
Example 2
3. Direct production of 4H-pyran-4-one from compounds of formula (III) 1.74 g of dimethyl acetone dicarboxylate are cooled with ice water and stirred with N, N-dimethylformamide dimethyl acetal. Add 0 ml. The resulting mixture is heated on a 75 ° C. oil bath for 1 hour. The toluene and excess acetal reagent are distilled off under reduced pressure to obtain 2.69 g of 2,4-bis (N, N-dimethylaminomethylene) acetone dicarboxylic acid dimethyl ester as an orange-yellow oily substance. Yield: 94.5%. 13 ml of 4N sulfuric acid is added to the obtained ester, and the mixture is heated on a 100 ° C. oil bath for 1 hour. Salt was added, extracted with methylene chloride, dried over magnesium sulfate, purified on 10 g of alumina, and eluted with 10% acetonitrile / methylene chloride to give 0.254 g of 4H-pyran-4-one as a pale orange-yellow oil. obtain. Yield: 28.0%.
H 1 -NMR (CDCl 3) δ : 7.74 (2H, m, C 2 -H and C 6 -H), 6.37 (2H, m, C 3 -H and C 5 -H) ppm.
Also in this example, 4H-pyran-4-one was produced, but the yield was very low because the acidic conditions were too strong. This is presumed to be due to the decarboxylation reaction occurring before ring closure.
[0016]
Example 3
(1) 4-oxo-4H-pyran-3,5-dicarboxylic acid diethyl ester ( production of a compound of the formula ( IV ) from a compound of the formula ( I ) and the formula (II) )
25 g of acetonedicarboxylic acid diethyl ester is dissolved in 125 ml of toluene, cooled with ice water, and 40 ml of N, N-dimethylformamide dimethyl acetal is added with stirring over 10 minutes. The mixture is heated while distilling off the produced methanol for 1 hour on a 75 ° C. oil bath and for 2 hours on a 105 ° C. oil bath. The toluene and excess acetal reagent are distilled off under reduced pressure, and the obtained residue is dissolved in 200 ml of acetone. Under stirring, a mixed solution of 42.9 g of 85% phosphoric acid and 43 ml of acetone was added to this solution at room temperature for 10 minutes, followed by stirring for 2 hours. Acetone was removed under reduced pressure, 120 ml of brine was added, extracted with methylene chloride, washed with brine, dried over magnesium sulfate, treated with 2.5 g of activated carbon, methylene chloride was removed under reduced pressure, and orange 29.65 g of 4-oxo-4H-pyran-3,5-dicarboxylic acid diethyl ester are obtained as a red oil. Yield: 99.5%.
H 1- NMR (CDCl 3 ) δ: 8.40 (2H, s, C 2 -H and C 6 -H), 4.36 (4H, q, J = 7 Hz, CH 2 CH 3 ), 1.37 (6H, t, J = 7 Hz, CH 2 CH 3 ) ppm
[0017]
(2) 4H-pyran-4-one (the preparation of compounds of formula (V) from compounds of formula (I V))
To 29.65 g of 4-oxo-4H-pyran-3,5-dicarboxylic acid diethyl ester produced in the previous step, 185 ml of 4N sulfuric acid is added, and the mixture is heated on a 105 ° C. oil bath for 1.5 hours. After cooling, 62 g of a 50% aqueous sodium hydroxide solution was added dropwise at 30 ° C. or lower, 3.3 g of Na 2 CO was added, the crystals were washed with filtered water, the filtrate was extracted with methylene chloride, and dried over magnesium sulfate. Then, after treatment with 3 g of activated carbon, methylene chloride was removed under reduced pressure to obtain 4.57 g of a brown hygroscopic oily substance. Distillation under reduced pressure gives 3.19 g of 4H-pyran-4-one as hygroscopic pale yellow crystals. bp 23 106-108 ° C. Yield: 27.0%.
H 1 -NMR (CDCl 3) δ : 7.74 (2H, m, C 2 -H and C 6 -H), 6.37 (2H, m, C 3 -H and C 5 -H) ppm.

Claims (2)

式(IV):
Figure 0003563424
[式中、Rは低級アルキルである]
で示される化合物を酸性条件下に脱炭酸することを特徴とする式(V):
Figure 0003563424
で示される4H−ピラン−4−オンの製造方法。
Formula (IV):
Figure 0003563424
Wherein R 1 is lower alkyl
Wherein the compound of formula (V) is decarboxylated under acidic conditions:
Figure 0003563424
A method for producing 4H-pyran-4-one represented by the formula:
式(IV):
Figure 0003563424
[式中、Rは低級アルキルである]
で示される化合物。
Formula (IV):
Figure 0003563424
Wherein R 1 is lower alkyl
A compound represented by the formula:
JP29641693A 1993-11-26 1993-11-26 Method for producing 4H-pyran-4-one Expired - Fee Related JP3563424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29641693A JP3563424B2 (en) 1993-11-26 1993-11-26 Method for producing 4H-pyran-4-one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29641693A JP3563424B2 (en) 1993-11-26 1993-11-26 Method for producing 4H-pyran-4-one

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002339268A Division JP2003160576A (en) 2002-11-22 2002-11-22 Simple production method of 4h-pyran-4-one

Publications (2)

Publication Number Publication Date
JPH07145162A JPH07145162A (en) 1995-06-06
JP3563424B2 true JP3563424B2 (en) 2004-09-08

Family

ID=17833264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29641693A Expired - Fee Related JP3563424B2 (en) 1993-11-26 1993-11-26 Method for producing 4H-pyran-4-one

Country Status (1)

Country Link
JP (1) JP3563424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700853A4 (en) 2003-12-19 2009-07-22 Ube Industries PROCESSES FOR PRODUCING TETRAHYDROPYRAN-4-ONE AND PYRAN-4-ONE
CN109535112A (en) * 2018-12-28 2019-03-29 浙江工业大学 preparation method of pyran-4-ketone-3, 5-dicarboxylic acid dimethyl ester

Also Published As

Publication number Publication date
JPH07145162A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JPS60231645A (en) Method for synthesizing O-substituted oxime compounds and method for converting them into corresponding hydroxylamine O-substituted compounds
JP4408578B2 (en) 3- (1-Hydroxy-pentylidene) -5-nitro-3H-benzofuran-2-one, production method thereof and use thereof
JP3563424B2 (en) Method for producing 4H-pyran-4-one
IL46917A (en) Preparation of 2-nitrobenzaldehyde and 2-nitrobenzylidenechloride
JPH032134B2 (en)
US4521616A (en) Method for the preparation of fluoroanthranilic acids
JP2992334B2 (en) Process for producing 2,4,5-tribromopyrrole-3-carbonitrile compound as molluscicide
JPS5821626B2 (en) The best way to get started
JP2002030005A (en) Method for manufacturing aryl ester of carboxylic acid
JP3869531B2 (en) Production method of biphenyl derivatives
EP1732899B1 (en) Process for preparing cyclohexanediacetic acid monoamide
WO1995022533A1 (en) Process for producing 3-isoxazolecarboxylic acid
US5208342A (en) Conversion of pyridine-2,3-dicarboxylic acid esters to cyclic anhydrides
JP2767295B2 (en) Method for producing indole-3-carbonitrile compound
KR100699457B1 (en) Method for preparing dibenzothione derivatives and intermediates thereof
JP2003160576A (en) Simple production method of 4h-pyran-4-one
US4343951A (en) Method for the preparation of fluoroaniline
JP2716243B2 (en) N-benzyl-3-hydroxysuccinamic acid and method for producing the same
JPH06135937A (en) Production of 5,5-disubstituted hydantoin
JPH09227490A (en) Production of 3-(or 4-)cyanobenzaldehyde
JPH06199809A (en) Preparation of 2,5-dibromopyrimidine
JPH0656736A (en) Bis (2-halogeno-4,5-difluoro) benzophenone and a novel method for producing 2-halogeno-4,5-difluorobenzoic acid therethrough
JPH0899953A (en) New haloketal compound
JPH0324045A (en) Manufacture of anilinofumarate through chloromalate or chlorofumarate or their mixture
JPS6393748A (en) Production of 2-(4-substituted phenyl)proponic acid derivative

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees